
Checking Containment of Schema Mappings
(Preliminary Report)

Andrea Cal̀ı3,1 and Riccardo Torlone2

Oxford-Man Institute of Quantitative Finance, University of Oxford, UK
Dip. di Informatica e Automazione, Università Roma Tre, Italy

Computing Laboratory, University of Oxford, UK

andrea.cali@oxford-man.ox.ac.uk, torlone@dia.uniroma3.it

Abstract. In data exchange, data are materialised from a source schema
to a target schema, according to suitable source-to-target constraints.
Constraints are also expressed on the target schema to represent the do-
main of interest. A schema mapping is the union of the source-to-target
and of the target constraints. In this paper, we address the problem of
containment of schema mappings for data exchange, which has been re-
cently proposed in this framework as a step towards the optimization
of data exchange settings. We refer to a natural notion of containment
that relies on the behaviour of schema mappings with respect to con-
junctive query answering, in the presence of so-called LAV TGDs as
target constraints. Our contribution is a practical technique for testing
the containment based on the existence of a homomorphism between
special “dummy” instances, which can be easily built from schema map-
pings. We argue that containment of schema mappings is decidable for
most practical cases, and we set the basis for further investigations in
the topic. This paper extends the preliminary results of [4].

1 Introduction

In distributed database applications, restructuring information from a certain
format into a desired one is a complex task. Consequently, there is a strong need
for methods and tools supporting the problem of transforming data coming in
different formats from multiple sources. A clean formalisation of this problem has
been recently proposed under the name of data exchange [8]. In this approach, a
first order logic specification, called schema mapping, describes declaratively how
data structured under one schema (the source schema) are to be transformed into
data structured under a different schema (the target schema): the goal is to take a
given instance of the source schema and translate it into an instance of the target
schema such that the schema mapping and the constraints (a.k.a. dependencies)
over the target are satisfied.

For example, if we consider a source database schema with a single relation
employee(Name,Salary ,Department) and a target database composed by the
pair of relations person(Name,Address) and salary(Employee,Amount), then a
typical schema mapping would be represented by the following source-to-target

dependency σ1: employee(X,Y,Z) → ∃W person(X,W), salary(X,Y). This de-
pendency, which is a TGD (tuple-generating dependency), states that for each
tuple employee(e, s, d) in the source there must be two tuples in the target:
person(e, a) and salary(e, s), where a is a new, unknown value. A target depen-
dency, stating that each employee name occurring in relation salary must occur
in relation person in the first position, can also be expressed with a dependency
σ2 of the same form: salary(X,Y) → ∃Z person(X,Z). In [7] it has been shown
that, for a certain class of target dependencies, given a source instance I over
the source schema, a “most general” solution to this problem, called universal
solution, can be computed by applying to I a well-known procedure called chase.
Intuitively, this procedure generates the solution by enforcing in I the satisfac-
tion of the dependencies. For example, if the instance of the above source schema
consists of the single tuple employee(john, 50, toys) then, in order to enforce the
satisfaction of source-to-target dependency, the chase generates the following
tuples over the target schema: person(john, v1) and salary(john, 50), where v1
denotes a labelled null value. The answer to a conjunctive query on a universal
instance, without considering result tuples that have at least one null, coincides
with the correct answers (called certain answers) to the query.

A natural question that arises in this scenario is the following: given a schema
mapping M1, is there a different schema mapping M2 over the same source and
target that has the same solution of M1 and provides a simpler and, possibly,
more efficient way to generate such solution? As an example, it is possible to see
that the above schema mapping is equivalent to the one obtained by replacing
σ1 with the dependency σ3 defined as employee(X,Y,Z) → salary(X,Y) since,
intuitively, the generation of a tuple in person is guaranteed, during the chase,
by the target dependency σ2.

More precisely, we define a schema mapping as the union of the source-to-
target and target dependencies. We say that a schema mapping M is contained
into another mapping M ′ if for every source instance, the answers to every
conjunctive query q under M are a subset of the answers to q under M ′. Two
schema mappings are said to be equivalent when they are contained into each
other.

Different variants of this problem have been addressed by Fagin et al. in [9],
where three different notions of schema mapping equivalence are proposed, and
a characterisation of the problem in some special cases is presented; however,
except for one case, no positive results are given. However, there is still space
for positive results in cases that are interesting from the practical point of view,
as we will show in the following.

In this paper, we address the problem of containment of schema mappings
for data exchange. We first propose a definition of schema mapping containment
which corresponds to the notion of conjunctive-query equivalence proposed in [9].
We provide some basic results that follow from general properties of first-order
formulae and known characterisations of the data exchange problem. We then
consider the case of LAV TGDs, i.e., TGDs that have a single atom in the left-
hand side. LAV TGDs are a quite general class of TGDs that, together with
some additional dependencies (which we do not consider here) are able to rep-

resent most known formalisms for ontology reasoning, as shown in [5] for Linear
Datalog±, a language whose rules are a special case of LAV TGDs, with a single
atom in the left-hand side. Notice that, under LAV TGDs (and Linear Datalog±

as well), due to the existentially quantified variables in the right-hand side of
TGDs, the chase does not always terminate, forcing us to reason on instances of
unbounded size for the target schema. Notice also that LAV TGDs generalise the
well-known class of inclusion dependencies [1]. We propose a practical technique
for testing the containment of schema mapping in this case: our technique relies
on the construction of a finite set of “dummy” instances for the source schema,
which depends only on the source-to-target mappings. The paper ends with a
discussion on a number of challenging problems that naturally follow from these
preliminary steps. To the best of our knowledge, this is the first result of this
kind in this context that follows the line of previous approaches to the problem of
checking the equivalence and optimisation of relational expressions representing
queries [2, 3].

The rest of the paper is organised as follows. In Section 2 we provide the
basic definitions and recall some useful results on the data exchange problem.
Then, in Section 3, we introduce the problem of schema mapping containment
and present our technique for testing the containment. Finally, in Section 4 we
discuss future directions of research and draw some conclusions.

2 Preliminaries

2.1 Basics

A (relational) schema S is composed by a set of relational predicates
r(A1, . . . , An), where r is the name of the predicate and A1, . . . , An are its at-
tributes. A predicate having n attributes is said to be n-ary or, equivalently, to
have arity n. An instance of a relation r(A1, . . . , An) is a set of tuples, each of
which associates with each Ai a value. An instance I of a schema S contains an
instance of each relation in S. In the following, except when explicitly stated, we
assume that instances are finite. We shall consider values from two (infinite) do-
mains: a set of constants C, and a set of labelled nulls N; the latter are intended
to be placeholders for unknown constants, therefore they can be interpreted also
as existentially quantified variables.

As usual in data exchange, we will focus on two special kind of constraints
(a.k.a. dependencies): tuple generating dependencies (TGDs) and equality gen-
erating dependencies (EGDs), as it is widely accepted that they include most of
the naturally-occurring constraints on relational databases. We will use the sym-
bol X̄ to denote a sequence (or, with slight abuse of notation, a set) of variables
X1, . . . ,Xk. A TGD has the form: ∀X̄(φ(X̄) → ∃Ȳ (ψ(X̄, Ȳ)) where φ(X̄) and
ψ(X̄, Ȳ) are conjunction of atomic formulas, and allows (together with suitable
EGDs) the specification of foreign key, inclusion, and multivalued dependencies,
among others. An EGD has the form: ∀X̄(φ(X̄) → (X1 = X2)) where φ(X̄) is a
conjunction of atomic formulas and X1, X2 are variables in X̄: it strictly gener-
alises key constraints and functional dependencies [1], as it can be easily seen. In

both TGDs and EGDs, the left-hand side is called body, and the right-hand side
is called head. We usually omit the universal quantifiers to simplify the notation.

A LAV TGD is a TGD having a single atom on the left-hand side, i.e., of the
form r(X̄) → ∃Ȳ ψ(X̄, Ȳ). Notice that variables can be repeated in the body
atom.

In the following, for space reasons, we will focus on TGDs only; significant
classes of EGDs can be added without changing our results; see, for instance,
the class of keys and non-conflicting TGDs in [5].

We now provide the important notion of homomorphism. We consider in-
stances having constants and nulls as values.

Definition 1. A homomorphism from an instance I to an instance J , both of
the same schema, is a function h from constant values and nulls occurring in
I to constant values and nulls occurring in J such that: (i) it is the identity
on constants, and (ii) h(I) ⊆ J , where for a tuple t = r(c1, . . . , cn) we denote
h(t) = r(h(c1), . . . , h(cn)), and for a set of tuples I, h(I) = {h(t) | t ∈ I}. An
isomorphism is a surjective and injective homomorphism.

If there is a homomorphism from an instance I to an instance J , we write

I
hom
→ J . We use the notation I

iso
↔ J to denote that there is an isomorphism from

I to J (and therefore another one from J to I).

2.2 Schema mappings

In the relational-to-relational data exchange framework [8], a schema mapping
(also called a data exchange setting) is defined as follows. In the following, we
will assume that both souce-to-target TGDs and target TGDs are LAV TGDs.

Definition 2. A schema mapping is a 4-tuple: M = (S,T, Σst, Σt), where:

(1) S is a source schema,
(2) T is a target schema,
(3) Σst is a finite set of s-t (source-to-target) LAV TGDs ∀X̄(φ(X̄) →
∃Ȳ (χ(X̄, Ȳ))) where φ(X̄) is a conjunction of atomic formulas over S and
χ(X̄, Ȳ) is a conjunction of atomic formulas over T, and

(4) Σt is a finite set of LAV target TGDs over T.

Given an instance I of S, a solution for I under M is an instance J of T such
that (I, J) satisfies Σst and J satisfies Σt. A solution in general has values in
C∪N (nulls or constants). In general, there are many possible solutions, possibly
an infinite number, for I under a schema mapping M . A solution J is universal
if there is a homomorphism from J to every other solution for I under M [7].

In [7] it was shown that a universal solution of I under M certainly ex-
ists when the dependencies in Σt are either EGDs or weakly-acyclic TGDs, a
class of TGDs which admits limited forms of cycles. In this case, if a solu-
tion exists, a universal solution can be computed by applying the chase proce-
dure [14] to I using Σst ∪ Σt. The chase1 is a fundamental tool that has been

1 With chase, we refer interchangeably to the procedure or to its resulting instance.

widely used to investigate several database problems such as, checking impli-
cation of constraints, checking equivalence of queries, query optimisation, and
computing certain answers in data integration settings (see, e.g., [12]). This
procedure takes as input an instance D and generates another instance by
iteratively applying chase steps based on the given dependencies. In particu-
lar, a TGD ∀X̄(φ(X̄) → ∃Ȳ (ψ(X̄, Ȳ))) can be applied at step k of the chase,
to the partial chase Dk−1 obtained at the previous step, if there is a homo-
morphism h from φ(X̄) to Dk−1; in this case, the result of its application is
Dk = Dk−1 ∪ h′(ψ(X̄, Ȳ)), where h′ is the extension of h to Ȳ obtained by
assigning fresh labelled nulls to the variables in Ȳ . The chase of I with respect
to a set of dependencies Σ, denoted by chaseΣ(I), is the instance obtained by
applying all applicable chase steps exhaustively to I. Notice that such instance
may be infinite.

Universal solutions are particularly important also for query answering since
a conjunctive query2 q over the target scheme can be evaluated against any
universal solution. More precisely, given a schema mapping M = (S,T, Σst, Σt),
an instance I of S, and a conjunctive query q over T, the certain answers of q
on I under M is the set of all tuples of constants occurring in every solution for
I under M . Fagin et al. [7] have shown that if q is a union of conjunctive queries,
the certain answers of q on I under M , denoted cert(q, I,M) can be obtained by
evaluating q over any universal solution J for I under M and then eliminating
all the tuples with nulls (in symbols: cert(q, I,M) = q↓(J)).

3 Schema Mapping Containment and Equivalence

3.1 Definitions and preliminary results

In this section we consider two schema mappings M = (S,T, Σst, Σt) and
M ′ = (S,T, Σ′

st, Σ
′
t). Also, we only consider conjunctive queries. Our notion

of containment refers to the behaviour of schema mapping with respect to query
answering.

Definition 3 (Containment and equivalence of schema mappings [9]).
We say that M is contained in M ′, in symbols M ⊆M ′, if for every instance I
of S and every query q over T we have that the certain answers of q on I under
M are contained in the certain answers of q on I under M ′, in symbols

∀I∀q cert(q, I,M) ⊆ cert(q, I,M ′)

M and M ′ are equivalent, in symbols M ≡M ′, if both M ⊆M ′ and M ′ ⊆M .

The following preliminary result on schema mapping containment states that:
(i) we can focus on universal solutions only and (ii) a necessary and sufficient
condition for containment relies on the existence of a homomorphism between
universal solutions.

2 We shall henceforth consider conjunctive queries (a.k.a. select-project-join queries)
only, for which we refer the reader to [1].

Lemma 1. Given two schema mappings M,M ′ as above, we have that M ⊆M ′

if and only if, for every instance I of S, there exist two universal solutions J, J ′

for I under M and M ′ respectively, such that J
hom
→ J ′.

Proof. (Only if). By contradiction, assume that M ⊆ M ′, but there is no two

universal solutions J, J ′ for some instance I under M,M ′ respectively. Let
J = chaseΣ(D) an J ′ = chaseΣ′(D). Now, we proceed by induction on the
number of applications of the chase step on I. Base step. Take the Boolean con-
junctive query obtained by replacing every null in I with a distinct variable.
Since M ⊆ M ′, not only J |= q (i.e., q has positive answer on I) trivially, but
also by hypothesis we also have J ′ |= q. Inductive step. Assume that at the k-th

application, the partial chase, denoted chase
(k)
Σ (D) maps onto J ′ via some homo-

morphism. Consider chase
(k+1)
Σ (D) and turn it into a query as above. Similarly,

we get chase
(k+1)
Σ (D)

hom
→ J ′. With this inductive argument we show J

hom
→ J ′.

(If). Let J, J ′ be universal solutions for an instance I under M,M ′ respectively,

with J
hom
→ J ′. Given a query q, if for a tuple t if holds t ∈ cert(q, I,M), this

amounts to say t ∈ q↓(J), or equivalently there is a homomorphism from q to J
that sends the head variables of q to constants. Since there is also another homo-
morphism from J to J ′, we have also t ∈ q↓(J) and therefore t ∈ cert(q, I,M ′).

The next result easily follows from the lemma above and the results on the
generation of universal solutions for data exchange [7]. We shall make use of the
notion of chase on the union of source-to-target and target TGDs; in this case,
we implicitly assume that the schema is the union of the source and the target
schema.

Lemma 2 (straightforward from [9]). Given two schema mappings M,M ′

as above, we have M ⊆ M ′ if and only for every instance I of S,

chaseΣst∪Σt
(I)

hom
→ chaseΣ′

st
∪Σ′

t
(I).

Proof. It follows by Lemma 1 and the fact that J = chaseΣst∪Σt
(I) is a universal

solution for I under M and J ′ = chaseΣ′

st
∪Σ′

t
(I) is a universal solution for I

under M ′ [7].

Example 1. Let us consider the following schema mapping M = (S,T, Σst, Σt):

M = { S = {r1(A,B)}, T = {r2(C,D), R3(M,F)}
Σst = {r1(X,Y) → ∃Z r2(Y,Z), r1(X,Y) → ∃Z r3(Z, Y)}
Σt = {r2(X,Y) → ∃Z r3(Z,X)} }

and the generic database instance I = {r1(ai, bi)} (1 ≤ i ≤ n) of S. The uni-
versal solution generated by applying the chase process to I using the given
dependencies is: J = {r2(bi, vi), r3(v

′
i, bi), r3(v

′′
i , bi)} (1 ≤ i ≤ n), where the vi

are labelled nulls. Let us now consider the following schema mapping defined
over the same source and target schemas:

M ′ = { S = {r1(A,B)}, T = {r2(C,D), r3(M,F)}
Σ′

st = {r1(X,Y) → ∃Z r2(Y,Z)}
Σ′

t = {r2(X,Y) → ∃Z r3(Z,X)} }

We have that the universal solution generated by applying the chase process to
I using Σ′

st ∪Σ
′
t is: J ′ = {r2(bi, vi), r3(v

′
i, bi)} (1 ≤ i ≤ n). It is easy to see that

J ′ and J are homomorphically equivalent, i.e., J
hom
→ J ′ and J ′ hom

→ J . This is
actually true for every instance of S and so M ≡ M ′. Notice that M ′ is “more
compact” than M and so the chase using the dependencies in M ′ requires a lower
number of steps (we do not discuss on optimality criteria related to containment
in this paper).

Finally, consider a schema mapping M ′′ as follows:

M ′′ = { S = {r1(A,B)}, T = {r2(C,D), r3(E,F)}
Σ′′

st = {r1(X,Y) → ∃Z r2(Y,Z)}
Σ′′

t = {r2(X,Y) → ∃Z r3(Y,X)} }

By applying the chase process to I using these dependencies we obtain the

target instance: J ′′ = {r2(bi, vi), r3(vi, bi)} (1 ≤ i ≤ n). Now, we have J ′ hom
→ J ′′

(v′i 7→ vi) but there is no homomorphism from J ′′ to J ′. Again, this is valid in
general and so M ′′ ⊆M ′ but M ′ 6⊆M ′′.

Clearly, the test of Lemma 2 is not usable in practice since it refers to an un-
bounded number of source instances, and moreover of unbounded size in general.

3.2 A practical test for containment

We now present a technique for deciding containment between two schema map-
pings. We are able to show that given a schema mapping M = (S,T, Σst, Σt),
in order to test containment, it suffices to test it on a finite set of instances for
S, depending only on M , that we call dummy instances for M , denoted DM .

Definition 4. The set of dummy databases DM for a schema mapping M =
(S,T, Σst, Σt) is constructed as follows. For every relational symbol r of arity n
appearing in the body of some TGD in Σst, the corresponding instances Dr are
obtained by considering all possible tuples of the form r(z1, . . . , zn), where the zi

are freshly invented constants in C, possibly with repetitions.

Example 2. Consider againM = (S,T, Σst, Σt) of Example 1. Then, the dummy
set DM contains four single-tuple instances: {r1(z1, z2)}, {r1(z1, z1)}, {r(z2, z2)}
and {r(z2, z1)}. We do not consider {r(z2, z2)} or {r(z2, z1)} (though it would
not harm the decision algorithm that we are going to introduce in the following)
because they can be obtained from the first two instances by null renaming.

We now show the main property of the dummy instances, showing that they
are a useful tool for checking containment of schema mappings. Before stating
this paper’s main theorem, we need some intermediate results.

Lemma 3. Consider two instances D1,D2 constructed with fresh and non-fresh
constants, i.e., with values in C ∪ N, and a set Σ of LAV TGDs. We then have

chaseΣ(D1 ∪D2)
iso
↔ chaseΣ(D1) ∪ chaseΣ(D2)

Without loss of generality, we assume that the two sets of nulls generated in
chaseΣ(D1) and chaseΣ(D2) have empty intersection.

Proof. (sketch). The result is proved by observing that every tuple t in D1 gen-
erates a fragment of the chase chaseΣ({t}) which is totally independent of any
other tuple in D1 (the same holds, of course, for tuples in D2). This because the
application of a LAV TGD depends, by definition, solely on the single tuple to
which it is applied, independently of the others.

From the above result we immediately get the following.

Lemma 4. Consider two instances D1 and D2, and two sets of LAV TGDs
Σ1 and Σ2. We have that (1) and (2) iff (3), where (1), (2), (3) are as fol-

lows. (1) chaseΣ1
(D1)

hom
→ chaseΣ2

(D1); (2) chaseΣ1
(D2)

hom
→ chaseΣ2

(D2); (3)

chaseΣ1
(D1 ∪D2)

hom
→ chaseΣ2

(D1 ∪D2).

We now come to our first main result.

Theorem 1. Consider two schema mappings M = (S,T, Σst, Σt) and M ′ =
(S,T, Σ′

st, Σt). We have that M ⊆M ′ if and only if, for every instance D in the

set of dummy instances DM for M , we have chaseΣ(D)
hom
→ chaseΣ′(D), where

Σ = Σst ∪Σt and Σ′ = Σ′
st ∪Σ

′
t.

Proof. (sketch).
(Only if). It follows from Definition 3, since chaseΣ(I) to chaseΣ′(I) are both
solutions for M,M ′ respectively (in particular, they are universal solutions).
(If). Consider a generic source instance I. From Lemma 3 it is easy to see that

chaseΣ(D)
iso
↔

⋃
t∈I chaseΣ{t}. Then, for each t ∈ I that generates at least one

tuple in the chase procedure, there is a dummy instance D ∈ DM such that

D
iso
↔ {t}. By hypothesis, for each D ∈ DM we have chaseΣ(D)

hom
→ chaseΣ′(D),

and therefore for every t ∈ I we immediately have chaseΣ({t})
hom
→ chaseΣ′({t}).

By Lemma 3, it then holds chaseΣ(D)
iso
↔

⋃
t∈I chaseΣ{t}

hom
→

⋃
t∈I chaseΣ′{t}

iso
↔

chaseΣ′(D), and by Lemma 2 we get M ⊆M ′.

The above result provides an insight into the containment problem, but since
in general the chase of a dummy instance D ∈ DM can be infinite, it is not

obvious if checking chaseΣ(D)
hom
→ chaseΣ′(D) is decidable. The following result

provides an answer to the question.

Theorem 2. Given an instance D and two sets of LAV TGDs Σ1 and Σ2,

such that chaseΣ1
(D) is finite, checking whether chaseΣ1

(D)
hom
→ chaseΣ2

(D) is
decidable.

Proof. (sketch). The proof is a direct consequence of the results in [13]. If chaseΣ2

is finite, the result is trivial. Let us consider the case where chaseΣ2
is infinite.

Preliminarly, we have to introduce the notion of level of a tuple in the chase of
an instance I. The notion of level is inductively defined as follows. All tuples in I
have level 0; if a tuple t2 is added in a chase step applied on a tuple t1 at level ℓ,

then t2 has level ℓ+1. To check whether chaseΣ1
(D)

hom
→ chaseΣ2

(D), it suffices to

check whether there exists a homomorphism from chaseΣ1
(D) (which is finite)

to the (finite) segment of chaseΣ2
(D) constitute by its first |Σ2| · ·(W + 1)W

levels, where W is the maximum arity of predicates appearing in Σ2.

The following result is a direct consequence of Theorems 1 and 2.

Theorem 3. Consider two schema mappings M and M ′ as above such that, for
every instance D in the set of dummy instance DM for M , chaseΣ1

(D) is finite.
We have that checking whether M ⊆M ′ is decidable.

Example 3. Let us consider again the schema mappings M = (S,T, Σst, Σt) and
M ′ = (S,T, Σ′

st, Σ
′
t) of Example 1. As shown in Example 2, the set of dummy in-

stances isDM = {D1,D2} whereD1 = {r1(z1, z2)} andD2 = {r1(z1, z1)}. Let us
now apply the chase procedure to D1 and D2 using the dependencies in Σ and
Σ′. We obtain the instances: chaseΣ(D1) = {r2(z2, α1), r3(α2, z2), r3(α3, z2)},
and chaseΣ′(D1) = {r2(z2, β1), r3(β2, z2)}. As for D2, we immediately have

chaseΣ(D2)
iso
↔ chaseΣ(D1) and chaseΣ′(D2)

iso
↔ chaseΣ′(D1). We immediately

notice chaseΣ(D1)
hom
→ chaseΣ′(D1), chaseΣ(D2)

hom
→ chaseΣ′(D2), therefore

M ⊆M ′. With an analogous test we also get M ′ ⊆M .

4 Conclusions and Open Problems

In this paper we have investigated the problem of containment and equivalence of
schema mappings for data exchange. As a first contribution, we have provided a
technique for testing a containmentM ⊆M ′ between two schema mappings, that
is based on the existence of a homomorphism between the chase of “dummy”
instances. Our technique is applicable in the case where both the source-to-
target TGDs and the target TGDs are LAV TGDs, and the chase of all dummy
instances under the TGDs in M is finite. With respect to the results of [9], which
is a paper closely related to our work, our notion of containment corresponds
to the notion of containment with respect to conjunctive query answering in [9].
We think this is a natural definition if we are querying the target schema with
conjunctive queries, and it can be extended in case of different query languages
(see below). In [9] it is also shown that the problem is undecidable for full TGDs
on the target schema (full TGDs are TGDs, not necessarily of the LAV kind, that
do not have existentially quantified variables in the head). Our opinion is that
it is important to consider restricted classes of TGDs on the target schema that
are able to capture interesting real-world cases. In particular, the class of LAV
TGDs that we have considered generalises inclusion dependencies (see [1]) and
also the Datalog± family [5]. In particular, the latter is able to represent most
ontology formalisms that are used in the Semantic Web. In [5] it is also shown
how relevant classes of EGDs, which generalise common database constraints
such as key and functional dependencies, can be combined with TGDs so that
TGDs and EGDs do not interact, and all the results for TGDs alone apply also
in the presence of EGDs; we refer the reader to the paper for the details.

We believe that this preliminary study opens a number of very challenging
issues, which will be subject of future research.

(1) The identification of more general conditions under which the problem is
decidable. In particular, we intend to remove the condition of finiteness of
the chase of dummy instances w.r.t. the left-hand-side TGDs. We conjecture
that the containment problem is also decidable when the above condition is
removed [10].

(2) The definition of a notion of “minimal” schema mapping, based on the
efficient generation of the schema exchange solution. This notion may rely on
the notion of core solution [11]; however, it will be important to characterise
what makes a mapping better than another;

(3) A method for “reducing” a schema mapping into a one that is minimal
according to the above definition, and equivalent with respect to conjunctive
query answering;

(4) A definition of containment with respect to more expressive classes of queries
than conjunctive queries; this would also require a novel definition of certain
answers (and possibly of solutions).

Acknowledgements. Andrea Cal̀ı was partially supported by the EPSRC project
EP/E010865/1 Schema Mappings and Automated Services for Data Integration
and Exchange.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. A. V. Aho, Ye. Sagiv, and J. D. Ullman. Equivalences Among Relational Expres-
sions. SIAM J. Comput.. 8(2): 218-246, 1979.

3. A. V. Aho, Y. Sagiv, J. D. Ullman. Efficient Optimization of a Class of Relational
Expressions. ACM Trans. Database Syst.. 4(4): 435-454, 1979.

4. A. Cal̀ı and R. Torlone. On the containment of schema mappings. In SEBD, pages
255–262, 2008.

5. A. Cal̀ı and G. Gottlob and T. Lukasiewicz. A General Datalog-Based Framework
for Tractable Query Answering over Ontologies. In PODS, 2009, to appear.

6. A. K. Chandra and P. M. Merlin. Optimal Implementation of Conjunctive Queries
in Relational Data Bases. In STOC, pages 77–90, 1977.

7. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and
Query Answering. Theor. Comput. Sci., 336(1):89–124, 2005.

8. R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting to the core. ACM

Trans. Database Syst., 30(1):174–210, 2005.
9. R. Fagin, P. G. Kolaitis, A. Nash, and L. Popa. Towards a theory of schema-

mapping optimization In PODS, pages 33–42 , 2008.
10. Georg Gottlob and Bruno Marnette. Personal communication. 2009.
11. G. Gottlob and A. Nash. Data Exchange: Computing Cores in Polynomial Time.

In PODS, pages 40–49, 2006.
12. G. Grahne and A. Mendelzon. Tableau Techniques for Querying Information

Sources through Global Schemas. In ICDT, pages 332–347, 1999.
13. D.S. Johnson and A. Klug. Testing containment of conjunctive queries under

functional and inclusion dependencies. JCSS, 28:167–189, 1984.
14. D. Maier, A. O. Mendelzon, Y. Sagiv. Testing Implications of Data Dependencies.

ACM Trans. Database Syst., 4(4): 455–469, 1979.

