
A Pattern for Domain Specific Editing Interfaces
Using Embedded RDFa and HTML

Manipulation Tools.

Rob Styles1, Nadeem Shabir1, and Jeni Tennison2

1 Talis rob.styles@talis.com
2 Talis nadeem.shabir@talis.com

3 Jeni Tennison Consulting jeni@jenitennison.com

Abstract. Many applications have the need to provide end users with
editing capabilities. Often the nature of the domain and the user’s work-
flow require a specialised editing interface. This paper describes the ap-
proach taken to building a specialised editing interface for academic re-
source lists and extracts the core aspects to allow others to apply the
same pattern to their own applications. The solution described uses com-
monly available HTML manipulation tools and rdfQuery, a javascript
RDFa library, to maintain an RDF model embedded in the page. This
allows the application to provide a document style editing model over
RDF data.

1 A Tool for Managing Academic Resource Lists

Talis Aspire is a SaaS (Software as a Service) application for managing lists of
academic resources [1]. These resource lists are a key part of course content given
to students to help them study more effectively. It provides a reading interface
for students as well as a powerful editing interface for the lists’ maintainers. This
paper focusses on the approach used to implement the editing interface for list
maintainers and how that can be seen as a pattern for other domain specific
editing interfaces.

The view of the list when reading (Fig. 1) shows the list in the format students
are used to receiving, similar in structure to a document. This can be cleanly
printed for offline reference and each list, section and item have Cool URIs
[10] to allow for bookmarking. Each item then has additional information and
functionality behind simple links.

The editing view (Fig. 2) is used by academics and other faculty staff. Com-
mon tasks when editing lists are to add or remove particular items, to group
items together into sections and to annotate the items to provide additional
guidance to the students. The most common mental model of the resource list is
that of a document, with the associated mental models that come from editing
documents using typical office software.

This lead us to have a number of requirements for the editing interface.



Fig. 1. Talis Aspire: Student View of an Academic Resource List

Firstly, the mental model of a document requires that a number of edits can
occur before the user saves the document with an explicit ’save’ action. This
matches the model of typical office software.

Secondly, the document being edited should be visually the same as the
document when read, allowing the user to see what the result of their actions
will be.

Thirdly, the editing interface should be a dynamic experience, supporting
efficient editing with easy-to-use mechanisms for completing the common tasks.
In practice this would mean an AJAX interface.

Fourth, the application allows for concurrent editing, something not in most
people’s mental model of a document, so we wanted to make saves resilient,
where possible, to concurrent edits.

Fifth, the underlying data is stored as RDF and may be annotated and
augmented by data the application does not know about. Edits should not be
destructive to this data.

It is in this context that we set about designing a technical approach that
met all five goals and was as simple as possible to implement.

HTML representations of underlying data are usually specialised interfaces
designed to show the data in the best way for a human with a particular task to
perform. An editing interaction designed for the user must integrate the editing
function with this HTML representation and reflect changes the user makes in



Fig. 2. Talis Aspire: Editing View of an Academic Resource List

that representation. In situations where the data is posted back to the server to
update the underlying model the server can simply re-render the HTML based
on the new model. If a more dynamic editing interface is to be provided using
DHTML techniques then the HTML DOM must be manipulated directly and a
number of changes are submitted to the server in one go.

There are a number of mature libraries that allow for manipulation of the
DOM based on user input, including support for text editing, drag-and-drop,
enumerated options and more. Those the team felt familiar with are Prototype4,
JQuery5, Scriptaculous6 and YUI7. Any one of these libraries could provide the
basis of the editing facilities we aimed to provide.

The approach we developed uses client-side javascript to change a read-only
page into an editing mode. On switching into edit mode the first thing that
happens is that the page is parsed to extract a copy of the initial model, which
has been embedded in the page using RDFa [5]. This is kept as the starting point
from which to derive a list of changes. After the initial model has been captured
we use normal DHTML and AJAX libraries, in our case we used Prototype

4 http://www.prototypejs.org/
5 http://jquery.com/
6 http://script.aculo.us/
7 http://developer.yahoo.com/yui/



and Scriptaculous, to provide text editing, drag-and-drop re-ordering, removal
of elements and drag-and-drop of new items onto a list.

We arrived at our approach independently and later found a great deal of
inspiration in the work done on Ontowiki by Dietzold et al [6]. This work at-
tempted to provide generic editing tools for RDFa within a wiki page. The notion
of a suite of generic editing tools for RDFa is very appealing, but the user expe-
rience requirements for our application called for a specialised editing interface.
The intention was to provide editing of structured data while maintaining the
list view that users are accustomed to and would be expecting.

2 The Solution

The data underpinning Talis Aspire is stored as RDF in a Talis Platform Store
[7], making use of several ontologies including AIISO8, Resource List9, Biblion-
tology10, SIOC11and FOAF12.

Our solution for editing embeds RDFa within the page in such a way that
manipulation of the HTML DOM results in consistent and coherent changes to
the embedded model.

Server-side the pages are rendered by PHP from data stored natively as RDF
in a Talis Platform store. The application does content negotiation to return
HTML or rdf/xml to the client. If the response is HTML then RDFa is included
in the page markup.

The HTML manipulation during editing uses a combination of custom code
for edit dialogs and scriptaculous and prototype to provide drag-and-drop sup-
port.

The extraction of the model from RDFa within the page is performed by
rdfQuery13 which also uses JQuery for some page parsing tasks. Other libraries,
such as Ubiquity14 could be used as well, but our familiarity with jQuery and
prototyping experience with rdfQuery led us to select that.

Figure 3 shows a very much simplified diagram of the thin layer of application
code for Talis Aspire, above a Talis Platform Store, accessed via the internet by
both staff and students using standard browsers.

The key to the simplicity of this approach was to recognise that all we needed
for an editing session was a pair of before and after models. These models can
then be used to generate a changeset15 that persists the changes to underlying
storage. The structure of changesets is such that they also provide an ideal
mechanism for creating an auditable change history.

8 http://purl.org/vocab/aiiso
9 http://purl.org/vocab/resourcelist

10 http://bibliontology.com/
11 http://sioc-project.org/
12 http://www.foaf-project.org/
13 http://code.google.com/p/rdfquery/
14 http://code.google.com/p/ubiquity-rdfa/
15 http://n2.talis.com/wiki/Changeset Protocol



Fig. 3. Talis Aspire: Simplified Application Architecture

The changesets provide the equivalent of a Diff in source code configuration
management. It is easy to conceive how this could be used to provide a feature
to compare versions at some time in the future.

The client side code for saving a list is rather trivial, needing only to extract
the final model and package that along with the initial model for submission to
the server:

function saveListChanges() {
showModalLayer(’Saving list changes - please wait...’);
reindexSequences();
var newModel = toRDFXML();
var params = ’oldmodel=’ + oldModel + ’&newModel=’ + newModel;

new Ajax.Request(listUri,
{

method: ’post’,
parameters: {old_model: oldModel, new_model: newModel},
contentType: ’application/x-www-form-urlencoded; charset=UTF-8’,
onSuccess: function(transport)
{

redirect(listUri);
},
on409: function(transport)
{

alert(’Someone else has changed the data...’);
redirect(listUri);

},



onFailure: function(transport)
{

alert(’There was a problem... ’ + transport.responseText);
redirect(listUri);

}
});

}

Server-side we have code that uses ARC216 and Moriarty17 to generate the
changesets from the before and after models and submit to the underlying store.
This code is, again, small and relatively trivial. One of the reasons that the
changesets are easy to produce, reconcile and apply is that we do not use blanks
nodes. Blank nodes would require more knowledge of the model and use of inverse
functional properties. This would increase complexity.

Next we look at how this solution meets our stated goals.

2.1 Goal One: Explicit Save

Batching several edits from a single editing session together maintains a mental
model for the user that is consistent with that of a document. This was a key
factor in our user interaction design. Because edits are all held on the client until
the user explicitly submits them the application behaves as expected. The client
code is able to do this very simply as the model is embedded in the HTML, the
same actions that change the DOM also change the model.

2.2 Goal Two: WYSIWYG Editing

The use of the existing HTML, the same HTML as is rendered for the reader
view, gives us the same look and feel while editing as while reading. A few subtle
changes are made; links disabled and some editing interface elements discreetly
added.

By embedding the model within the HTML at read time we negate the need
for a separately rendered view for editing, requiring only that the client supports
javascript.

2.3 Goal Three: Dynamic Interface

We had to worry very little about finding or writing RDFa aware tools because
RDFa is embedded using attributes and non-RDFa aware tools simply ignore
attributes they don’t recognise. The interface is provided by commonly available
HTML manipulation libraries. This allowed us to provide a richer interface than
we would otherwise have been able to build.
16 http://arc.semsol.org/
17 http://code.google.com/p/moriarty/



2.4 Goal Four: Concurrent Editing

By having the client maintain both the before and after models for an editing
session it becomes possible to detect when different users have made changes
concurrently. It is not possible to detect this when submitting the after editing
model alone without the introduction of timestamps. This collision detection
allows the application to make appropriate choices about how it deals with the
conflict.

As the changeset is directly analogous to the diff patches generated by con-
figuration management tools it is clear that non-conflicting changes to the same
model can be reconciled and applied, while conflicting changes can be identified
and the three states, before editing, edit one and edit two, can be offered to the
user for the conflict to be resolved. We currently apply non-conflicting changes
and reject conflicting changes with the first set of changes submitted winning.

An alternative approach would have been to implement locking on lists during
editing. The benefits of concurrent editing for non-conflicting changes, and the
costs of implementing a lock cleanup and reclaim mechanism where lists have
been left locked unintentionally mad this unappealing.

2.5 Goal Five: Extensible Data

Because the solution uses the changeset protocol to update only the resources
and properties it knows about, rather than replacing resources and all of their
properties, data that the application doesn’t know about is left untouched. This,
again, comes from having both the before and after models available to calculate
a delta rather than simply performing a replacement.

2.6 Complication: RDF Sequences

The ordering and re-ordering of elements in the list posed a particular problem.
We model the order of items on lists using RDF Sequences.

<http://lists.broadminsteruniversity.org/lists/abf203>
sioc:name "Financial Accounting and Reporting" ;
resource:contains <http://lists.broadminsteruniversity.org/items/abf203-1>,
[...snip...] ;
a rdf:Seq, resource:List ;
rdf:_1 <http://lists.broadminsteruniversity.org/sections/abf203-1> ;
rdf:_2 <http://lists.broadminsteruniversity.org/items/abf203-9> ;
rdf:_3 <http://lists.broadminsteruniversity.org/sections/abf203-2> ;
rdf:_4 <http://lists.broadminsteruniversity.org/sections/abf203-3> ;
rdf:_5 <http://lists.broadminsteruniversity.org/sections/abf203-16> ;

We render these in the DOM using the explicit ordering predicates of rdf: 1,
rdf: 2 etc. The obvious implication of this is that now the re-ordering of the
DOM is no longer enough to create the equivalent re-ordering in the model.
We solved this by triggering a function to re-order the rdf:Seq predicates before
extracting the post-editing model.



function reindexSequences()
{
var containerCuries = new Array();

$$(’span[class="sequenceNumber"][rev="rdf:_0"]’).each(function(thingToReindex) {
containerCuries[containerCuries.length] = thingToReindex.readAttribute(’resource’);
});

containerCuries.uniq().each(function(containerToReindex) {
updateSectionSequences(containerToReindex);
});
}

One would expect that sequences can be rendered in the RDFa using the se-
quence dependant rdf:li element as shown by Hausenblas [8]. Unlike the RDF/XML
specification [9], however, the RDFa specification [4] does not state that rdf:li
should be treated as a special case. As rdfQuery supports the spec accurately it
doesn’t interpret them specially.

A change to the specification to bring it inline with RDF/XML would allow
the model to be re-ordered without changes to the predicates as the sequence is
implied by the order of occurrence of the elements within the DOM.

This is one of the complications that results from the immaturity of the
domain and the degree to which the specifications have yet to evolve and con-
solidate.

2.7 Complication: Importance of @Rev Attribute

The model uses a number of paired forward and inverse properties. These are
used to provide optimisations for querying and convenience when navigating the
data as linked data. When an item is removed from a list it is therefore necessary
to remove not only the links from the item itself to other elements but also the
links from other elements to the item. One example of this is the reference from
the list to all of the items it contains, regardless of the level of nesting - this is
provided so that the list and all its contents can be retrieved by a single sparql
query.

The way we achieved consistency between the DOM editing and the model
is through the use of the @rev attribute. This allows us to co-locate statements
that reference the item as an object with the item itself in the DOM. This means
that removing the item from the DOM also removes the statements that referred
to it. This technique removed the need for us to write code to detect statements
that had lost their children by the removal of the resource they referenced.

Alternatively we could have made the decision not to render these triples
in the RDFa and to use reasoning in the changeset generator or other code
to correctly manipulate the model. This would make the RDFa smaller and
possibly easier to manipulate at the cost of requiring consuming apps to infer
the additional properties from the schema.



As stores become better at reasoning and inference we should see the need
for these additional predicates lessen.

2.8 Complication: Ignoring Some Changes to the Graph

The final complication we had to deal with is that some aspects of the model
are used widely in the graph. The list itself, its sections and its items are a
tree structure. Many items can refer to the same underlying academic resource,
however. Within the HTML DOM the academic resource will be rendered as
child elements of the list item that refers to it. If several list items refer to the
same academic resource then the resource will be listed several times.

The problem arises when we wish to delete an item from a list. What we
want to delete is the item on the list, i.e. the reference to the underlying aca-
demic resource and not the academic resource itself. When the same resource is
referenced many times within the same list this does not present an issue as the
triples describing the academic resource within the model remain even after one
of the items is deleted.

When the academic resource is referenced only once on the list the removal of
the item from the HTML DOM also results in the removal of academic resource
and would result in a changeset being created to delete the academic resource
from the underlying store. As academic resources can be referenced by many lists
this deletion would result in other lists referencing a deleted academic resource.

Our solution is to never delete academic resources. This requires introducing
knowledge of the model to the code that calculates differences between the before
and after models. This is acceptable to us as specialised editing interfaces such as
this one are expected to understand the model and limit themselves to changing
only those things they are responsible for.

2.9 Complication: Performance

The Talis Aspire product works with lists that may contain references to sev-
eral thousand resources, leading to tens of thousands of triples being embedded
within a single HTML+RDFa page. Parsing the RDFa in such a page is a sub-
stantial task, and the initial beta version of rdfQuery that we used took tens
of seconds to process the very largest of these pages, especially in Microsoft
Internet Explorer. This proved to be a useful use-case for the optimisation of
rdfQuery, which now parses these pages in just over a second in most cases,
which is adequate for our purposes.

2.10 Additional Benefit: Re-Use of Data

One of the most attractive things about this approach was that it supported and
was supported by our desire to publish RDFa in the pages. With very little out
there to consume RDFa and the fact that we already supported content nego-
tiation there was little justification to invest the effort in publishing the RDFa



within the HTML. This approach provided both the simplest implementation
for editing as well as a sound reason for including RDFa – which we expect to
have additional benefits in future.

2.11 Additional Benefit: Re-Use of Code

Very little bespoke code was written for management of editing. Almost all of
the bespoke code was written to support specific user interactions during editing.
Had RDFQuery supported RDF sequences we would have had to write only the
code to post the before and after models to the server.

3 Future Work

There are a number of opportunities to simplify the pattern still further as the
RDFa spec evolves and as RDF stores and libraries become more capable. We
aim to track the situation and make changes as the arise and offer benefit.

There are also opportunities to extend the functionality of the client-side code
using the capabilities of rdfQuery more effectively. We currently use it to simply
extract the model from the page before and after editing, but it is capable of
much much more. It would be possible to use rdfQuery to generate other views of
the model from the RDFa, such as a list of sections within the editing interface,
counts of items and indicators where the same resource is referenced multiple
times. These kinds of interface additions are made much easier by having access
to the machine readable model in the client-side code.

4 Conclusion

Embedding RDFa within pages provides benefits for the publication of structured
data. Beyond that it can also be used to provide a coherent representation of
the model that supports editing using tools that are not aware of RDF. The
use of these tools can make the provision of specialised, browser-based editing
interfaces substantially easier to implement than traditional approaches that
involve maintaining a model independently of the HTML DOM.

The client-side, dynamic nature of this approach provides several other ben-
efits beyond implementation simplicity, including a reduction in server interac-
tions and the ability to detect and reconcile concurrent edits.

References

[1] Clarke, C.: A Resource List Management Tool for Undergraduate Students
based on Linked Open Data Principles. In Proceedings of the 6th European
Semantic Web Conference, Heraklion, Greece, 2009.



[2] Halb, W., Raimond, Y., Hausenblas, M.: Building Linked Data For
Both Humans and Machines Workshop for Linked Data on the
Web (2008) http://events.linkeddata.org/ldow2008/papers/06-halb-raimond-
building-linked-data.pdf

[3] Tennison, J.: RDFa and HTML5: UK Government Experience
http://broadcast.oreilly.com/2008/09/rdfa-and-html5-uk-government-e.html

[4] Adida, B., Birkbeck, M., McCarron, S., Pemberton, S.: RDFa in XHTML:
Syntax and Processing http://www.w3.org/TR/rdfa-syntax/

[5] Adida, B., Birkbeck, M.: RDFa Primer: Bridging the Human and Data Webs
http://www.w3.org/TR/xhtml-rdfa-primer/

[6] Dietzold, S., Hellmann, S., Peklo M.: Using JavaScript RDFa Widgets for
model/view separation inside read/write websites In Proceedings of the 4th
Workshop on Scripting for the Semantic Web, Tenerife, Spain, 2008.

[7] Leavesley, J. and Davis, I.: Talis Platform: Harness-
ing Sophisticated Mass Collaboration on a Global Scale.
http://www.talis.com/platform/resources/assets/harnessing sophisticated mass.pdf

[8] Hausenblas, M.: Writing Functional Code with RDFa
http://www.devx.com/semantic/Article/39016

[9] Beckett, D.: RDF/XML Syntax Specification (Revised)
http://www.w3.org/TR/rdf-syntax-grammar/

[10] Berners-Lee, T.: Cool URIs don’t change
http://www.w3.org/Provider/Style/URI


