
Stop the Chase: Short Contribution

Michael Meier⋆, Michael Schmidt⋆ and Georg Lausen

University of Freiburg, Institute for Computer Science
Georges-K̈ohler-Allee, 79110 Freiburg, Germany

{meierm,mschmidt,lausen}@informatik.uni-freiburg.de

Abstract. The chase procedure, an algorithm proposed 25+ years ago to fix con-
straint violations in database instances, has been successfully applied in avariety
of contexts, such as query optimization and data exchange. Its practicability, how-
ever, is limited by the fact that – for an arbitrary set of constraints – it might not
terminate; even worse, chase termination is an undecidable problem in general. In
response, the database community has proposed sufficient restrictions on top of
the constraints that guarantee chase termination on any database instance. In this
paper, we propose a sufficient termination condition, calledinductive restriction,
which strictly generalizes previous conditions, but can be checked as efficiently.

1 Introduction

The chase procedure is a fundamental algorithm that has beensuccessfully applied
in a variety of database applications [7, 10, 5, 9, 11, 15, 2, 1, 13]. Originally proposed to
tackle the implication problem for data dependencies [7, 5]and to optimize Conjunctive
Queries (CQs) under data dependencies [3, 10], it has becomea central tool in Semantic
Query Optimization (SQO) [14, 1, 16]. For instance, the chase can be used to enumer-
ate minimal CQs under a set of dependencies [1], thus supporting the search for more
efficient query evaluation plans. Beyond SQO, it has been applied in many other con-
texts, such as data exchange [15], peer data exchange [2], data integration [11], query
answering using views [9], and probabilistic databases [13].
The core idea of the chase algorithm is simple: given a set of dependencies (also called
constraints) over a database schema and an instance as input, it fixes constraint viola-
tions in the instance. One problem with the chase, however, is that – given an arbitrary
set of constraints – it might never terminate; even worse, this problem is undecidable in
general, also for a fixed instance [4]. Addressing this issue, sufficient conditions for the
constraints that guarantee termination on any database instance have been proposed [15,
4, 16]. Such conditions are the central topic in this paper. We introduce the class ofin-
ductively restricted constraints, for which the chase terminates in polynomial time data
complexity. Like existent sufficient termination conditions, inductive restriction asserts
that there are no positions in the schema where fresh labelednulls might be cyclically
created during chase application. It relies on a sophisticated study of (a) positions in
the database schema where null values might appear, (b) subsets of the constraints that
cyclically pass null values, and (c) connections between such cycles. The combination

⋆ The work of this author was funded by DFG grant GRK 806/3.

of these aspects makes inductive restriction more general than previous sufficient ter-
mination conditions, thus making a larger class of constraints amenable to the chase.
Structure. We start with some preliminaries in the following section. Section 3 in-
troduces inductive restriction, our sufficient data-independent termination condition.
Finally, Section 4 concludes the paper.
Remark. An extended version of this paper including full proofs can be found in [12].

2 Preliminaries

General mathematical notation.Forn ∈ N, we denote by[n] the set{1, ..., n}. For a
setM , we denote by2M its powerset.
Databases.We fix three pairwise disjoint infinite sets: the set ofconstants∆, the set
of labeled nulls∆null, and the set ofvariablesV . A database schemaR is a finite set
of relational symbols{R1, ..., Rn}. In the rest of the paper, we assume the database
schema and the set of constants and labeled nulls to be fixed. Adatabase instanceI
is a finite set ofR-atoms that contains only elements from∆ ∪∆null in its positions.
We denote an element of an instance asfact. The domain ofI, dom(I), is the set of
elements from∆ ∪∆null that appear inI.
We use the termpositionto denote a position in a predicate, e.g. a three-ary predicate
R has three positionsR1, R2, R3. We say that a variable, labeled null, or constantc

appears e.g. in a positionR1 if there exists a factR(c, ...).
Constraints. Let x, y be tuples of variables. We consider two types of database con-
straints:tuple generating dependencies(TGDs) andequality generating dependencies
(EGDs). A TGD has the formα := ∀x(φ(x) → ∃yψ(x, y)) such that bothφ andψ
are conjunctions of atomic and equality-freeR-atoms, possibly with parameters from
∆ and all variables fromx that occur inψ must also occur inφ. We denote bypos(α)
the set of positions inφ. An EGD has the formα := ∀x(φ(x) → xi = xj), where
xi, xj occur inφ andφ is a non-empty conjunction of equality-freeR-atoms, possibly
with parameters from∆. We denote bypos(α) the set of positions inφ. As a nota-
tional convenience, we will often omit the∀-quantifier and respective list of universally
quantified variables. For a set of TGDs and EGDsΣ we setpos(Σ) :=

⋃
ξ∈Σ pos(ξ).

Chase.We assume that the reader is familiar with the chase procedure and give only
a short introduction here, referring the interested readerto [15] for a more detailed

discussion. A chase stepI
α,a
→ J takes a relational database instanceI such thatI 2

α(a) and adds tuples (in case of TGDs) or collapses some elements (in case of EGDs)
such that the resulting relational databaseJ is a model ofα(a). If J was obtained from
I in that kind, we sometimes also writeIa ⊕ Cα instead ofJ . A chase sequence is an

exhaustive application of applicable constraintsI0
α0,a0

−→ I1
α1,a1

−→ . . ., where we impose
no strict order on what constraint to apply in case several constraints are applicable. If
this sequence is finite, sayIr being its final element, the chase terminates and its result
IΣ
0 is defined asIr. The length of this chase sequence isr. Note that different orders of

application orders may lead to a different chase result. However, as proven in [15], two
different chase orders always lead to homomorphically equivalent results, if these exist.
Therefore, we writeIΣ for the result of the chase on an instanceI under constraintsΣ.
It has been shown in [7, 5, 10] thatIΣ |= Σ. If a chase step cannot be performed (e.g.,

because application of an EGD would have to equate two constants) or in case of an
infinite chase sequence, the result of the chase is undefined.

3 Data-independent Chase Termination

In the past, sufficient conditions for constraint sets have been developed that guarantee
chase termination for any instance. One such condition isweak acyclicity[15], which
asserts that there are no cyclically connected positions inthe constraint set that may in-
troduce fresh labeled null values, by a global study of relations between the constraints.
In [4], weak acyclicity was generalized tostratification, which enforces weak acyclic-
ity only locally, for subsets of constraints that might cyclically cause to fire each other.
We further generalized stratification tosafe restrictionin [16]. We start by reviewing
its central ideas and formal definition, which form the basisfor our novel condition
inductive restriction.
Safe Restriction.The idea of safe restriction is to keep track of positions where fresh
null values might be created in or copied to. As a basic tool, we borrow the definition
of affected positionsfrom [6]. We emphasize that, in [6], this definition has been used
in a different context: there, the constraints are interpreted as axioms that are used to
derive new facts from the database and the problem is query answering on the implied
database, using the chase as a central tool.

Definition 1. [6] LetΣ be a set of TGDs. The set ofaffected positionsaff(Σ) is defined
inductively as follows. Letπ be a position in the head of anα ∈ Σ.

• If an existentially quantified variable appears inπ, thenπ ∈ aff(Σ).
• If the same universally quantified variableX appears both in positionπ, and only

in affected positions in the body ofα, thenπ ∈ aff(Σ). �

Akin to the dependency graph in weak acyclicity [15], we define a safety condition
that asserts the absence of cycles through constraints thatmay introduce fresh null val-
ues. As an improvement, we exhibit the observation that onlyvalues created due to or
copied from affected positions may cause non-termination.We introduce the notion of
propagation graph, which refines the dependency graph from [15] by taking affected
positions into consideration.

Definition 2. Let Σ be a set of TGDs. We define a directed graph calledpropagation
graph prop(Σ) := (aff(Σ), E) as follows. There are two kinds of edges inE. Add
them as follows: for every TGD∀x(φ(x) → ∃yψ(x, y)) ∈ Σ and for everyx in x that
occurs inψ and every occurrence ofx in φ in positionπ1

• if x occurs only in affected positions inφ then, for every occurrence ofx in ψ in
positionπ2, add an edgeπ1 → π2 (if it does not already exist).

• if x occurs only in affected positions inφ then, for every existentially quantified
variabley and for every occurrence ofy in a positionπ2, add a special edgeπ1

∗
→ π2

(if it does not already exist). �

Definition 3. A setΣ of constraints is calledsafe iff prop(Σ) has no cycles going
through a special edge. �

Safety is a sufficient termination condition which strictlygeneralizes weak acyclicity
and is different from stratification [16]. The idea behind safe restriction now is to assert
safety locally, for subsets of the constraints that may cyclically cause each other to fire
in such a way that null values are passed in these cycles.

Definition 4. LetΣ abe given andP ⊆ pos(Σ). For allα, β ∈ Σ, we defineα ≺P β

iff there are tuplesa, b and a database instanceI s.t. (i) I 2 α(a), (ii) I |= β(b), (iii)

I
α,a
→ J , (iv) J 2 β(b), (v) I contains null values only in positions fromP and (vi) there

is a null valuen ∈ b ∩∆null in the head ofβ(b). �

Informally, α ≺P β holds ifα might causeβ to fire s.t., when null values occur only
in positions from P,β copies some null values. We next introduce a notion for affected
positions relative to a constraint and a set of positions.

Definition 5. For any set of positionsP and a TGDα let aff-cl(α, P) be the set of
positionsπ from the head ofα such that

• for every universally quantified variablex in π: x occurs in the body ofα only in
positions fromP or

• π contains an existentially quantified variable. �

On top of previous definitions we introduce the central tool of restriction systems.

Definition 6. A restriction systemis a pair(G′(Σ), f), whereG′(Σ) := (Σ,E) is a
directed graph andf : Σ → 2pos(Σ) is a function such that

• forall TGDsα and forall(α, β) ∈ E: aff-cl(α, f(α)) ∩ pos({β}) ⊆ f(β),
• forall EGDsα and forall(α, β) ∈ E: f(α) ∩ pos({β}) ⊆ f(β), and
• forall α, β ∈ Σ: α ≺f(α) β =⇒ (α, β) ∈ E.

A restriction system isminimal if it is obtained from ((Σ, ∅),{(α, ∅) | α ∈ Σ}) by a
repeated application of the constraints from bullets one tothree (until all constraints
hold) s.t., in case of the first and second bullet, the image off(β) is extended only by
those positions that are required to satisfy the condition. �

Example 1.Let predicate E(x,y) store graph edges and predicate S(x) store some nodes.
The constraintsΣ = {α1, α2} with α1 := S(x), E(x,y) → E(y,x) andα2 := S(x),
E(x,y) → ∃z E(y,z), E(z,x) assert that all nodes in S have a cycle of length1 and2.
It holds that aff(Σ) = {E1,E2} and it is easy to verify thatΣ is neither safe nor strati-
fied (see Def. 2 in [4]). The minimal restriction system forΣ is G’(Σ):=(Σ,{(α2,α1)})
with f(α1) := {E1,E2} and f(α2) := ∅; in particular,α1 6≺f(α1) α1, α1 6≺f(α1) α2,
α2 ≺f(α2) α1, andα2 6≺f(α2) α2 hold. �

As shown in [16], the minimal restriction system is unique and can be computed by
an NP-algorithm. We are ready to define the notion of safe restriction:

Definition 7. Σ is calledsafely restrictedif and only if every strongly connected com-
ponent of its minimal restriction system is safe. �

Example 2.Constraint setΣ from Example 1 is safely restricted: its minimal restriction
system contains no strongly connected components. �

part (Σ: Set of TDGs and EGDs){
1: compute the strongly connected components (as sets of constraints)C1, . . . , Cn

of the minimal restriction system ofΣ;
2: D ← ∅
3: if (n == 1) then
4: if (C1 6= Σ) then returnpart (C1); endif
7: return{Σ};
8: endif
6: for i=1 to n do D ← D ∪ part (Ci); endfor
11: returnD; }

Fig. 1.Algorithm to compute subsets ofΣ.

As shown in [16], safe restriction (a) guarantees chase termination in polynomial time
data complexity, (b) is strictly more general than stratification, and (c) it can be checked
by aCONP-algorithm if a set of constraints is safely restricted.
Inductive Restriction. We now introduce the novel class ofinductively restricted con-
straints, which generalizes safe restriction but, like the latter, gives polynomial-time
termination guarantees. We start with a motivating example.

Example 3.We extend the constraints from Example 1 toΣ′ := Σ∪{α3}, whereα3 :=
∃x, yS(x), E(x, y). Then G’(Σ′):=(Σ′,{(α1, α2),(α2,α1),(α3,α1),(α3,α2)}) with f(α1)
= f(α2) := {E1,E2,S1} and f(α3) := ∅ is the minimal restriction system. It contains the
strongly connected component{α1,α2}, which is not safe. Consequently,Σ′ is not
safely restricted. �

Intuitively, safe restriction does not apply in the exampleabove becauseα3 “infects”
position S1 in the restriction system. Though, null values cannot be repeatedly created in
S1: α3 fires at most once, so it does not affect chase termination. Our novel termination
condition recognizes such situations by recursively computing the minimal restriction
systems of the strongly connected components. We formalizethis computation in Al-
gorithm 1, calledpart(Σ). Based on this algorithm, we define an improved sufficient
termination condition.

Definition 8. LetΣ be a set of constraints. We callΣ inductively restrictediff for all
Σ′ ∈ part(Σ) it holds thatΣ′ is safe. �

As stated in the following lemma, inductive restriction strictly generalizes safe restric-
tion, but does not increase the complexity of the recognition problem.

Lemma 1. LetΣ be a set of constraints.

• If Σ is safely restricted, then it is inductively restricted.
• There is someΣ that is inductively restricted, but not safely restricted.
• The recognition problem for inductive restriction is inCONP. �

Example 4.ConsiderΣ′ from Example 3. It is easy to verify thatpart(Σ′) = ∅ and
we conclude thatΣ′ is inductively restricted. As argued in Example 3,Σ′ is not safely
restricted, which proves the second claim in Lemma 1. �

The next theorem gives the main result of this section, showing that inductive restriction
guarantees chase termination in polynomial time data complexity. To the best of our
knowledge inductive restriction is the most general sufficient termination condition for
the chase that has been proposed so far.

Theorem 1. LetΣ be a fixed set of inductively restricted constraints. Then, there exists
a polynomialQ ∈ N[X] such that for any database instanceI, the length of every chase
sequence is bounded byQ(||I||), where||I|| is the number of distinct values inI. �

4 Conclusions
We considered the termination of the chase algorithm. As ourmain contribution, we
generalized all sufficient data-independent termination conditions that were known so
far. Our results on chase termination directly carry over toapplications that rely on the
chase and also to the so-called core-chase presented in [4].There are some interesting
open questions left. First, it is unknown if the recognitionproblem for inductive re-
striction, which was shown to be inCONP, is also coNP-hard. Second, it is left open
if the positive results on core computation in data exchangesettings from [8] extend to
inductive restriction.

References

1. A. Deutsch et al. Query Reformulation with Constraints.SIGMOD Record, 35(1):65–73,
2006.

2. A. Fuxman et al. Peer data exchange.ACM Trans. Database Syst., 31(4):1454–1498, 2006.
3. A. V. Aho, Y. Sagiv, and J. D. Ullman. Efficient Optimization of a Classof Relational

Expressions.ACM Trans. Database Syst., 4(4):435–454, 1979.
4. Alin Deutsch et al. The Chase Revisited. InPODS, pages 149–158, 2008.
5. C. Beeri and M. Y. Vardi. A Proof Procedure for Data Dependencies. J. ACM, 31(4):718–

741, 1984.
6. A. Cal̀ı, G. Gottlob, and M. Kifer. Taming the Infinite Chase: Query Answering under Ex-

pressive Relational Constraints. InDescr. Logics, volume 353, 2008.
7. D. Maier et al. Testing Implications of Data Dependencies. InSIGMOD, pages 152–152,

1979.
8. G. Gottlob and A. Nash. Efficient Core Computation in Data Exchange.J. ACM, 55(2),

2008.
9. A. Y. Halevy. Answering Queries Using Views: A Survey.VLDB J., pages 270–294, 2001.

10. D. S. Johnson and A. Klug. Testing Containment of Conjunctive Queries under Functional
and Inclusion Dependencies. InPODS, pages 164–169, 1982.

11. M. Lenzerini. Data Integration: A Theoretical Perspective. InPODS, pages 233–246, 2002.
12. M. Meier, M. Schmidt, and G. Lausen. Stop the Chase, Technical Report. CoRR,

abs/0901.3984, 2009.
13. D. Olteanu, J. Huang, and C. Koch. SPROUT: Lazy vs. Eager Query Plans for Tuple-

Independent Probabilistic Databases. InICDE, 2009. To appear.
14. L. Popa and V. Tannen. An Equational Chase for Path-Conjunctive Queries, Constraints, and

Views. In ICDT, pages 39–57, 1999.
15. R. Fagin et al. Data Exchange: Semantics and Query Answering.Theor. Comput. Sci.,

336(1):89–124, 2005.
16. M. Schmidt, M. Meier, and G. Lausen. Foundations of SPARQL Query Optimization, Tech-

nical Report.CoRR, abs/0812.3788, 2008.

