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Abstract

New XML schema languages have been recently proposed to replace Document Type Definitions
(DTDs) as schema mechanism for XML data. These languages consistently combine grammar-based
constructions with constraint- and pattern-based ones and have a better expressive power than DT Ds.
As schema remain optional for XML data, we address the problem of schema extraction from XML
data. We model the XML schema as extended context-free grammars and propose the schema
extraction algorithm that is based on methods of grammatical inference. The extraction algorithm
copes also with the schema determinism requirement imposed by XML DTDs and XML Schema
languages. We report results of some tests on real XML collections.

1 Introduction

The Extensible Markup Language (XML) has emerged as a new standard for exchange and
manipulation of structured documents. The XML format is self-describing; XML documents
comprise hierarchically nested collection of elements, where each element can be either atomic
or complex, i.e, a sequence of nested sub-elements. The internal structure of XML documents
is described by Document Type Definitions (DTDs) which are the de facto standard XML
scheme language [20]. DTDs provide basic capabilities for defining the element contents in
the form of regular expressions. Validation of an XML document is reached by matching of
element content strings against element content models in a DTD. The knowledge of XML
schema 1s difficult to underestimate; it plays a principal role in the XML data management,
including the query formulation, query planning and storage [6, 19].

Initially designed for document management applications, DTD capabilities appear to be
limited, in both syntax and expressive power, for wider application domains. As result, a
number of new XML schema languages, including DSD, Schematron and XML Schema, have
been recently proposed [5, 11, 15]. Beyond using XML syntax, these languages extend the
DTD model with novel important features, such as simple and complex types, rich datatype
sets, occurrence constraints and inheritance [13]. All languages initially follow a certain con-
ceptual approach, such as grammar-based one in XML Schema or pattern-based in Schematron.
However, most of them recognize the importance of integrating different constructions and
often propose a multi-conceptual set of features. As an example, XML Schema language
extends the grammatical constructions with a large set of constraints and patterns [3, 5, 10].

Problem statement. Despite the importance of schema information, schema definitions
are not obligatory in XML. This raises the problem of extracting the schematic information
from XML documents and collections. In the ideal case, the extracted schema should, one
one side, tightly represent the data, and be concise and compact, on the other side. As the
two requirements contradict each other, finding out an optimal tradeoff is a challenging task.

Automatic schema extraction can bring several important advantages. First, it can be
used for real world XML data with complex structure; for such data, DTD design is a difficult
and error-prone work that often results in a large number of badly designed DTDs [17].
Second, the automatic schema extraction can be beneficial for in mediator systems that process
heterogeneous collections of XML documents and may have a need in a common schema for all



documents. Finally, the automatic schema extraction may assist the designer in the schema
definition. It can consist in analysis of available (possibly partial) XML data and refining
(constraining or loosing) the existing schema patterns and finding new ones.

Our contribution. We adopt the XML schema formalism based on eztended context-free
grammars (ECFG) already used in [16, 21]. We extend this model by allowing range regular
ezxpressions in nonterminal productions; such regular expressions combine grammatical forms
and constraints for nonterminals and element groups.

For the proposed schema formalism, we address the problem of schema extraction from
XML data. The ECFG-based schema model makes the extraction problem more difficult than
in the DTD extraction case; the former is reduced to the inference of context-free grammars,
while the latter is equivalent to the inference of a (limited) set of regular grammars.

We identify three important problems in the schema extraction: (1) induction the context-
tree grammars from XML documents represented as structured examples, (2) generalization
of content strings into regular expressions, and (3) constraining datatypes for simple XML
elements. The second problem is the same as with the DTD extraction, but the first and third
ones are due to the powerful schema mechanisms offered by novel XML schema languages.

For the first problem, we adopt and extend the method of CFG inference from structural
examples [18]. For the third problem (datatypes constraining), we develop an algorithm based
on the subsumption relationship among elementary datatypes in XML Schema language [3].
Finally, for the second problem (content generalization) we propose a solution alternative to
those used for DTD extraction [4, 8]; it copes with the determinism requirement and the
occurrence constraints in XML Schema language.

Both DTDs and XML Schema require an easy validation of XML data against correspond-
ing schema [10, 20]. Such an ease is defined as “determinism” and closely corresponds to the
notion of unambiguity in the formal language theory.Determinism can essentially constrain
the power of ECFG model, as a large part of grammars does not provide the feature. We study
the impact of the determinism requirement on the ECFG model and the schema extraction
problem. We distinguish between horizontal and vertical determinism that address the ease
of vertical and horizontal navigation in an XML document tree. We study both types of the
determinism and develop rules for inferring the deterministic ECFG schema from XML data.

We align the schema extraction method with the XML Schema language. On one hand, it
automatically treats requirements imposed by XML Schema language, such as determinism,
and on other hand, it allows the user to tune the induced schema by varying a generalization
parameter as a way to an optimal tradeoff between the schema tightness and compactness.

State of art. XML data model is a modification of the semi-structured data model. For
semi-structured data, schema may have the form of Data Guides [9] that represent a con-
densed graph-like representation of semi-structured data. A Data Guide is obtained from the
semi-structured data by removing element duplications and repeating paths. An alternative
approach is in finding the most frequent structural patterns in a semi-structured database [12].

The XML data model extends the semi-structured data model by imposing the order on the
appearance of elements and their sub-elements. Inherited from SGML, XML DTDs have been
designed for document management applications. Most straightforward limitations of DTDs
are a non-XML syntax, a limited set of datatypes and loose structured constraints [14, 16].
Moreover, DTDs are limited from the point of view of XML querying, as no tight DTDs can
be induced even for view queries [16]. The possible solution to the tightness problem requires
the extension of DTDs with the sub-typing and specialization, it makes the resulting schema
model very close to the XML Schema language [16].

Five novel XML schema languages have been recently compared to DTDs in [13], that
classified all important features for defining XML schema, such as simple and complex types,
elementary datatypes, constraints for elements/attribute values and appearance, inheritance.
While DTDs appear to have the weakest expressive power, the most powerful languages are
XML Schema [5], Schematron [11] and DSD languages [15].

Automatic DTD extraction systems have been first designed for SGML [1, 7], some of
them have been later extended to XML [4]. An advanced algorithm for extracting DTDs from
XML documents is proposed in the XTRACT system [8]. The extraction algorithm represents



a sequence of sophisticated induction steps in order to induce concise and intuitive DTDs. Tt
finds sequential and choice patterns in the input sequences, in order to generalize and factor
them, then it applies the Minimal Description Length principle to find the best candidate.

For the schema extraction algorithm, we re-use induction methods developed for context-
free and regular grammars. First, an XML data 1s equivalent to a structured example in the
grammatical inference theory, (structured example is a derivation tree of a CFG with removed
nonterminal labels). it makes possible to reuse the CFG inference from structured examples
studied in [18]. Second, we use regular grammar inference methods [2] in order to generalize
content strings into regular expressions.

The remainder of the paper is organized as follows. Section 2 introduces the ECFG schema
formalism and Section 3 explains the schema induction algorithm on an example. In Section 4,
we analyze the the nonterminal merge during an ECFG inference, while we leave two other
problems, constraining datatypes for simple elements and generalization of content strings, for
the full version. Section 5 and 6 report some inference experiments and conclude the paper.

2 Extended context-free grammars as XML schema

As example, we consider an XML data about European soccer clubs. It contains information
about each club, including the name and successes in two European tournaments, Champion
Leagues and UEFA.

<teams><team><name>Juventus</name>
<ChLeague>
<year>1999</year><result>semi-final</result>
<year>1997</year><result>final</result>...</ChLeague>// 5 successes in total
<UEFA><year>1995</year><resu1t>ﬁna]</resu1t)...</UEFA>// 7 successes in total
</team>
<team><name>Manchester United</name>
<ChLeague><year>1999</year><result>winner</result>...</ChLeague>// } successes in total
</team>
<team><name>Hertha Berlin</name></team>
// 46 teams in total
<{teams>

XML Schema language. XML Schema language [3, 5, 10] offers a large feature set for
defining the internal structure of XML documents. For the goal of schema extraction, we
consider an important subset of the language features willing to associate them to components
of extended context-free grammars. Here the features we address: (1) elementary datatypes
for simple elements (with no sub-elements), (2) complez types for complex elements (with sub-
elements), (3) sequence and choice groups of elements, (4) occurrence constraints for elements
and groups (MaxOccurs, MinOccurs.).

Here is the XML Schema definition for the soccer data; it includes the initial element
teams, the complex type TeamType for team elements, and the complex type ListType for
ChLeague and UEFA elements; MinOccurs and MaxOccurs constrain the occurrence ranges.
<element name=’teams’>

<complexType><element name=’team’ type=’TeamType’ maxOccurs=’500’/></complexType>
<complexType name=’TeamType’>

<element name=’name’ type=’String’/>

<element name=’ChLeague’ type=’ListType’ minOccurs=’0’ maxOccurs=’1’/>

<element name=’UEFA’ type=’ListType’ minOccurs=’0’ maxOccurs=’1’/></complexType>
<complexType name=’ListType’>

<group minOccurs=’1’ maxOccurs=’100’>

<element name=’year’ type=’Positivelnteger’/>

<element name=’result’ type=’String’/></group></complexType>
</element>

2.1 Extended context-free grammars

We model XML schema as range extended context-free grammars. ECFGs have been already
used as XML schema model in [16, 21]. We adopt the model and extend it with range



|| XML Schema language | ECFG ||

Element name (tag) terminal
Element definition production
Elementary datatype datatype
Named complex type non-terminal
Abstract complex type non-terminal

Complex type definition | one or more productions
Sequence element group | sequential pattern in a production
Choice element group disjunction pattern in a production

Table 1: Correspondence between XMI Schema features and ECFG components.

occurrences for both elements and groups in a schema definition.

Range regular expression is a regular expression over an alphabet X, where each term is
defined with the range [l : r] of possible occurrences, where [ and r are nonnegative integers,
0 <1 < r, rcan be co. Using the range notation, the Kleen closure ax is equivalent to
a0 : 0o], and a+ and a? are equivalent to a[l : co] and a[0 : 1]. For simplicity, we abbreviate
the range [/ : [] as [/] and omit the range [1]. As an example, regular expression a(be+)* will
be written as a(be[l : 00])[0 : co] in this notation.

Range regular expressions have the same expressive power as regular expressions [21],
however there is a clear benefit of using them in the schema formalism. On one side, range
regular expressions extend the schema model with occurrence constraints in the same way
as most XML schema languages do. On the other side, it prompts the definition of limited
element occurrences instead of unlimited ones in DTDs (a* and a+), which is highly valuable
for query formulation and optimization of XML data storage [6, 19].

A (range) extended context free grammar (ECFQG) is defined by 5-tuple G = (T, N, D, 4, Start),
where T, N and D are disjoint sets of terminals, nonterminals and datatypes; Start is an
initial nonterminal and § is a finite set of production rules of the form A — « for A € N,
where « is a range regular expression over terms, where one term is a terminal-nonterminal-
terminal sequence like ¢ B t', where ¢,¢' are a pair of opening/closing tags, ¢,t' € T and
B € N UD. The notion of term is to capture the well-formedness of XML [20]. Without loss
of information, we abbreviate a term ¢ Bt as t: B.

XML Schema and ECFGs.The ECFG-based schema model addresses the previously
chosen subset of features in the XML Schema language in the way that any XML Schema
definition corresponds to some extended context free grammar and vice versa. The corre-
spondence between an ECFG G and XML Schema definition S is the following. The terminal
and datatype sets T and D in G correspond to the sets of element names and elementary
datatypes in S, respectively. The nonterminal set N in G corresponds to the set of complex
types in S, both named and abstract. Finally, productions in G corresponds to definitions
of the complex types. One production is a sequence or choice group of typed elements or
other (nested) groups. The role of Start nonterminal in ECFG can play either element of
named complex type definition. Table 1 summarizes the correspondence between components
of XML Schema definitions and extended CFGs.

Example 1 Consider the XML Schema definition for the soccer XML data. The correspond-
ing ECFG G is given by G = (T, N, D,¢, Start), where T={teams, team, name, ...},
N ={Start, TeamType, ListType}, D={String, Positivelnteger}, and § contains the fol-
lowing production rules:

Start —  teams: TeamsType
TeamsType —  (team: Team Type) [0:500]
TeamType — name:String (ChLeague: ListType) [0:1] (UEFA: ListType) [0:1]
ListType —  (year:Positivelnteger result:String)[1:100]

DTDs as ECFGs. DTDs is a particular case of ECFGs where one nonterminal is assigned
to one terminal (given by the corresponding <ELEMENT. . .> definition), and there exists one-
to-one correspondence between sets N and T'. Therefore, when extracting DTDs from XML



data, the nonterminal set N is directly reconstructed from the terminal set 7', and the inference
problem is reduced to the generalization of content strings for each nonterminal into a regular
expression [8].

2.2 Determinism and extended context free grammars

By both XML DTDs and XML Schema requirements [10, 20], parsing and validating an XML
document with a schema should be deterministic, that is, validating each item in the document
“can be uniquely determined without examining the content or attributes of that item, and
without any information about the items in the remainder of the sequence”[10].

It turns out that the determinism essentially constrains the power of ECFG model, as not
every ECFG satisfies the requirement. As consequence, any schema extraction algorithm that
does not consider such important constraint, would provide rather a partial solution.

Assume a parser validates an XML document that observes an opening tag <b> contained in
the element a. By the requirement, two things should be determined with one-token lookahead.
The first one is the rule for processing the content of element b and the second one is the valid
particle for b in the content model /regular expression of a. Therefore, we distinguish between
vertical and horizontal determinism, as they address the vertical and horizontal navigation
through an XML data tree [14]. Here we consider the vertical determinism, and the horizontal
determinism is discussed in the full version.

The wvertical determinism requires that at any complex element, the rule for any sub-
element should be determined with one-token lookahead. Formally, we say that two terms
t: Aand ¢ : A are ambiguous if t = t' but A # A’. Ambiguous terms in productions
make difficult parsing and validating XML documents [21]. For example, in the production
A=1t:A"|t: A" the correct choice between the first and second terms will require lookahead
2 or more and further analysis of productions for A’ and A”. On the other hand, the absence
of ambiguous terms in productions guarantees the vertical determinism of an ECFG and we
will be using this as the sufficient condition for inferring deterministic ECFGs.

Preposition 1 An ECFG G guarantees the vertical determinism if no production in G con-
tains ambiguous terms.

2.3 XML as structured example

For the need of schema inference, we represent XML documents as a structured example of an
(unknown) ECFG. Here, structured example is a derivation tree of a CFG with all nonterminal
labels removed [18]. Due to the XML well-formedness, it is straightforward to represent XML
documents as structured examples; in any such tree, each pair of opening and closing element
tags indicates the begin and end of the element content subtree.

Structured example for the soccer data is given in Figure 1. Internal nodes (empty circles)
correspond to the complex elements, while leaves can be either tags or simple elements (filled
circles).

Presented in this way, we reduce the schema extraction from XML documents to the
ECFG inference from structured samples, which in turn is split into two parts, the inference
of complex types for complex elements and datatypes for simple elements.

Figure 1: Example XML data as structural example.



3 Schema induction algorithm overview

The extraction algorithm comprises several important steps:

Algorithm 1. Schema extraction from XML data.
0. Represent XML documents as set I of structured examples.
1. Induce an extended context-free grammar G from I:
1.1. Create the initial set of nonterminals V;
1.2. Merge nonterminals in N with the similar content and context;
1.3. Determine tight datatypes for terminals in G;
1.4. Generalize content sets in nonterminal productions in range regular expressions.
2. Transform the result ECFG G into an XML Schema definition S.

Below, we explain the work of Algorithm 1 on the soccer example data. We start by
generating the initial set of nonterminals. We assign the generic datatype Any. to all simple
elements and label each complex element in the XML tree with a unique nonterminal. We
generate productions for nonterminals as contents of corresponding nodes. For the soccer
data, the initial nonterminal set N has the following productions:

Start — team:A; team: A, team: Az ...(46 teams in total)
A1 — name:Any ChLeague:A4y; UEFA: Ayg
Az  — name:Any ChLeague: Ay Step 1.1

As — name:Any

A47 — year:Any result:Any ... // (7 year-result pairs in total)

Asg — year:Any result:Any ... // (5 pairs)
A49 — year:Any result:Any ... // (4 pairs)

The second step is the merge of nonterminals. As the production for Start contains
ambiguous terms with terminal team, we merge nonterminals A1, Ay, A3 as ones with similar
context. The result of merge contains ambiguous terms with terminals ChLeague, thus we
merge nonterminals A47 and A4g. It gives the following set of productions:

Start — team:A; team:A; team:A; ...(46 teams in total)

A1 — name:Any ChLeague:A4y; UEFA: Ayg

A1 — name:Any ChLeague: Ay7 Step 1.2.a
Ay — name:Any

A47 — year:Any result:Any ... // (7 pairs)

Ass — year:Any result:Any ... // (5 pairs)

As7 — year:Any result:Any ... // (4 pairs)

Next, we observe that nonterminals A47 and Asg have repeating pairs of elements year
and result, and we merge them as ones with similar content. As result, we obtain the ECFG
where productions have right parts in the form of disjunctions of different contents.

Start — (team: A;) [46] Step 1.2.b
A1 — name:Any ChLeague:Ay7; UEFA: Ay7| name:Any ChLeague: As7l. ..
As7  — (year:Any result:Any)[7] | (year:Any result:Any)[5] |...

We generalize the production for A; by factoring the term name:Any and detecting that
ChLeague and UEFA elements can occurs 0 or 1 times. Then, rewriting the production for
A4z requires the generalization of all contents in one range regular expression. Assume that
we collect trophy contents for all 46 clubs (63 items in total) and the longest content re-
ports 8 successes in a competition. The tight generalization for A4 is therefore (year:Any
result:Any)[1:8].

Finally, we analyze the values of simple elements name, year and result and induce that
year element has all integer values and it is valuable to constrain its type to unsignedShort.



For elements name and result, Any is replaced with the datatype String. The final ECFG
for soccer XML data is the following:

Start — (team:A;) [46] Step 1.4
A1 — name:String (ChLeague: A4)[0:1] (UEFA: A4)[0:1]
As  — (year:UnsignedShort result:String) [0:8]

Comparing the resulting ECFG to the initial one in Section 2, one can observe the minimal
difference concerning mainly the occurence ranges.

In Algorithm 1, Step 1.1 (initial nonterminal set) is straightforward and Step 1.4 (content
generalization) is shared with the DTD extraction. Two other steps, the merge of nonterminals
and constraining datatypes for simple elements are specific to the ECFG schema model only.
In the following section we discuss the nonterminal merge; the datatype constraining and
generalizing content strings in regular expressions are presented in the full version.

4 Nonterminal merge

Assume the initial set N of nonterminals is built from a set of structured examples. In the
context-free grammar inference from structural examples [18], the induction is conducted by
merging nonterminals with equivalent content and equivalent contezt as follows:

1. Content equivalence: A — o, B — « in § implies that A = B,
2. Context equivalence: A — aBf, A = aCf in § implies that B =C, o, 8 € (N U D)*.

In the case of ECFGs, these two rules should be properly extended. First, they should cope
with the term-based structure of productions and the determinism requirement. Second, the
equivalence conditions appear to be too strong; they fail to identify and merge nonterminals
whose right parts are two different instances of one regular expression (nonterminals A47 and
Asg at Step 1.2.a). Therefore, we replace the equivalence conditions in (1) and (2) with weaker
ones.

For the determinism requirement, we implement the condition established in Section 2.2
for the vertical determinism, it disallows ambiguous terms in any grammar production. This
gives us the following generalization of the equivalent context rule (2):

3. Vertical determinism: A — « t:B 3 t:C~ implies that B = C.

While the merge of productions with ambiguous terms is imposed by the determinism
requirement, the merge of nonterminals with similar content may remain optional and requires
some similarity metric.

Consider again the soccer example and denote elements year, result and datatype string
as y, r and s, respectively. Then non-terminals A47 — (y:s 7:5)[7] and A4z — (y:s r:8)[5],
are likely that their right parts are instances of the range regular expression (y:s r:s)[l:r] and
therefore A47 and Asg can be merged. Below we propose the rule for merging nonterminals
with different but similar contents.

We consider two contents as strings over terminal alphabeth T" and thus we can use the
vector space model (VSM) to measure the string similarity. We generalize the VSM model by
considering n-grams in content strings, where n-gram is a sequence of n consequent elements
in the content, n = 1,2,3,.... We denote the set of n-grams in a content string s as P,(s).
If the terminal set T" has k elements, then there may be up to O(k") n-grams. We count
n-grams for the content string ¢ and represent ¢ as a normalized vector ¢ = {¢'}, i =1,2,...
of n-gram frequencies, >_ ¢! = 1.

The similarity measure between two content strings e¢; and ey is given by M(eq, ¢2) =
S ¢t - ¢ which is interpreted as the cosine of the angle between ¢; and cy in the multi-
dimensional space. Since each content vector is normalized, then M(eq, ¢3) is normalized
too. Two contents ¢; and cq are considered similar if M(c1,c2) > th, where 0 <th < 1lisa
threshold value.

The similarity between two content strings can be generalized to the similarity between
nonterminals whose right parts are disjunctions of contents. If nonterminals are given by two



digjunction of contents, then their similarity is given by the maximal similarity over pairs of
contents from corresponding conjunctions. Formally, if two nonterminals A - « and B —
are such that a = ¢q|es]... and 3 = ¢f|c}]..., then

M(aa ﬁ) = mamc,Ea,cgeﬁM(Ci, C;)
So, we can rewrite the strong content equivalence condition (1) with a weaker one:

4. Content similarity: A — a, B — §in I, such that M(a, 3) > th, implies that A = B.

5 Some tests

We have tested the schema extraction algorithm on three different XML collections (with their
DTDs), namely, Shakespeare plays and astronomy files available at http://www.goxml.org/
and the Sigmod Record archive available at http://wuw.dia.uniroma3.it/Araneus/Sigmod/.
Here we report some results of the nonterminal merge (see Section 4), with the nonterminal
merge threshold ¢h varying in the range [0,1], to see how well it wraps up the initial (usually
enormous) number of nonterminals.

Figure 2 shows the performance of the nonterminal merge for three documents, hamlet . xml
from Shakespeare collection, 1021A.xml from astronomy collection and sigmod.xml. The
figure plots the final number of nonterminals in result ECFGs for th values in [0,1] range as
well as the number of ELEMENT definitions in the corresponding DTDs. The right extreme
of plots (th = 1.0) shows the pure performance of the nonterminal merge, imposed by the
vertical determinism requirement. As the plotting shows, the vertical determinism provides a
satisfactory reduction of nonterminal numbers, comparable to the size of corresponding DTD.
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Figure 2: Nonterminal merge for three sample documents.

Small values of threshold th for the content similarity make easier the merge of remaining
nonterminals and can further reduce their number. In the case of sigmod.xm1l file, however, the
vertical determinism has reached the maximal reduction and no additional merge is possible
with the content similarity, whatever the th value is.

6 Conclusion

We have developed a novel schema extraction from XML documents based on the powerful
model of extended context-free grammars. To our knowledge, this is the first attempt to induce
XML schema that unifies the expressive power of ECFGs and the determinism requirement.
We have identified three important components of the extraction algorithm, namely, the
grammar induction itself, content generalization and tight datatype identification. While the
second problem appears also in the DTD extraction, the first and third ones are relevant to
the new schema model, we have proposed sophisticated solutions for each of them.



The generalization of sample XML documents into ECFG schema is driven by the deter-
minism requirement and a given threshold parameter th for the content similarity. We note
that it does not address the problem of optimal value of th, since the selection of optimal
XML schema is a subject of our further study. On one hand, the Minimal Description Length
principle already used for the DTD extraction [8] can help to choose between different schema
candidates. It should be however properly adopted, as the extracted ECFG schema are finite
languages, and the language size should be considered at least as important as the description
length. On the other hand, we may consider some alternative criteria for the schema opti-
mality. These criteria can be simple ones, like limiting the number of nonterminals/complex
types, or more sophisticated ones, like providing the optimal execution for a given set of
XPath queries, etc.
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