A Controlled Language for the
Specification of Contracts

Gordon J. Pace* and Michael Rosner**

University of Malta, Msida MSD2080, Malta
{gordon.pace,mike.rosner}@um.edu.mt

Abstract. Controlled natural languages have been used to enable the direct trans-
lation from natural language specifications into a formal description. In this ab-
stract we make a case for such an approach to write contracts, and translating
into a temporal deontic logic. Combining both temporal behaviour and deontic
behaviour is challenging both from a natural language and a formal logic per-
spective. We present both a logic and a controlled natural language and outline
how the two can be linked.

1 Introduction

Controlled languages are restricted subsets of natural language that have been designed
with a specific aim, restricted in vocabulary, syntax and semantics to enable the lan-
guage to be learned, translated, analysed and generated. Natural language contracts
specifying obligations between contracting parties, are so complex that we are gener-
ally forced to rely upon costly legal specialists for their formulation and analysing their
implications. This motivates a controlled language (cf. Pulman [1]) for contracts, rich
enough to be useful in a range of real applications, simple enough for ordinary people
to understand, and precise enough to be amenable to automated methods of reasoning.

An important feature of a contract is that one party makes an offer for an arrange-
ment that another accepts. Once this exchange takes place, constraints are enforced over
the parties’ future actions. Much of the time, contracts are made orally or are implied by
the situation at hand. However, beyond a certain level of complexity, written contracts
are the norm. The use of unrestricted natural language brings with it a host of problems
relating to ambiguity, syntactic complexity, context sensitivity, etc.

Contracts appear in computational settings in various guises — from simple pre-
and post-condition pairs in programming giving guarantees on outcomes based on as-
sumptions on the initial conditions, to quality of service agreements requesting, for in-
stance, a maximum guaranteed packet-dropping probability. Service level agreements,
contracts used for conformance checking, and system specifications are expressed in a
variety of ways, but may still contain interesting deontic nuances. Simple examples of
a system specification, combining deontic and temporal notions are given below:

— Upon accepting a job, the system guarantees that the results will be available within
an hour unless cancelled in the meantime.

* Dept. Computer Science
** Dept. Attificial Intelligence

— Only the owner of a job has permission to cancel the job.
— The system is forbidden from producing a result if it has been cancelled by the
owner.

2 Underlying Logic Representation Language

The challenge to formalise deontic logic, to reason about normative concepts such as
obligations and permissions, has been the hot topic of research for various decades. The
main challenge is that it is very easy to describe paradoxical situations using deontic
concepts [2]. Introducing the concept of time, introduces more paradoxes [3]. Various
axiomatizations have been proposed, as an attempt to deal with the paradoxes, however,
one of the more effective approaches has been that of restricting the syntax [4]. Since
our aim is to reason about contracts derived from natural language texts, and which
could thus include paradoxes or contradictions, we opt for a more general logic, which
could then be restricted, syntactically or semantically, to weed out potential problems.

Contracts are sometimes seen as properties which should be satisfied by a system.
This view however, does not enable (i) reasoning about the contract eg ‘What are the
currently undischarged obligations in the contract?’; or (ii) reasoning about exceptional
cases in a contract eg ‘“Whenever clause (a) is violated, the user is prohibited from ob-
taining the service’. The introduction of explicit prohibition, obligation and permission
clauses into a contract is thus essential to enable reasoning about it. Furthermore, such
clauses have to be associated to a particular agent participating in the contract.

The deontic logic includes obligation, permission and prohibition (O(« : €), P :
e) and F'(« : e)), non-deterministic choice (+), conjunction (&), conditional (¢ 1 <a>ca),
generalised sequential composition (co<ici>cy, which starts with ¢, and then follows it up
with ¢; or co depending on whether it was satisfied or violated) and timing information

(C[b,e]):

contract ::= T o | Lyime | O(agent : action) | P(agent : action) | F(agent : action)
| contract + contract | contract & contract | contract < action > contract

| contract <contract v>contract | contractigime timey

Using these operators and fix-point definitions, other operators can be defined: (i)
one branch conditional: e — ¢ = c<e > Ty; (il) sequential composition: cy;ce =
co <Kicq p>_Lo; (iii) the always operator: (I(c) = ¢ & T1;0(c); and (iv) the sometimes
operator: ¢(¢) = ¢+ T1; O(c). Furthermore, the complement of an action or an agent
can be expressed in the logic using a bar over the object. The examples given earlier
can be written in the following manner:

— Upon accepting a job, the system guarantees that the results will be available within
an hour unless cancelled in the meantime:
O(accept; — O(system : (result; + cancely))io,1nr])

— Only the owner of a job has permission to cancel the job:
O(P(owner; : cancel;) & F(owner; : cancel;))

— The system is forbidden from producing a result if it has been cancelled by the
owner: O(cancel; — F'(system : (O(result;))))

The logic proposed shares much in flavour with CL [4] and other action-based de-
ontic logics. One can construct observer formulae (one for each actor), using which one
can model-check contracts [5], and perform contract analysis. The temporal side of the
logic is based on timed regular expressions [6]. Although, as in timed regular expres-
sion, a continuous time domain may be used, at the moment we restrict the time to a
discrete domain for analysis techniques. Through the use of a trace semantics of the
logic, standard model checking techniques can be used to check for validity.

3 Remarks on a Possible Controlled Language

In this section we take the numbered examples of section 1 and propose some simpli-
fications which reduce both syntactic complexity and, more importantly, the potential
for ambiguity.

1. original: Upon accepting a job, the system guarantees that the results will be avail-

able within an hour unless cancelled in the meantime.

controlled if SYSTEM accepts Job, then during one hour it is
obligatory that SYSTEM make available results of Job unless
SOMEONE cancels Job.

comment: There are three events: accepting a job, results being available, and
a cancellation. There is also a contractual obligation concerning the second
event, but this is discharged if the cancellation takes place. This sentence dis-
plays the classical problem of attachment ambiguity. There is also a problem of
ellipsis. The main problems are (a) the attachment of the time adverbial within
an hour and (b) the object of the the cancellation. Regarding the attachment,
the adverbial could attach to either the availability of the results, or to the obli-
gation concerning the availability of results (cf. within an hour I promise to
go vs. I promise to go within an hour). Regarding the object of the cancella-
tion, this could be the job or the results. We should note that in section 2, both
these ambiguities have been resolved: attachment is to the obligation has been
favoured, whilst the object of the results is assumed to be the results.
Several problems can be solved by allowing proper names into the language.
Predefined ones, like SYSTEM, are notated using all capital letters, whilst ar-
bitrary ones, like Job, are used to enforce coreference, have an initial capital
letter. A second major change is a rationalised event syntax based on a simple
agent-action-object format. The easy cases are underlined above. The complex
case revolves around is obliged, which can usefully be treated as an event
(strictly it is a state) whose object is itself an event. We have carefully con-
trolled the syntax and placement of the time adverbials, and, last but not least,
the position of unless is immediately after the statement of the obligation.

2. original: Only the owner of a job has permission to cancel the job.

controlled: it is permitted that only owner of Job cancels Job.

comment: The syntax is basically uncontroversial but there is an issue about the
anaphoric status of definite noun phrases. Although it would be possible, fol-
lowing Fuchs-et-al. [7], to deal with this using DRT ((cf. Kamp and Reyle [8]),

we feel that the introduction of proper names offers a much simpler solution.
The logical representation suggested in section 2 is being driven by the word
only is straightforward to engineer using techniques from unification gram-
mar.
3. original: The system is forbidden from producing a result if it has been cancelled

by the owner.

controlled If owner of Job cancels Job, it is forbidden that SYSTEM
produces result of Job

comment: The main problem with the original sentence is that it the syntax is
complex, and the word it ambiguously refers to either the system or result or
producing a result”, or, if we consider all three sentences to be part of a dis-
course, the job mentioned in the second sentence. Although it has been argued
that this particular case could be resolved by semantic constraints or or by the
use of heuristics (cf. ACE [7]), we feel that all these problems can be avoided
by adopting the controlled language being suggested.

Space limitations prevent a proper discussion of the grammar. Instead we illustrate
some proposed parse trees for key phrases in our examples.

PART OF EXAMPLE 1

t-adv s
I I
P np mode s
during 1 | |
d n pro vg comp simple-event
one hour it | that
aux ppart agent action object

is obligatory | | |
nom vg nom
| |
np v aj np
| make available |
n np pp
SYSTEM | _
n P np
results of |
n
Job

EXAMPLE 3
s
_ I
conj s s
if | |
simple-event mode s
| |
agent action object pro vg comp simple-event
| | | it | that |
nom vg nom aux ppart agent action object
| | | is forbidden | |
np v np nom vg nom
| cancels | | | |
np pp n np v np
| N Job | produces |
n P np n np PP
owner of | SYSTEM | |
n n p np
Job result of |

n
Job

The examples above have been generated using a PC-PATR, a version of PATR2 (Shieber
[9]). Unification grammar formalisms such as PATR2 facilitate the transformation of
parse tree fragments shown into attribute-value structures that can be regarded as nota-

tional variants of the formulae presented in section 2 of this paper.

4 Conclusions

In this abstract we have outlined the proposal for a controlled natural language and
a deontic logic to enable specification and reasoning about contracts in an automatic
fashion. A number of challenges still remain to be addressed.

In the translation from the sublanguage to logic, one can find a direct correspon-
dence between the subgrammar and the logic. We plan to use contract analysis tech-
niques similar to ones we have recently developed for CL to enable contract sanity
checking, including discovery of conflict analysis and superfluous clauses. These tech-
niques can provide feedback to the contract translation from the natural sublanguage
into logic, for example, for the resolution of ambiguities.

The main aim of transforming logic to language is to make it more understand-
able to those unfamiliar with logic. The transformation is clearly a problem of Natural
Language Generation (NLG) which is generally recognised (cf. Reiter and Dale [10])
to involve large numbers of realisation choices. These can of course be by-passed by
adopting a suitably strict generation algorithm. The extent to which this compromises
naturalness is a factor that will need to be carefully evaluated in the contracts domain.

References

1. Pulman, S.: Controlled language for knowledge representation. In: Proceedings of the First
International Workshop on Controlled Language Applications, Leuven, Belgium (1996)

2. Meyer, J.J.C., Dignum, FE., Wieringa, R.: The paradoxes of deontic logic revisited: A com-
puter science perspective (or: Should computer scientists be bothered by the concerns of
philosophers?). Technical Report UU-CS-1994-38, Department of Information and Com-
puting Sciences, Utrecht University (1994)

3. Pace, G.J., Schneider, G.: Challenges in the specification of full contracts. In: Proceedings
of Integrated Formal Methods (iFM’09). LNCS, Springer (2009)

4. Prisacariu, C., Schneider, G.: A formal language for electronic contracts. In: 9th IFIP
International Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’07). Volume 4468 of LNCS., Springer (2007)

5. Pace, G., Prisacariu, C., Schneider, G.: Model checking contracts —a case study. In: 5th In-
ternational Symposium on Automated Technology for Verification and Analysis (ATVA’07).
Volume 4762 of LNCS., Tokyo, Japan, Springer-Verlag (2007)

6. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. Journal of the ACM 49(2) (2002)
172-206

7. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowledge Repre-
sentation. In Baroglio, C., Bonatti, P.A., Matuszynski, J., Marchiori, M., Polleres, A., Schaf-
fert, S., eds.: Reasoning Web, Fourth International Summer School 2008. Number 5224 in
Lecture Notes in Computer Science, Springer (2008) 104—124

8. Kamp, H., Reyle, U.: From Discourse to Logic: Introduction to Model-theoretic Seman-
tics of Natural Language, Formal Logic and Discourse Representation Theory. Studies in
Linguistics and Philosophy. Springer (1993)

9. Shieber, S.: An Introduction to Unification-Based Approaches to Grammar. CSLI Publica-
tions, Stanford University, California (1986)

10. Reiter, E., Dale, R.: Building natural language generation systems. Studies in natural lan-
guage processing. Cambridge University Press, Cambridge, U.K. ; New York (2000)

