
Semantic Lossy Compression of XML Data

Mario Cannataro2, Gianluca Carelli1, Andrea Pugliese1, 2, Domenico Saccà1, 2

D.E.I.S. Department, University of Calabria, Via P. Bucci, Rende, Italy
ISI-CNR, Via P.Bucci, Rende, Italy

{cannataro, carelli, pugliese, sacca}@isi.cs.cnr.it

1 Introduction

In the last years a large amount of semistructured data [1, 10] has been managed
and exchanged. The largest repository of semistructured data is the World Wide
Web, which can be thought of as an enormous database in which data is highly
heterogeneous and freely correlated. In this scenario is placed Extensible Markup
Language (XML) [14], a language for semistructured data standardised by the World
Wide Web Consortium (W3C), which is candidate to become shortly the de facto
standard for web documents. XML allows building machine-readable documents that
are naturally convertible in visualisation formats; this is obtained by means of a
complete separation among structure, content and style of documents.

It is likely that the amount of data available in XML will grow substantially, e.g.
in those applications in which the generation of XML documents is performed auto-
matically from data maintained in DBMS. The increasing amount of XML data will
lead to the origin of new issues regarding efficiency in the representation of documents.
An emerging problem is how to compress the description of an XML document. An
interesting solution is XMill [7] that is a lossless (i.e., the original data are eventu-
ally restored) compressor/decompressor for XML data, to be used in data exchange
and archiving. XMill applies classical entropy-based compression techniques after the
execution of ad-hoc compression rules that are driven by the XML structure of the
document and by the semantics of data. Its main ideas are (i) separating structure
from data, (ii) grouping related data items into homogeneous classes, (iii) applying
semantic compressors to those data classes and (iv) applying general-purpose com-
pressors.

XMill is a very effective compression tool which overpasses classical general-
purpose compressors such as gzip [3]. The problem with XMill is that, as for classical
text compressors, the compression is only used for archiving or exchanging but not
for deriving a “synthetic” yet meaningful view of a document as it happens in the
compression of images (JPEG) or video sequences (MPEG). Our belief is that lossy
compression will become relevant in next applications on Internet.

The typical scenario we are envisioning is a multi-channel access to XML docu-
ments whereby a document may be required to be displayed e.g. on a small-sized
screen using a low bandwidth network. In this case the admissible compression rate

1

could not be reached by any lossless compression so that lossy techniques must take
over which remove details and provide suitable aggregations. For instance, assume
that an XML document contains the day sales: each sale is characterised by the item,
the store and the quantity. Say that there are 100 sales per day. The account manager
may inquire the document from his/her nice 19-inch workstation over a gigabit LAN
and, then, he/she will receive the document as it is. But if he/she is now at the airport
issuing the query on a WAP phone, the document needs a lot of compression to be
readable. The simplest solution is to prepare a document that only contains the total
amount of day sales. But this is a too little piece of information. The nice, expensive
WAP phone and the available network bandwidth may effort to receive additional
data.

The solution we propose is that a lossy compression rate is first negotiated and
then the document is delivered with this compression rate. For instance as the various
sold items form a sequence, we regard them as a sort of relation; then we single out
a number of dimensions (item type, customer city), eventually a hierarchy over them
(city, province, state, country) and a measure (the quantity), thus providing a multidi-
mensional representation that will finally be structured as a datacube with aggregate
data on suitable dimension intervals. The resulting compressed XML document is
another document, indeed a synthetic view of the original one. Moreover, we apply
(lossy) semantic compression/decompression techniques to such synthetic version of
the XML document, thus extending the ideas used in XMill and obtaining a further
increase of performance.

A prototype of the system has been implemented. It uses an XML query processor
to accomplish the structural compression, that takes as input the multidimensional de-
scription expressed in an XML-based language resembling the descriptions of classical
star schemas. We also developed some lossless and lossy semantic compressors and an
XML-based language for describing possible associations between homogeneous parts
of documents and semantic compressors.

The rest of the paper is organised as follows: in Section 2 specific XML charac-
teristics are explained, which can be used to improve compression effectiveness; in
Section 3 a system for XML compression is proposed; in Section 4 some preliminary
experimental results are shown; Section 5 outlines conclusions and future work.

2 Background on XML Compression

In general, data compression is concerned with the minimisation of the amount of
data needed to represent some information, which is produced by a source and de-
scribed by messages composed of symbols. Compression is often referred to as coding,
since its objective is to represent source messages with corresponding codes. Source
coding is related with the semantics of data, whereas entropy coding refers only to its
redundancy [2, 5, 8].

The most important distinction among compression techniques concerns with their
reversibility. If decoded data are identical to original ones, compression is called loss-
less; otherwise, it is called lossy. Lossless compression schemes refer e.g. to the work

2

by Huffman [4, 5], the algorithm by Lempel and Ziv [6] and the more recent Arith-
metic Coding [5]. Lossy compression allows to obtain significantly higher compression
ratios preserving a representative subset of original data; interesting approaches to
lossy compression are wavelet transformations [11], histograms [9, 12] and methods
for the extraction of significant parts from a free text [13].

XML uses markups to identify and describe data; the schema-related information is
contained in documents themselves so the language is called self-describing. Therefore,
it is always possible to directly identify data through their paths; this feature becomes
specially useful when when data types are strictly constrained (e.g. for documents
built from data stored in DBMSs), as it becomes possible to associate particular
paths to specific data types.

On the other hand, these aspects lead to verbosity and modest efficiency since
markup structure is clearly not economic (terseness is considered “of minimal impor-
tance” also in language specification [14]); tags exhibit noticeable redundancy, closing
tags must contain elements’ names and different tags can be repeated many times in
the documents, each time in an extended form. In [7] are shown examples of transfor-
mations from more space-efficient formats to XML; the gain in flexibility is balanced
by an increase of documents’ size (in those cases documents grow up to the 350% of
the original ones).

The above-mentioned characteristics of XML are fundamental for documents com-
pression. Regarding the markup structure, a more efficient representation of symbols
can lead to a dramatic decrease of the physical space needed to store it. Furthermore,
as documents are self-describing, it is possible to identify data on the basis of their
type and of their semantics. Therefore, more intelligent interpretations of data can
be applied (e.g. the multidimensional view presented in this paper), and compression
loss can be introduced.

Recently, two interesting systems for lossless XML compression have been de-
veloped. XMill [7], as said before, makes use of the above-shown characteristics of
data identifiability and markup structure compressibility, to obtain compression ratios
which are significantly higher than those produced by general-purpose compressors,
at almost the same speed. XMLZip [15] cuts the XML tree at a certain depth and
compresses the two parts separately.

3 A System for the Semantic Lossy Compression of XML
Documents

The main idea of our semantic lossy compressor is to process the XML document
(both data and structure), in such a way elements can be regarded as tuples of a
relation, to single out a number of dimensions and measures and provide a multidi-
mensional representation that will finally be structured as a datacube, with aggregate
data on suitable dimension intervals. So, the document is reorganised according to
some aggregation functions, resulting in a synthetic version of the original one.

Moreover, we apply a similar approach as in XMill to further compress the XML
markup structure and data. In particular, we use lossless compression techniques

3

for the markup structure and both lossy and lossless techniques for the data. The
compressor identifies data contained in documents, groups them in specific containers
and selectively compresses them, eventually introducing a certain degree of loss, thus
obtaining a compression improvement. The logical architecture of the system is shown
in Fig.1.

Figure 1: System Architecture.

3.1 Structural Compression

The original XML document is first synthesised through the Structural Compressor.
It uses the Multidimensional Description of the document given by the author in an
XML document to interpret data as a multidimensional datacube. The detail level
(aggregation functions, dimensions of interest, hierarchies over them etc.) is set up by
means of the Loss Negotiation module.

For instance, consider an XML document containing elements describing sales and
having the following structure:

<sale ID="...">
<item>...</item>
<time>...</time>
<location>...</location>
<units>...</units>

</sale>

Possible dimension attributes could be the item, the time and the location, and a
measure attribute the units sold. A suitable hierarchy over dimensions could be the
following:

item : item −→ type

time : day −→ month −→ quarter −→ year

4

location : store −→ city −→ province −→ country

The XML multidimensional description could have the following structure:

<dimension <month>...</month>
path="/sale/item" <quarter>...</quarter>
name="item"> <year>...</year>
<row> </row>

<item>...</item> ...
<type>...</type> </dimension>

</row> ...
... <measure path="/sale/units"

</dimension> name="units"
<dimension path="/sale/time" functions="sum avg min max"/>

name="time"> ...
<row>

<day>...</day>

Here, the author (i) specifies that the dimension “item” is identified by the path
/sale/item, (ii) specifies that the dimension “time” is identified by the path
/sale/time, (iii) gives the dimension tables for them, (iv) specifies that the mea-
sure “units” is identified by the path /sale/units and (v) indicates a number of
applicable aggregation functions.

A detail level could be set up by specifying e.g. {item, month, avg(units)} mean-
ing that the user requires the average value of the units measure attribute, grouping
data by item and month. In this case, the synthetic version of the document (Fig.2)
would have the following structure:

<sales>
<item>...</item>
<month>...</month>
<avg-units>...</avg-units>

</sales>
...

Figure 2: Graphical representation of a document synthesisation.

3.2 Content Compression

The Parser module (Fig.3) analyses in a serial way the XML documents. In particular:

5

1. It partitions the documents’ content in Prologue, Structure and Data. The
Prologue is composed by the XML declaration (version, encoding etc.), the doc-
ument type declaration (name of the Document Type Definition, internal subset
etc.) and a code table, i.e. a list of code-name associations useful for the subse-
quent decoding of tag names. The markup Structure, represented by means of a
sequence of symbols (i.e. integer values), comprises special codes to recover data
contained in documents, the set of start- and end-tags, and markups for special
sections (unparsed sections, entity references, processing instructions, comments
etc.). Data are attribute values, contents of elements, unparsed sections, com-
ments etc.

2. It partitions data in a set of Containers, obtaining homogeneous groups (i.e.
groups of data of the same type and eventually the same semantics). For the
mapping from data to containers it is aided by the Path Processor.

Figure 3: The Content Compressor.

The Data Containers are compressed by some Semantic Compressors, which perform a
type- and semantic-dependent compression and eventually introduce a certain degree
of loss. Thus, at the input of the gzip compressor the XML document is split in
different parts which are essentially homogeneous, and are compressed separately.
gzip combines Huffman coding and Lempel-Ziv algorithm [10] and therefore it is
much more effective on homogeneous data.

Data contained in the document are distributed in the containers on the basis
of the user’s choices, expressed in the negotiation phase. The author’s directives,
contained in a valid XML document, contain some expressions regarding data paths
(Path Expressions) and possible association criteria from paths to compressors. Path

6

expressions follow a particular syntax similar to the one presented in [7]. The position
is specified by navigating through the document (e.g. /root/element/sub-element);
@ selects single attributes (/element@attribute); // indicates a descendant at any
level (/root//descendant); the wildcards * and # respectively indicate to group data
in a single container or create a new one for each different path (//element/* or
//element/#).

Each possible association between path expressions and compressor is described
as follows:

<association>
<pattern>...</pattern>
<semantic-compressor>...</semantic-compressor>

</association>

3.2.1 Semantic Compressors

As in XMill, different ad hoc compressors handle specific semantics of data. A funda-
mental aspect of our proposal is the possibility to introduce a certain degree of loss,
gaining in compression performance. Moreover, we plan to allow the user developing
and using “personalised” semantic compressors, eventually specialising pre-defined
ones. So far we have implemented the following semantic compressors:

• Lossless compressor for integers, reals and strings. It uses the minimum number
of bytes needed (e.g. one byte for integers in the interval [-128,+127]). The string
compressor uses a different number of bytes (1, 2 or 3) to code each character
of the strings.

• Lossless compressor for IP addresses: it simply encodes IP addresses with 4
bytes, while their UTF-8 representation needs 15 bytes.

• Lossy differential compressor. It encodes exact values with a certain frequency,
and represents intermediate data as a difference between adjacent values. On
the basis of the number of bytes used to represent differences, a loss can be
introduced. Obviously, such compressor is useful for regular data sequences.

• Wavelet-based lossy compressor for sequences of numbers. It uses wavelets which
allow to compress a sequence of numbers in an effective way and with a precise
control of introduced errors. This approach is particularly useful for compressing
XML documents with huge sequences of numbers, e.g. documents containing sci-
entific or financial data. The compressor implements a simple wavelet technique
proposed by Haar [11].

• Lossy compressor for sequences of records. It replaces measure values with
ranges, and represents such values with fewer bits.

• Lossy compressor for strings. It truncates strings, so it is useful when it is signif-
icant to preserve only an initial part of the strings contained in XML documents.
The compressor truncates the strings on the basis of a percentage specified by
the user.

7

• Lossy compressor for free text. It transforms the original text in a new one, more
compact and whose meaning can be recognised by a human. The main idea is
to set up in advance a list of words to be eliminated; as an example, in Italian
language it could be suitable to remove articles, conjunctions etc.

4 Experimental Results

Some preliminary experimental results of the structural compression are shown in
Table 1. They have been obtained on an XML input document having the structure of
the example of Section 3.1, comprising 5000 records and having a size of 656770 Bytes.
The Compression Factor is defined as CF = 1− (Compressed Size)/(Original Size).

Detail level Number Compressed Compression
of elements Size (Bytes) Factor

{item, day, store, units} 5000 656770 0%
{item, quarter, store, sum(units)} 1152 140681 78.58%
{type, quarter, province, sum(units)} 96 12056 ' 98.1%

{item, country, sum(units)} 12 1239 ' 99.7%
{type, sum(units)} 2 187 ' 99.8%
{sum(units)} 1 99 ' 99.9%

Table 1: Experimental results of the structural compression.

Furthermore, a test of the content compression was performed on a different XML
document containing records with 4 integer fields, 5 string fields and one real field.
Three different kinds of compression were used: (case 1) lossless, (case 2) applying
the wavelet compressor on the real field and (case 3) applying the wavelet compressor
on the real field, the compressor for sequences of records on one integer field and the
lossy compressor for strings on one string field. The wavelet compressor was set to
obtain a 2-norm average error of 5%:

e(V, Ṽ) =

√√√√ 1
N

N∑

i=1

(|vi − ṽi|
max(1, vi)

)2
= 5%

where V = [vi, . . . , vN] is the original dataset and Ṽ = [ṽi, . . . , ṽN] is the
reconstructed one. The results of the test, compared with gzip and XMill,
are shown in Fig.4. Our compressor obtains a good compression factor (about the
same as XMill) if used without loss; an higher compression factor is achieved intro-
ducing different degrees of loss (cases 2 and 3).

It should be noted that in the general case, the user in the negotiation phase could
decide both a level of synthesisation on the structure and a degree of loss on contents.

8

Figure 4: Experimental results of the content compression.

5 Conclusions and Future Work

In this paper we presented a lossy compression system for XML documents. The main
contribution of the paper is the attempt to produce a synthetic yet meaningful ver-
sion of an XML document by interpreting it as a datacube, using a multidimensional
approach. The resulting reorganised XML document is further compressed using an
approach similar to XMill, enhanced by the use of lossy compressors. Obviously, docu-
ment restructuring makes sense in particular when database-like rather than narrative
XML documents are considered.

Future work will concern an enhanced analysis of the compression quality, in terms
of error. Many lossy compressors yield measurable errors; in such cases, errors can be
evaluated by considering the differences between original and reconstructed data or,
as for wavelet transform, they can be set-up prior to compress data. In the structural
compression, where documents are interpreted as multidimensional datacubes, original
detailed data could be estimated using suitable interpolation; in [9] it is also shown
how to compute the errors of such estimations, in terms of expected value and variance.

Furthermore, the possibility of interpreting an XML document as a datacube could
prove useful in several applications; the compressor could be used as an author system
for the design of Web sites (which eventually integrate data from different Web sources)
to be browsed at different detail levels.

Finally, we will consider the possibility of extending the system with the introduc-
tion of a semi-automatic knowledge extraction phase, comprising (i) the discover of
frequent similar element structure, and feasible attributes to be considered as dimen-
sions and measures and (ii) the construction of Semantic Search Engines that make
use of our multidimensional approach for the extraction of synthetic views.

9

References

[1] Abiteboul, S., “Querying semi-structured data”, in Proceedings of ICDT, 1997.

[2] Bell, T., Witten I.H., Cleary J.G., “Modeling for text Compression”, ACM Com-
puting Surveys 21,4 (Dec.) : 557-591, 1989.

[3] Deutsch, P., “gzip file format specification versione 4.3”, RFC 1952, 1996.

[4] Knuth, D.E., “Dynamic Huffman Coding”, Journal of Algorithms 6,2, 1985.

[5] Lelewer, D.A., Hirschberg D.S., “Data compression”, ACM Computing Surveys
19,3 (Sept.): 261-266, 1987.

[6] Lempel, A., Ziv J., “A Universal Algorithm for Sequential Data Compression”,
IEEE Transaction on Information Theory 23,3 (May) : 337-343, 1977.

[7] Liefke, H., Suciu D., “XMill: an efficient compressor for XML data”, Proceedings
of SIGMOD Conference, 2000.

[8] Roth, M.A., Van Horn S.J., “Database Compression”, SIGMOD Record 22(3) :
31-39, 1993.

[9] Saccà, D., Buccafurri F., Furfaro F., “Estimating range queries using aggre-
gate data with integrity constraints: a probabilistic approach”, in Proceedings
of ICDT, 2001.

[10] Suciu, D., “Semistructured data and XML”, in Proceedings of International Con-
ference of Foundations of Data Organization, 1998.

[11] Sweldens, W., Schroder P., “Building your own wavelets at home”, in Wavelets
in Computer Graphics, ACM SIGGRAPH Course Notes, ACM Press, 1996.

[12] Vitter, J.S., Wang M., Iyer B.R., “Data Cube Approximation and Histograms
via Wavelets”. In Proceedings of the 1998 ACM CIKM, 1998.

[13] Witten, I.H., et al., “Semantic and generative models for lossy text compression”,
The Computer Journal, Volume 37, Issue 2, 1994.

[14] World Wide Web Consortium, “Extensible Markup Language”, Recommenda-
tion, 2000.

[15] XML Solutions, XMLZip, http://www.xmlzip.com.

10

