
Computational Complexity of Controlled

Natural Languages (Extended abstract)

Ian Pratt-Hartmann

University of Manchester,
Manchester M13 9PL, UK,

ipratt@cs.man.ac.uk

1 Introduction

A controlled natural language is a precisely delineated fragment of some nat-
ural language (usually English), developed for the purpose of supporting some
technical activity—such as process specification [5, 6], hardware specification [4],
database querying [1] or data-schema specification [2, 12]. The intention is that
the controlled natural language should provide an easy-to-use interface to some
underlying logical formalism, within which certain procedures—such as query-
answering, model-checking or determining satisfiability or entailment—can then
be executed. The question therefore arises as to how the computational com-
plexity of these logical procedures depends on the grammar of the controlled
natural language through which their input is channelled.

In this talk, I shall investigate the complexity of determining logical relation-
ships within controlled natural languages featuring a variety of grammatical con-
structions. The constructions considered here are largely motivated by Attempto

Controlled English [3]; however, the analysis is intended to apply to (just about)
any conceivable controlled natural language. Most of the results mentioned in
this talk have already been published elsewhere: its primary contributions are to
organize these results into a coherent framework, and to make them accessible
to the controlled natural language community.

Formally, we take a language to be a mapping from strings (over some al-
phabet) to sets of formulas (in some logic). A string mapped to a non-empty
set of formulas is a sentence of the language in question, and the formulas to
which it is mapped are the possible meanings of that sentence. In the special
case where no sentence is given more than one meaning, the logical concepts of
satisfiability and entailment carry over naturally from logic to language: a set of
sentences E is satisfiable if the formulas Φ to which they translate are satisfiable
(in the usual logical sense); and E entails a sentence e if the formula to which e
translates is entailed (in the usual logical sense) by Φ. For any language defined
in this way we may ask: what is the computational complexity of determining
satisfiability and entailment in that language? In the sequel, we provide answers
to these questions for a range of such languages.

2 Languages with the copula

We begin with the simplest possible controlled natural languages: those whose
sentences are all of the forms Some p is a q, Every p is a q or No p is a q. Here,
p and q are taken from a countably infinite set of count-nouns, such as artist,
beekeeper, carpenter etc. We call this this fragment of English S−. Ignoring some
minor grammatical details, S− may be defined using a semantically annotated

context-free grammar, thus:

S/λy1λy2.(y1 y2) → NP, VP Det/λx1λx2.((∃ x1) x2) → some

NP/λy1λy2.(y1 y2) → Det, N′ Det/λx1λx2.((∀ x1) x2) → all

VP/λy1.y1 → is, a, N′ Det/λx1λx2.((∀ x1) (λx.(¬ (x2 x)))) → no

N′/λy1.y1 → N N/pi → pi (i = 1, 2, . . .).

The semantic annotations in the rule-heads are expressions of the simply-typed
lambda calculus with constants. We denote the type of domain objects by e
and the type {>,⊥} of truth-values by t. If τ1 and τ2 are types, then 〈τ1 τ2〉
is the type of functions from τ1 to τ2. The symbol ∀ is the obvious logical
constant of type 〈〈e t〉 〈〈e t〉 t〉〉 (similarly, mutatis mutandis, for ∃ and ¬),
and the symbols p1, p2, . . . are non-logical constants (Urelemente) of type 〈e t〉,
representing the meanings of the count nouns p1, p2, Strings are parsed in
the normal way; and during parsing, the meaning of a phrase is computed by
applying the semantic annotation on the relevant rule to the already-computed
meanings of the non-terminals on its right-hand side, in left-to-right order. It is
routine to verify that the above grammar produces (following β-reduction and
conversion to first-order syntax) the familiar first-order translations for sentences
of S−.

Now define the language S to comprise all the sentences of S− together with
Some p is not a q, Every p is not a q and No p is not a q, to which it assigns the
expected meanings. (The relevant defining grammar rule is easy to formulate.)
The language S is, in effect, the language of the classical syllogistic. We can
increase expressive power further by allowing the (slightly artificial) construction
non- in noun-phrases, with the interpretation that a non-p is simply anything
which is not a p. This gives us, amongst other things, the sentence-forms Some

non-p is not a q and Every non-p is a q, which are not logically equivalent to any
S-sentences. We call this language S†.

The satisfiability problem for S† is essentially the same as 2-SAT (the satis-
fiability problem for propositional clauses with at most two literals). Thus, it is
routine to show:

Theorem 1. The problem of determining the satisfiability of a set of sentences

in any of the languages S−, S or S† is NlogSpace-complete.

Let us consider the addition of adjectives. We define the language S−A by
augmenting the grammar rules for S− with

N′/λy1λy2λx.(∧ (y1 x) (y2 x)) → A, N′ VP/λy1.y1 → is, A
A/ai → ai,

where a1, a2, . . . are adjectives, having meanings a1, a2, . . . of type 〈e t〉. Thus,
S−A includes sentences such as Every tall intelligent artist is a beekeeper or No car-

penter is tall, with adjectives taken to have intersective semantics. The languages
SA and S†A may be defined analogously, using the additional rule

VP/λyλx.(¬ (y1 x)) → is, not, A.

The satisfiability problem for SA is essentially the same at the satisfiability
problem for propositional Horn clauses. Thus, it is routine to show:

Theorem 2. The problem of determining the satisfiability of a set of sentences

in either of the languages S−A or SA is PTime-complete. The problem of deter-

mining the satisfiability of a set of sentences in the language S†A is NPTime-

complete.

Next, we consider languages with relative clauses. We define S−W , SW and
S†W by adding to S−, S and S† the grammar rules

N′/λy1λy2λx.(∧ (y1 x) (y2 x)) → N, which, is, a, N
N′/λy1λy2λx.(∧ (y1 x) (¬ (y2 x))) → N, which, is, not, a, N.

Theorem 3. The problem of determining the satisfiability of a set of sentences

in any of the languages S−W, SW or S†W is NPTime-complete.

Notice that these rules do not permit nesting of relative clauses, thus avoiding
ambiguous and unnatural noun-phrases such as artist who is not a beekeeper who

is not a carpenter. In fact, allowing embedded relative clauses does not change
the complexity results reported in Theorem 3. Adjectives can be added to these
languages as well, resulting in languages S−AW , SAW and S†AW , defined in
the (more or less) obvious way. It is easily seen that this does not increase the
complexity of satisfiability either.

More difficult to analyse is the effect of adding numerical quantifiers. Define
the language S−Q to feature sentences of the forms At least C p are q or At most

C p are q, where C is a string of decimal digits representing a natural number;
and define SQ and S†Q analogously. (We ignore the issue of plural inflections.)

Theorem 4 ([9]). The problem of determining the satisfiability of a set of sen-

tences in any of the languages S−Q, SQ or S†Q is NPTime-complete.

Adding adjectives and relative clauses to these languages can be shown not to
affect the complexity of satisfiability.

3 Languages with transitive verbs

The languages considered so far are too trivial to be of much practical use,
since they feature no relations of arity greater than 1. Accordingly, let us define
the language R− by augmenting S− with sentences involving transitive verbs,
such as Every boy loves some girl or No boy loves no girl. Helping ourselves to a
countable set of transitive verbs r1, r2, . . . , and corresponding binary predicates
r1, r2, . . . , this can be achieved by means of the additional grammar rules

VP/λy1λy2.(y1 y2) → V, NP V/λx1λx2.(x1 λx3.((ri x2) x3)) → ri.

We can add expressive power by allowing verb-level negation. A rough-and-ready
attempt at this would be to take the rules for S and R− together with

S/λy1λy2.(y1 y2) → NP, NegP NegP/λy1λx.(¬ (y1 x)) → does, not, VP.

Let us call this language R. These rules are very leaky. For one thing, they
ignore the need for the negative polarity determiner any in No boy loves any girl;
in addition, they accept strange sentences such as No boy does not love some

girl (which is assigned the same meaning as Every boy loves some girl). However,
these details are easily corrected, and anyway have no effect on the complexity
of the satisfiability problem.

Theorem 5 ([10]). The problem of determining the satisfiability of a set of

sentences in either of the languages R− or R is NlogSpace-complete.

Adding the non-construction, however, produces an unexpected jump in com-
plexity. Let R† be the language defined in the same way as R, but allowing
‘negated’ subjects and objects of transitive verbs, such as Every non-artist ad-

mires some non-beekeeper.

Theorem 6 ([10]). The problem of determining the satisfiability of a set of

sentences in the language R† is ExpTime-complete.

Relative clauses have a similar effect in the presence of transitive verbs. Define
the language R−W by adding suitable rules for relative clauses to R−. Thus,
R−W contains sentences such as Every artist who admires every carpenter admires

some beekeeper. Define RW and R†W analogously.

Theorem 7 ([8]). The problem of determining the satisfiability of a set of sen-

tences in any of the languages R−W, RW or R†W is ExpTime-complete.

Numerical quantifiers have a greater effect on the complexity of satisfiability.
Let the language R−Q be obtained by augmenting R− with numerical quantifi-
cation. Thus, R−Q contains sentences such as At most 13 artists admire at least

4 beekeepers. Define RQ and R†Q analogously.

Theorem 8 ([9]). The problem of determining the satisfiability of a set of sen-

tences in any of the languages R−Q, RQ or R†Q is NExpTime-complete.

Adding adjectives to most of the above languages involving transitive verbs can
be shown not to affect the complexity of satisfiability.

4 Languages with other constructions

Languages involving ditransitive verbs can be defined in exactly the same way
as for transitive verbs. For example, let D− is defined analogously to R−, but
admits sentences such as Every artist introduces some beekeeper to some carpenter.
Only one result has been obtained in this case:

Theorem 9 ([11]). The problem of determining the satisfiability of a set of

sentences in the language D− is in PTime.

Finally, we consider languages featuring bound-variable anaphora (subject
to various restrictions). In [7], a very simple controlled natural language involv-
ing transitive verbs, relative clauses and restricted anaphora is presented, and
shown to have a NExpTime-complete satisfiability problem. The satisfiability
problem for the same language, but with ditransitive verbs, is shown in [11] to
be undecidable.

References

1. I. Androutsopoulos, G.D. Ritchie, and P. Thanisch. Natural language interfaces to
databases—an introduction. Natural Language Engineering, 1(1):29–81, 1995.

2. N. E. Fuchs, U. Schwertel, and S. Torge. Controlled natural language can replace
first-order logic. In 14th IEEE International Conference on Automated Software

Engineering, pages 295–298. IEEE Computer Society Press, 1999.
3. Norbert E. Fuchs, Uta Schwertel, and Rolf Schwitter. Attempto Controlled

English—not just another logic specification language. In Pierre Flener, editor,
Logic-Based Program Synthesis and Transformation, volume 1559 of Lecture Notes

in Computer Science, pages 1–20, Berlin, June 1999. Eighth International Work-
shop LOPSTR’98, Springer.

4. Alexander Holt and Ewan Klein. A semantically-derived subset of English for
hardware verification. In Proceedings of the 37th Annual Meeting of the Associa-

tion for Computational Linguistics, pages 451–456. Association for Computational
Linguistics, June 1999.

5. Benjamin Macias and Stephen Pulman. A method for controlling the production
of specifications in natural language. The Computer Journal, 38(4):310–318, 1995.

6. R. Nelken and N. Francez. Automatic translation of natural-language system spec-
ifications into temporal logic. Lecture Notes in Computer Science, 1102:360–371,
1996.

7. I. Pratt-Hartmann. A two-variable fragment of English. Journal of Logic, Language

and Information, 12:13–45, 2003.
8. Ian Pratt-Hartmann. Fragments of language. Journal of Logic, Language and

Information, 13:207–223, 2004.
9. Ian Pratt-Hartmann. On the computational complexity of the numerically definite

syllogistic and related logics. Bulletin of Symbolic Logic, 14(1):1–28, 2008.
10. Ian Pratt-Hartmann and Lawrence S. Moss. Logics for the relational syllogistic.

ArXiv preprint server, http://arxiv.org/abs/0808.0521, 2008.
11. Ian Pratt-Hartmann and Allan Third. More fragments of language. Notre Dame

Journal of Formal Logic, 47(2):151–177, 2006.
12. Sunil Vadera and Farid Meziane. From English to formal specifications. The

Computer Journal, 37(9):753–763, 1994.

