
SKUA – retrofitting semantics

Norman Gray12, Tony Linde1 and Kona Andrews3

1 Department of Physics and Astronomy, University of Leicester, UK,
2 Department of Physics and Astronomy, University of Glasgow, UK

3 Institute for Astronomy, University of Edinburgh, UK

Abstract. The Semantic Web promises much for software developers,
but because its claimed benefits are rather abstract, there is little ob-
vious incentive to master its unfamiliar technology. In contrast, many
‘Social Web’ applications seem rather trivial, and not obviously useful
for astronomy.
The SKUA project (Semantic Knowledge Underpinning Astronomy) is
implementing a service which will realise the benefits of both these web
technologies. This RESTful web service gives application authors ready
access to simple persistence, simple (social) sharing, and lightweight
semantics, at a low software-engineering cost. The SKUA service al-
lows applications to persist assertions (such as bookmarks and ratings),
and share them between users. On top of this, it provides lightweight,
astronomy-specific, semantics to enhance the usefulness and retrieval of
the users’ data.

1 Introduction

For all its current fashionability, we can identify at least two reasons why the
Semantic Web excites little interest among astronomical software developers.
Firstly, there is so far no well-known ‘killer app’ for the semantic web, and
the use-cases sometimes brandished in support of the Semantic Web’s promise –
involving machines booking hospital appointments, or comparing prices ([1], and
see http://www.w3.org/2001/sw/) – are not obviously relevant to astronomical
applications development. Secondly, even when a potential application is dimly
discernable – and everyone can agree it must somehow be useful for a machine
to ‘know’ that a black hole is a type of compact object – there are multiple
barriers of novel terminology, standards and technology to be overcome before
an idea can be turned into a useful software product. This can be a significant
technology hurdle for an application developer who may be rationally sceptical
about the practical utility of semantic web technologies.

In the SKUA project (http://myskua.org) we are developing an infrastruc-
ture which addresses both of these concerns. The SKUA infrastructure provides a
mechanism for persisting and sharing a flexible range of application state, includ-
ing annotations (of which we give examples below), in a way which lets applica-
tions transparently take advantage of lightweight semantic knowledge within the
SKUA system. That is, we are helping application developers painlessly ‘retrofit’



lightweight semantics to their existing applications at those points where they
already persist some data, or could do. By combining the social aspects of the
annotation sharing and the lightweight semantics, the SKUA infrastructure can
be regarded as a simple ‘Web 3.0’ application, to the extent that that term
represents the anticipated melding of Web 2.0 applications with Semantic Web
technologies.

2 The SKUA infrastructure

The SKUA infrastructure consists of a network of assertion services, each node of
which is an RDF triple store and SPARQL endpoint [2], currently implemented
using Jena; these are referred to as SACs, or ‘Semantic Annotation Collections’,
and can be either on separate servers or logically distinct entities on a single
server. These are the objects to which applications write per-user state informa-
tion – ‘assertions’ – such as annotations (‘this paper is good’), or preferences (‘I’m
interested in pulsars’). The annotations can then be retrieved using a SPARQL
query by the same application, by another instance of the same application, or
by a cooperating application.

The infrastructure also allows these assertions to be shared between users,
in such a way that an application’s SPARQL query against its ‘local’ service is
forwarded to the services it federates to (see Fig. 1). This is näıve federation, in
which the SAC simply forwards the query to its peers, which potentially forward
it in turn, with the results merged before being returned to the caller; thus the
final result is the union of the query results to the various nodes, rather than the
result of the query over the union of the nodes. Though limited, we believe this
model is reasonable in this case, since the information in the various nodes is
likely to be both simple and relatively homogeneous. Thus if, in Fig. 1, user ‘u1’
shares the assertion that ‘paper X is good’, then when an application belonging
to user ‘u3’ looks for good papers, it picks up the corresponding assertion by
‘u1’. This query federation will be permitted only if the user making the asser-
tion explicitly allows it (which is important in the case where the assertion is
something like ‘the author of paper Y is clearly mad’).

Our permissions model is very simple. Each SAC is a personal utility, concep-
tually more like a USB stick with a PIN than a service with a username/password
pair. Each SAC is configured with a list of the SACs to which it should forward
queries, and a list of the SACs from which it should accept forwarded requests.
Here, the SACs identify themselves when making a delegated query, and do not
do so with any delegated credentials from the user on whose behalf they are
making the query. This model is easy to implement, we believe it is easy for
humans to reason with, and since SACs and users have a close relationship, a
user’s SAC is an adequate proxy for the user themself. This federation model
supports both a tree-like and a peer-to-peer network, or anything in between,
while allowing a client application to ignore this structure and query only the
user’s personal SAC. The trust model is simple-minded, and keeping private my
opinion about ‘the author of paper Y’ depends on my friends not federating



u3
u1

u2

pals

global

App AppAppApp

Personal

Group

World

@base <http://blah/my-sac>.

@prefix s:

<http://myskua.org/claimtypes/1.0/>.

@prefix dc:

<http://purl.org/dc/elements/1.1/>.

<#b1>

a s:bookmark;

s:ref [

a s:webpage;

s:url <http://www.w3.org/2001/sw/>;

dc:title "SemWeb @ W3C";

s:extended "The W3C nexus"

];

s:tag "semanticweb", "rdf";

s:time "2008-01-21T18:11:58Z".

Fig. 1. SKUA’s sharing architecture: on the left we show the relationships, both peer-
to-peer and hierarchical, between annotatation stores, with double-headed arrows in-
dicating read-write relationships with applications, and the single-headed arrows in-
dicating the federation of queries between services; and on the right we illustrate a
potential annotation type, in this case a URL bookmark, using the Turtle notation for
RDF [3].

carelessly. User interface details will help couple the user’s mental model to the
actual model, but only experience can tell us if the trust model is fundamentally
too simple in fact.

Since federation consists only of passing on a SPARQL query, a SAC can
federate to any SPARQL endpoint. We have not yet discovered how useful this
will be in practice.

Although we have observed that the nodes have astronomy-specific knowl-
edge built in, this is only due to astronomy-specific TBox information uploaded
at configuration time, and though this project is specifically motivated by as-
tronomy, the architecture is nonetheless general.

2.1 Interfaces

The SKUA SACs are updated and queried via a RESTful API.
The various annotations are modelled as fragments of RDF which are each

named by a URL; these are referred to as ‘claims’ within a SAC. Although the
project has defined a lightweight ontology for claims, the RDF which composes
a claim is unrestricted. Claims are created by posting the RDF to the SAC
URL, which responds with a freshly-minted URL naming the claim, which can
of course be retrieved in the obvious fashion, with a get. The contents of the SAC
can also be queried by posting a SPARQL query to the SAC URL. Individual
claims can be replaced by putting fresh RDF to the claim URL. There is no
cross-reference between the various claims – at least in the applications we have
envisaged so far – so little scope for linked-data cross-linking.



The network of federations, and the type of reasoning available (using any of
the reasoners available in Jena, or none), is controlled by SAC metadata, also in
the form of RDF. This is set when the SAC is created, and may be later adjusted
using the Talis Changeset Protocol (http://n2.talis.com/wiki/Changeset_
Protocol).

The API is described in a WADL specification available at (http://myskua.
org/doc/qsac/). Independently of any (debatable) use of this specification for
generating client code, we find it useful for generating the interface documenta-
tion and generating support for regression tests.

2.2 Implementation

The SAC is implemented using Jena (http://jena.sourceforge.net) and SISC
(http://sisc-scheme.org/), and runs as a web service either standalone (using
Jetty), or within a Tomcat container. Essentially all of the application logic is
written in Scheme, which allows for rapid development and which, being almost
entirely functional, is well-suited for web applications.

The SKUA software is available at http://skua.googlecode.com. The cur-
rent version, at the time of writing, supports updating, persistence, querying
and federation; vocabulary-aware querying is available but undocumented; easier
sharing and security are in development; and the design of a more sophisticated
authorisation model awaits deployment experience.

3 Example applications

An important aim of the SKUA project is to develop applications which use the
project’s infrastructure, both as a way of validating the approach, and for their
intrinsic usefulness. As well, we are cooperating with the developers of existing
applications to support them in adding SKUA interfaces where appropriate.

In particular, we are developing Spacebook [4], as an adaptation of the my-
Experiment code-base ([5], see also http://myexperiment.org/). This allows
scientists to share digital objects of various kinds, supporting the development of
communities. Spacebook builds on this by adding integration with AstroGrid’s
Taverna workflows, and lets users tag resources using the SKUA infrastructure.

As well, we have adapted the AstroGrid registry browser, VOExplorer [6].
The International Virtual Observatory Alliance (IVOA, http://www.ivoa.net)
is a consortium of virtual observatory projects, defining and deploying consistent
interfaces for accessing astronomical data services. These service resources – im-
age archives and catalogues – are registered in an IVOA registry, and VOExplorer
is one of a small number of user-facing applications which allow astronomers to
browse the registry, and search within it, including the free-text keyword fields
included in the curation metadata.

For each Registry entry, VOExplorer displays title, description, curation and
other information, and provides a simple interface for the user to specify a high-
light colour, notes about the resource, an alternative title, and tags (see Fig. 2).



Fig. 2. Annotation panels for Spacebook (left) and VOExplorer (right)

In its original, default, mode, the application persists this information to a local
file, but it can also be configured to persist the information to a SKUA SAC;
this is not yet the default because SACs have not yet been deployed sufficiently
broadly to make this useful to most users.

Users can tag resources using any tags they please, but if they attach key-
words from one of the existing IVOA vocabularies [7] a subsequent search on
the SKUA store is able to take advantage of the lightweight semantics asso-
ciated with these keywords. For example, if a user annotates a resource with
aakeys:Ephemerides, they can later make a SPARQL query for terms which
have AstrometryAndCelestialMechanics as a broader term, and in doing so
pick up resources tagged with Astrometry, CelestialMechanics, Eclipses,
Ephemerides, Occultations, ReferenceSystems or Time.

The Paperscope application (http://paperscope.sourceforge.net/) is a
utility for searching and browsing ADS (http://adswww.harvard.edu/), which
is the principal bibliographic database for astronomy and astrophysics. Like VO-
Explorer, Paperscope has a simple tagging interface, and like VOExplorer, it was
originally limited to a single machine. We have started work on extending the
application to use the SKUA RDF nodes as a simple persistence service, using
the existing UI and interaction model.

Both the VOExplorer and Paperscope applications were provided with tag-
ging support rather as an afterthought, and in both cases this was barely devel-
oped because the tagging could not be shared. Replacing the simple file-handling
code with the barely-more-complicated SKUA interface, without changing the
user interfaces at all, means that the applications can immediately share anno-
tations and take advantage of the lightweight vocabulary reasoning which the
SAC provides. It is in this sense that we claim that the semantic technologies
have been retrofitted to the applications, giving them an immediate injection of



semantic functionality with minor investment in implementation code, and so
allowing the authors to experiment with the user-oriented functionality which
this semantic technology prompts.

We emphasise that we are not expecting users to write SPARQL queries for
themselves, but instead expect applications to issue them on the user’s behalf,
based on simple query templates. To support this extra functionality, application
developers need make no major commitments to semantic web technologies, and
need only manage HTTP transactions using (readily templatable) RDF such as
that in Fig 1, and basic SPARQL queries.

4 Conclusion

We have described a simple architecture for storing and sharing simple RDF
annotations of external resources, using a RESTful interface to a SPARQL end-
point. The interface is such that application developers have a low barrier to
entry, and need make few technology commitments before reaping the benefit
of simple semantic enhancement of their applications. We are deploying support
for the architecture in a number of existing applications.

Acknowledgements

The SKUA project is funded by the UK’s Joint Information Systems Committee
(http://www.jisc.ac.uk).

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
(May 2001)

2. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Can-
didate Recommendation (June 2007)

3. Beckett, D.: Turtle - terse RDF triple language. W3C Team Submission (January
2008)

4. Linde, T., Gray, N., Andrews, K.: Spacebook: resource sharing for astronomers using
SKUA technology. In Bohlender, D., Dowler, P., Durand, D., eds.: Astronomical
Data Analysis Software & Systems, XVIII, PASP (2009)

5. De Roure, D., Goble, C.: myExperiment – a web 2.0 virtual research environment.
In: International Workshop on Virtual Research Environments and Collaborative
Work Environments, Edinburgh. (2007)

6. Tedds, J.A., Winstanley, N., Lawrence, A., Walton, N., Auden, E., Dalla, S.: VO-
Explorer: Visualising data discovery in the virtual observatory. In Argyle, R.W.,
Bunclark, P.S., Lewis, J.R., eds.: Astronomical Data Analysis Software and Systems,
XVII. Volume 394. (2007) 159

7. Gray, A.J.G., Gray, N., Hessman, F.V., Martinez, A.P.: Vocabularies in the virtual
observatory. IVOA Proposed Recommendation (2008)


