
Using Patterns for Faster and Scalable
Rewriting of Conjunctive Queries

Ali Kiani and Nematollaah Shiri

Dept. of Computer Science and Software Engineering
Concordia University

Montreal, Quebec, Canada
Email:{ali kian,shiri}@cse.concordia.ca

Abstract. Rewriting of conjunctive queries using views has many appli-
cations in database and data integration. We investigate ways to improve
performance of rewriting and propose a new algorithm which has two
phases. In the first phase, similar to Minicon, we find mapping informa-
tion, which we call coverages, from subgoals in the query to subgoals in
view, and assign positive integers (< 2n) as identifiers to these coverages,
where n is the number of subgoals in the query. In the rewriting phase,
based on the available identifiers and partitions of the set {1, ..., 2n−1},
we define patterns and use them to encode the buckets and the coverages
they contain. This breaks the cartesian product of a set of large buck-
ets into several cartesian products on sets of smaller buckets. In other
words, an expensive cartesian product could be broken into a maximum
of B(n) small cartesian products, where B is the Bell number. Our nu-
merous experiments using different query types and sizes indicate signif-
icant time and space improvement for computing the cartesian products
of the buckets and generating the output.

1 Introduction

Query rewriting (QR) is a well-known problem in databases and data integra-
tion and has been the subject of numerous studies [5, 9, 1, 8, 6, 2, 4, 7]. Given a
conjunctive query Q and a set of views V , a query rewriting algorithm uses
the views to generate a rewriting R which is a union of queries each of which
is contained in Q. Due to restrictions in the mappings (view definitions), it is
not always possible to generate a complete rewriting (i.e., a rewriting based on
views only) that is equivalent to the original query Q. The goal of rewriting is
to return maximally contained rewritings (MCR). That is, on every database D,
the result R(D) is contained in Q(D), denoted as R v Q. Further, R contains
every other contained rewriting of Q.

In this paper, we investigate ways to improve performance of query rewriting
and propose a pattern-based algorithm which exploits Bell (Stirling) numbers to
generate rewriting more efficiently. We evaluate the performance of our algorithm
in terms of speedup and space requirement and compare it with Minicon [8] and
Treewise [7] algorithms.



After finding mappings from the subgoals in the query to view, a major part
of a rewriting process is spent in performing the cartesian products of a set of
large buckets that contain these mappings, called Minicon Descriptions (MCDs)
in Minicon. The idea in our algorithm is to break this set of large buckets into
several smaller buckets so that the cartesian products are in smaller scale. Also
important in practice, this helps finding the number of rules in a rewriting before
generating them.

The rest of this paper is organized as follows. We next provide some back-
ground and review related work. In Section 3, we introduce our rewriting algo-
rithm and discuss its complexity. Section 4 presents the experiments and results.
We provide concluding remarks in Section 5.

2 Background and Related Work

A conjunctive query Q is a statement of the form: Q : h(X̄) : − g1(X̄1), . . . ,
gk(X̄k), where gi(X̄i) are ordinary predicates (also called subgoals), X̄i is a
sequence of variables, and the head predicate h does not appear in the body [3,
10]. A variable X in the rule body is distinguished if it also appears in the head.

Example 1. Let r(A,B) and s(C,D, E) be relations. Consider the following
query and views:

Q : h(X,Y ) :- r(X, Y ), s(Y, Z, W ).
V1 : v1(A,B) :- r(A,B).
V2 : v2(B, D) :- s(B, D,D).

Rule R below is a contained rewriting for Q. The reason is that if we unfold
views V1 and V2, i.e., replacing in the body of Q the views by their definitions,
we get a query which satisfies the containment R v Q.

R : h(X, Y ) :- v1(X, Y ), v2(Y, Z).

In order to generate rewriting, an algorithm should in general consider different
combinations of view heads and ensure to produce MCR.

Corresponding to Minicon descriptions (MCDs), we define Coverage which is
a data structure of the form C=<S, φ, h, δ> where S is a subset of the subgoals
in query Q, φ is a mapping from S to a subset T of subgoals in view vi, h is
the head of vi, i.e., vi(X̄i), and δ is a variable substitution that unifies every
group of variables in φ that are mapped to the same variable. Intuitively, when
generating rewriting, we can remove subgoals of S from Q, put a specialization
of vi head in the query, and apply δ on Q so that the resulting query becomes
contained in Q. The specialization of vi is generated by applying the inverse of
φ on δ(vi(X̄i)).
In example 1, there are coverages C1=<{r(X, Y )}, {X/A, Y/B}, v1(A, B), {}>,
and C2=<{s(Y, Z,W )}, {Y/B, Z/D,W/D}, v2(B, D), {W/Z}>, where C1 and
C2 generate specializations v1(X, Y ) and v2(Y, Z), respectively.

Based on this, we can say that there are two phases in query rewriting, (1)
finding coverages and (2) considering all possible/valid combinations of cover-
ages to form contained rules and getting the union of all such rules to generate



the maximally contained rewriting. Different algorithms use different terms to
refer to the result of phase 1, e.g., Bucket in Bucket algorithm, MCD in Mini-
con algorithm, Quadruple in [4], Tuple in Treewise, to all of which we refer as
coverage. The Bucket algorithm [8] tests containment for every combination. As
shown in [8], this can be avoided by choosing proper coverages and combining
them efficiently. In fact, the criteria for choosing coverages should be such that
they guarantee containment. To see how, we define the notion of Joint variables
as follows.

Let S be a subset of subgoals in the body of Q and S′ be the rest of subgoals
in Q including the head. We call the variables appearing in both S and S′ as
joint variables in S. Intuitively, if there is a view Vi covering S, then for Vi to
contribute in a rewriting (i.e., yield a coverage) the joint variables in S must
be distinguished in Vi. We will also consider the notion of partial containment
mapping from query Q1 to query Q2 where not every subgoal of Q1 is required
to be mapped. A coverage C, defined based on Vi, is a useful coverage if the
joint variables of subgoals S of C are distinguished in Vi.

After forming the coverages, we combine coverages in the second phase to
generate a rewriting. It it shown in [8] that combinations of coverages that do not
have overlap are useful only. The challenge here is how to find such combinations
efficiently?

Example 2. Let r(A,B), s(C, D), and t(E, F ) be relations. Consider the follow-
ing query and views:

Q : h(A) :- r(A,B), s(B,D), t(D,E).
V1 : v1(A,D) :- r(A, B), s(B, D).
V2 : v2(B) :- s(B, D), t(D, E).
V3 : v3(A,B,D) :- r(A,B), t(D, E).
V4 : v4(A,B,D) :- r(A,B), s(B, D), t(D, E).
V5 : v5(A) :- r(A, B), s(B, D), t(D, E).

The coverages we can create for this example are as follows: C4 covering {r},
C2 covering {s}, and C1 covering {t} based on V4, C6 covering {r, s} based on
V1, C3 covering {s, t} based on V2, C5 covering {r, t} based on V3, C7 covering
{r, s, t} based on V5. As shown in Fig. 1, there are three buckets in this example,
one for each subgoal in Q, and the coverages in the buckets have overlaps. Note
that the numbering of these coverages is based on the buckets they appear in.
For example, since coverage C6 appears in the bucket of r (position 2 from right
to left in query), and also in bucket of s (position 1), we have assigned number
6 (= 22 + 21) to C6.

Consider coverages C6 and C3. It is easy to see that we cannot combine
C6 and C3 to generate a rule in the rewriting, since there is no way to match
subgoal s from C6 with subgoal s from C3. In fact we can see that the binary
representation of 6 (110) and 3 (011) have a common 1 in the second bit. This
is the basic idea in our algorithm that assigns numbers to coverages in such a
way that their bitwise comparison indicate whether or not their combination is
useful.



3 Pattern-Based Query Rewriting

Consider a conjunctive query Q with n subgoals and a set of views. In order
to generate rewriting for Q, we first find all coverages, and place each in corre-
sponding buckets. To find all coverages, we consider a set S with a single subgoal
sgi (from Q) and its join variables JS in Q. For every view Vj that includes sgi,
we check if all the variables in JS are distinguished in Vj . If this is the case,
we create a new coverage Cji based on Vj and assign S to Cji. Otherwise, we
add more subgoals to S, update JS accordingly, and check if Vj can be useful in
forming a coverage. In order to add subgoals to S we use the join variables that
are not distinguished. If A ∈ JS is not distinguished, we include all the subgoals
in Q in which A appears. After adding the new subgoals to S, we recompute JS

and repeat the test. This process continues until we find a useful coverage for
sgi (and possibly some other subgoals), or we fail. This is very similar to Mini-
con when creating MCDs. Our algorithm mainly differs from other rewriting
algorithms in the combining step and hence we focus more on this step.

A significant amount of time in most query rewriting algorithms including
Minicon and Treewise is spent to discard combinations with overlaps. The reason
is that these algorithm need to consider nm possible combinations where m is
the number of coverages in each bucket. In our algorithm, we introduce a new
technique to perform this step more efficiently, described as follows.

C 4

C 5

C 6

C 7

C 2

C 3

C 6

C 7

C 1

C 3

C 5

C 7

Bucket 2 Bucket 1 Bucket 0

Fig. 1. Occurrences of coverages for a query with 3 subgoals; Existing algorithms need
43 cartesian product operations to find all rules in the rewriting.

Let us consider all possible combinations. We consider every bucket as a bit
in a binary representation of n bits, and hence every coverage consists of n bits.
If a coverage Cj is placed in a bucket Bi, the ith bit in the sequence denoting
coverage Cj is 1; otherwise it is 0. The sequence corresponding to a coverage
indicates its presence in different buckets, which we consider as an identifier
for that purpose. The maximum number of sequences is 2n − 1, where n is the
number of subgoals in the query; the sequence with all zeros is excluded.

We define occurrence classes based on occurrence identifier. All coverages
with the same identifier are members of the same occurrence class. In other
words, an occurrence identifier defines an equivalence class on coverages. As-
suming that there is only one coverage from every occurrence class, Fig. 1 shows
all possible occurrences of coverages for a query with 3 subgoals. This figure
also shows the bucket structure for the query and views in Example 2. Note
that to find the rewriting in this example, existing algorithms would perform 43

cartesian products. We show that our algorithm breaks this relatively expensive
operation to 5 smaller cartesian products.



Considering these coverages, we need to identify all sets of coverages that do
not have overlap and cover all the subgoals in the query.

3.1 Finding All Occurrence Classes: A Partitioning Problem

Assume that there are n subgoals in a query, and subgoals are indexed based on
their position in the query, with the rightmost subgoal as 0 and the leftmost as
n− 1. For every position i, we consider number 2i and include it in a set P . We
then find all partitions of P . The following example lists all possible partitions
for a query with 3 subgoals.

Example 3. Let Q be a query with three subgoals. So, there will be positions
0, 1, and 2 and hence, P = {22, 21, 20} = {4, 2, 1}. There are 5 partitions of P :
P1 = {{4, 2, 1}}, P2 = {{2, 1}, {{4}}, P3 = {{4, 2}, {1}}, P4 = {{4, 1}, {2}}, and
P5 = {{4}, {2}, {1}}.

It is easy to see that the partitions do not have overlap and their union forms
the original set P . Moreover, the sum of the numbers in a set in a partition
gives an occurrence identifier. In this example, we have occurrence identifiers
1, 2, 3, 4, 5, 6, and 7 from {1}, {2}, {2, 1}, {4}, {4, 1}, {4, 2}, and {4, 2, 1},
respectively. That is, the maximum number of occurrence identifiers for a query
with n subgoal is 2n − 1, and finding the proper combinations is a partitioning
problem.

We know that the number of partitions of a set of size n is the Bell number,
denoted B(n). We can also find the maximum number of rules in a rewriting of
Q. If there is only one coverage from every occurrence class, then the number of
rules in the rewriting is B(n). In general, the number of coverages for occurrence
class could be any number. To define the maximum number of rules, we use
Stirling numbers as follows. Stirling numbers of the second type S(n, k) indicate
the number of ways to partition a set of n elements into k nonempty subsets.
Using this, the Bell number B(n) can be defined as B(n) =

∑n
k=1 S(n, k)

We can use Stirling numbers to define maximum number of rules in the
rewriting of a query Q with n subgoals. Suppose for every occurrence class,
there are m coverages. Then, the maximum number of rules in the rewriting of
Q would be

∑n
k=1 mk.S(n, k). In fact, S(n, k) gives the number of cases in which

k different occurrence classes together cover the body of Q without overlap. This
is important as it can be used to perform the combining phase more efficiently.
Also it gives the maximum number of rules in a rewriting which helps provide a
more precise upper bound for the complexity of query rewriting.

We next define the notion of Combination Pattern based on the occurrence
identifiers in each partition. Intuitively every pattern shows how many buckets
we need and what coverages (based on occurrence identifier) they should contain.
The maximum number of patterns for a query with n subgoals is B(n).

Definition 1. [Combination Pattern] For a query with n subgoals, a set of pos-
itive integers P is a Combination Pattern, if it satisfies the following properties.
1. P ⊆ {1, . . . , 2n − 1}, 2.

∑
i∈P i = 2n − 1,

3. ∀ i, j ∈ P, i ∧ j = 0, where ∧ is the extended bitwise operation on integers.



The complexity of finding combination patterns is exponential, as it is based
on computing B(n), which is exponential. For example, the number of combina-
tion patterns for queries with 5, 10, 15 subgoals are 52, 115975 and 1382958545,
respectively. However, when not all of the identifiers are present, the number
of patterns reduces significantly. For lack of space, we do not provide details
of finding combination patterns for a set of identifiers; it could be done using
a partitioning algorithm. In our implementation, we sort the list of identifiers
and use recursion which was quite fast for our purpose. In order to combine the
coverages using the idea of Combination Pattern, we assign to query a number
2n − 1, and assign occurrence identifier to every coverage Ci which is based on
the subgoals it contains and their position in the query body. For instance, in
Example 2, occurrence identifiers assigned to C1 and C2 would be 6 (= 22 + 21)
and 3 (= 21 + 20), respectively. Let N be the sorted list of all occurrence iden-
tifiers. We compute the list of patterns based on available coverages. For each
combination pattern, we create a set of buckets, assign coverages to them accord-
ingly, and perform a simple cartesian product. Since a combination pattern does
not have overlap, no further checking is required. Also, we know that the sum
of the identifiers in every pattern is 2n − 1. For example, consider the coverages
listed in Fig. 1, for which based on the partitions in Example 3, we break the
original bucket into smaller buckets and perform 5 different cartesian products
since there are 5 different combination patterns, listed as follows.

1. P1 = {{7}}: We have a single bucket [C7] so no need for cartesian product
2. P2 = {{3}, {4}}: Cartesian product of two buckets: [C3]× [C4]
3. P3 = {{6}, {1}}:Cartesian product of two buckets: [C6]× [C1]
4. P4 = {{5}, {2}}: Cartesian product of two buckets: [C5]× [C2]
5. P5 = {{4}, {2}, {1}}: Cartesian product of three buckets: [C4]× [C2]× [C1]

In Example 2, there are 5 sets of buckets, one of size 1, three of size 1×1, and
one of size 1× 1× 1. To better understand our algorithm, we add the following
view (which is similar to V4) to the list of views in Example 2 .

V ′
4 : v′4(A,B, D) :- r(A, B), s(B, D), t(D, E).

Since we consider open world assumption, we need to consider V ′
4 in the rewriting

even though it has the same definition as V4. When finding coverages, V ′
4 would

create C ′4 covering {r}, C ′2 covering {s}, and C ′1 covering {t}, i.e., we get a new
coverage in every bucket. In this case, other algorithms would consider a cartesian
product of size 53, while our algorithm would consider the cartesian product
based on the pattern P5 for which it would perform a product of size 2×2×2. To
summarize, next, we briefly explain our pattern-based query rewriting algorithm.

Consider Q, the user query and V , the set of given views as the input. The
goal is to generate R, the maximally contained rewriting of Q using the views,
as the output. The algorithm has two phases:
Phase 1: Finding coverages: For every view vi, find the coverages that vi can
generate for subgoals in Q. Assign the occurrence identifier to each coverage and
maintain a set of available occurrence identifiers.
Phase 2: Combining Coverages: Based on the set of available occurrence iden-
tifiers, find the patterns. For every pattern, form the buckets, place the related



coverages in these buckets, and perform the cartesian product. Every combina-
tion in the result of the cartesian product generates a rule. Assign the union of
all these rules to R and return R as the output.

3.2 Complexity of Query Rewriting

Based on the above algorithm, we provide a more accurate upper bound for the
complexity of rewriting of conjunctive queries under the OWA and set semantics.

The complexity of query rewriting includes two parts. First, when finding
coverages, we need to find mappings from subgoals in the query to those in views,
which is NP-complete in the number of subgoals in the query. If the number of
different predicates in the query and view Vi is a, and the number of subgoals
from each predicate in the query and view Vi are b and c, respectively, then the
maximum number of partial mappings (hence maximum number of coverages)
from the query to Vi is a.b.c. The reason is that every subgoal in the query can
be mapped to a maximum of c subgoals in the view. Since for every predicate
name in query, there are b subgoals with that name, there will be b.c partial
mappings for each group of subgoals. Since there are a groups of subgoals, there
will be a maximum of a.b.c partial mappings each of which could generate one
coverage.

The second part of the complexity is in combining coverages where we need
to perform cartesian products over the buckets. For that we use combination
patterns. Assuming that we have n subgoals in the query, in the worst case,
the number of different set of buckets we form is Bell(n). Since the cost of
cartesian product operations on these sets of buckets can be expressed in terms
of the number of rules they generate, the complexity of the second phase is∑n

k=1 mkS(n, k), assuming the number of coverages in each bucket is m. Since
the complexity of the second part is larger than the first part, we may ignore the
first part. The reason is that the factor m in the formula for the second part is
proportional to the number of mappings from the first part. Moreover, the growth
of Stirling numbers is much faster than a.b.c. As a result, the upper bound for
query rewriting is the complexity of the second phase, which is

∑n
k=1 mkS(n, k).

Even though the complexity of this problem is known to be NP-complete, this
result is important as it shows a more accurate upper bound and also it provides
a way of finding the maximum number of rules in a rewriting before performing
the cartesian product which is very useful in real life applications.

4 Experiments and Results

In this section, we report our experiments and results on query rewriting using
our proposed algorithm and compare its performance with Minicon and Tree-
wise algorithms. The reason for not considering other algorithms such as Bucket
algorithm and Inverse rules in our experiments is that it has been shown that
Minicon outperforms these algorithms [8]. In our experiments, we have used two



sets of input queries, (1) “real” queries collected from papers and articles re-
lated to query rewriting and (2) synthetic queries. As the number of queries in
the first category was not much, we mainly used them to check the output of
our algorithm with human generated rewritings, as appeared in the papers. As
synthetic data, we created different types and sizes of conjunctive queries in-
cluding Chain queries, Star queries, Duplicate queries, and Random queries. We
also introduced a new class of queries which we call as All-Range queries, which
can generate all possible occurrence identifiers. This would create the worst case
scenario for our algorithm. Example 2 is an instance of such a query and views.

We developed a running prototype of our Pattern-based query rewriting al-
gorithm in Java. For the experiments, we used a regular desktop computer with
Pentium 4, 1.73 GHz and 1GB RAM. This prototype is made available to the
reviewers at http://users.encs.concordia.ca/˜ ali kian/qr/.

Most of the test data were created by query generator which was made avail-
able to us for the experiments. For each type, we considered parameters such
that we could compare our results with those reported in [8] and [7]. In order for
the comparison to be fair and meaningful, we used the implementation of the
Treewise and Minicon algorithms developed and used in [7]. Moreover, we also
developed our version of Minicon and confirmed its identical performance with
Minicon and Treewise [7]. For synthetic queries, we measure memory utilization,
performance, and scalability of our pattern-based algorithm and compare them
with Minicon and Treewise.

Fig. 2(a) compares these algorithms based on memory utilization. To push
all these algorithms to their limits, we also used All-range queries and conducted
experiments using different number of views. As shown in the figure, Pattern-
based algorithm used the least amount of memory. At each step, the same input
was used for all these algorithms. For 63 and 127 views (with 203 and 877 rules
in the rewriting generated), all the algorithms completed the process using 16
MB of memory. For 255 views (4140 rules in the rewriting), Minicon used 64 MB,
Treewise used 32 MB, and Pattern-based still using 16 MB. For 511 views (21147
rules in the rewriting), Minicon could not complete the task due to memory
exception. For this case, Treewise and Pattern-based finished using 128 MB and
32 MB, respectively. We checked the buckets and found out for 511 views (and a
query with 9 subgoals), Minicon formed 9 buckets each containing 256 coverages,
i.e., it needed to perform 2569 cartesian products. Treewise could finish this case
because of it uses a tree structure to organize its run-time which helps prune
away many unnecessary combinations. The case was easier for Pattern-based
because it basically broke this cartesian product into 21147 of much smaller
cartesian products. For 1023 views (115975 rules in the rewriting), only Pattern-
based algorithm could finish the task for which it used 128 MB of memory. We
continued with 2047 views (678570 rules in rewriting) for which Pattern-based
completed the task using 448 MB of memory. For 4095 views where there were
4213597 rules in the resulting rewriting, Pattern-based could not finish the task.

To evaluate and compare the performance of the algorithms, we used different
classes of queries including Chain, Star, Duplicate, Random, All-Range queries.



Memrory Requirement for Query Rewriting

16 16 16
32

128

448

16 16
32

128

0

50

100

150

200

250

300

350

400

450

500

64 128 256 512 1,024 2,048

Number Of Views

R
eq

u
ir

ed
 M

em
o

ry
 (

M
B

)

Pattern-based
Treewise
Minicon

Query Rewriting Time 

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

1 2 4 8 16 32 64 128 256 512 1,024

Number Of Views

T
o

ta
l T

im
e 

(m
s)

Pattern-based 
Treewise
Minicon

Fig. 2. (a) Memory requirement for Minicon, Treewise and Pattern-based Algorithms.
(b)Performance on All-range queries
For each class, we used the same input to the algorithms and compared them
in terms of rewriting time. For this, we performed a similar set of tests reported
in [8] so that we can better compare the algorithms. In all these experiments,
Pattern-based algorithm outperformed others significantly. Here we only report
the results for Chain and All-Range queries, as performance of other queries we
observed was similar to Chain queries. We also noted that when the number of
partitions are more, pattern-based performs better than others. In no case the
performance of our algorithm was inferior to the others.

Fig. 2(b) shows the rewriting time for All-Range queries. As we can see, the
rewriting time for up to 32 views are almost the same for all these algorithms,
however, for larger inputs, our Pattern-based algorithm outperforms others sig-
nificantly. For instance, for 127 views, Pattern-based, Treewise, and Minicon took
625 ms, 3875 ms, and 134344 ms, respectively. For 255 views, Pattern-based com-
pleted in 2031 ms – almost 10 times faster than Treewise (21641 ms). Minicon
could not even finish the task. As the input size increased the difference between
Pattern-based and Treewise increased. For example, for 511 views, Pattern-based
finished in about 8 seconds, whereas Treewise finished in 153 second.

Query Rewriting Time 

0

100,000

200,000

300,000

400,000

500,000

600,000

64 128 192 256 320 384 448 512 576 640 704

Number Of Views

T
o

ta
l T

im
e 

(m
s)

Pattern-based
Treewise
Minicon

Chain queries with 8 subgoals and all variables distinguished

0

5,000

10,000

15,000

20,000

25,000

30,000

1 2 4 6 7 8 9 10 11

Number of Views

T
im

e 
in

 (
M

S
)

Pattern-based

Treewise

Minicon

Fig. 3. (a) Scalability for All-Range queries with 6 subgoals and up to 20 repetition.
(b) Scalability for queries with 8 subgoals and all variables distinguished

Fig. 3 (a and b) illustrates scalability of our algorithm for All-Range and
Chain queries with 8 subgoals and all variables distinguished. As shown in the
figure, only Pattern-based algorithm could process more than 256 views under
50 seconds for All-range queries. In fact, we continued increasing the number



of views to more than 700 where our algorithm was still capable of generating
rewritings in less than 50 seconds. Also, as shown in Fig. 3(b) for Chain queries,
only Pattern-based could process more than 8 views.

5 Conclusion and Future Work

We studied rewriting of conjunctive queries using views and proposed a novel
algorithm based on Bell numbers which outperforms current algorithms. We
provided a more precise upper bound for the number of rules in a maximally
contained rewriting. We are currently investigating incorporation of query mini-
mization on both input and output of the query rewriting and study the impact
of query minimization on performance and scalability of query rewriting, as well
as the quality of the rules generated.

Acknowledgments: This work was partially supported by Natural Sciences and
Engineering Research Council (NSERC) of Canada and by Concordia University.
We thank Dr. Pottinger for providing us the query generator program, which we
extended and used in our work.

References

1. Abiteboul, Serge and Duschka, Oliver. Complexity of answering queries using
materialized views. In Proc. of the ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS), Seattle, WA, 1998.

2. Afrati, Foto; Li, Chen; and Mitra, Prasenjit. Answering queries using views with
arithmetic comparisons. In Proc. of the 21st ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. ACM Press, 2002.

3. Chandra A.K. and Merlin P.M. Optimal implementation of conjunctive queries in
relational databases. In Proc. 9th Annual ACM Symp. on the Theory of Computing,
pages 77–90, 1977.

4. Kiani, Ali and Shiri, Nematollaah. Answering queries in heterogenuous informa-
tion systems. In Proc. of ACM Workshop on Interoperability of Heterogeneous
Information Systems, Bremen, Germany, Nov. 4, 2005.

5. Levy, Alon; Mendelzon, Alberto; Sagiv, Yehoshua and Srivastava, Divesh. An-
swering queries using views. In Proc. of the ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, San Jose, CA, 1995.

6. Levy, Alon Y. Answering queries using views: A survey. The VLDB Journal,
10(4):270–294, 2001.

7. Shiri, Nematollaah and Mohajerin, Nima. A top-down approach to rewriting con-
junctive queries using views. In SDKB ’08: Workshop on Semantics in Data and
Knowledge Bases, 2008.

8. Pottinger, Rachel and Levy, Alon Y. A scalable algorithm for answering queries
using views. The VLDB Journal, pages 484–495, 2000.

9. Rajaraman, Anand; Sagiv, Yehoshua and Ullman, Jeffrey D. Answering queries
using templates with binding patterns. In Proc. of the ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, San Jose, CA, 1995.

10. Ullman, Jeffrey D. Information integration using logical views. In Proc. of the Int.
Conf. on Database Theory (ICDT), Delphi, Greece, 1997.


