
A Statistical Analysis of the Features of a Hybrid

Local Search Algorithm For Course Timetabling

Problems

Ruggero Bellio1 and Luca Di Gaspero2, Andrea Schaerf2

1 Dipartimento di Scienze Statistiche – Università di Udine
via Treppo 18, I-33100, Udine, Italy

bellio@dss.uniud.it

2 Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica
Università di Udine

via delle Scienze 208, I-33100, Udine, Italy
l.digaspero@uniud.it, schaerf@uniud.it

Abstract

In this work we study a hybrid local search algorithm for the solu-
tion of timetabling problems, and we undertake a systematic statistical
study of the relative influence of the relevant features on the perfor-
mances of the algorithm. In particular, we apply statistical methods
for the design and analysis of experiments. This work is still ongoing,
and its ultimate objective is to develop a procedure for obtaining the
best combination of parameters for the algorithm for a given instance
and predicting them for the unseen ones.

1 Introduction

In the last years the research in metaheuristic seems to have reached a certain
level of maturity. Indeed, we witness an evolution from articles proposing
new metaheuristics or the handcrafted application of existing ones, to pa-
pers addressing engineering methodologies for applying those methods and
evaluating their behavior.

With this respect, one fundamental issue and a recent trend of research
concerns the analysis of this kind of algorithm (see, e.g., [7, 12]). Indeed,
many metaheuristics are stochastic in nature and need a careful investigation
by means of statistically sound techniques in order to characterize their
behavior.

In this paper we look through this lens at the features of a hybrid
local search algorithm, based on a complex combination of simulated an-
nealing and dynamic tabu search. The study focuses on a basic timeta-
bling problem, namely the course timetabling problem formulation used
for the International Timetabling Competition (ITC-2007) as track 3 [3],
named Curriculum-Based Course Timetabling (CB-CTT). The instances
upon which the algorithm is experimented are also the official ones of the
competition.

Proceedings of the 15th International RCRA workshop (RCRA 2008):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Udine, Italy, 12–13 December 2008



The remainder of the paper is organized as follows: In Section 2 we
provide the definition of the problem and in Section 3 we illustrate the
basic local search model for solving it and the two basic components of the
hybrid algorithm. The outcomes of the statistical analyses we performed
are reported in Section 4. Finally in Section 5 we summarize what we have
done and point out the directions for future work.

2 Problem definition

The basic features of CB-CTT are presented in the ITC-2007 web site and
in a companion technical report [3]; however, in order to make this paper
self-contained, we present here the full problem definition. The problem
consists of the following basic entities:

Days, Timeslots, and Periods. We are given a number of teaching days
in the week (typically 5 or 6). Each day is split in a fixed number of
timeslots, which is equal for all days. A period is a pair composed of
a day and a timeslot. The total number of scheduling periods is the
product of the days times the day timeslots.

Courses and Teachers. Each course consists of a fixed number of lectures
to be scheduled in distinct periods, it is attended by a given number
of students, and is taught by a teacher. For each course there is a
minimum number of days that the lectures of the course should be
spread in, moreover there are some periods in which the course cannot
be scheduled.

Rooms. Each room has a capacity, expressed in terms of number of avail-
able seats, and a location expressed as an integer value representing a
separate building. Some rooms may be not suitable for some courses
(because they miss some equipment).

Curricula. A curriculum is a group of courses such that any pair of courses
in the group have students in common. Based on curricula, we have
the conflicts between courses and other soft constraints.

The solution of the problem is an assignment of a period (day and times-
lot) and a room to all lectures of each course that satisfies a set of constraints.

The constraints are split in two categories:

• Hard constraints: these are constraints that must be always satisfied
in any feasible solution of the problem.

• Soft constraints (or objectives): they are preferential features that a
solution should have. Differently from the hard ones, soft constraints
can be violated at the price of worsening the quality of the solution.

2



In the following we detail these two categories of constraints for the
problem taken into consideration.

2.1 Hard constraints

(H1) Lectures: All lectures of a course must be scheduled, and they must
be assigned to distinct periods. A violation occurs if a lecture is not
scheduled or two lectures are in the same period.

(H2) Conflicts: Lectures of courses in the same curriculum or taught by
the same teacher must be all scheduled in different periods. Two
conflicting lectures in the same period represent one violation. Three
conflicting lectures count as 3 violations: one for each pair.

(H3) RoomOccupancy: Two lectures cannot take place in the same room in
the same period. Two lectures in the same room at the same period
represent one violation. Any extra lecture in the same period and
room counts as one more violation.

(H4) Availability: If the teacher of the course is not available to teach that
course at a given period, then no lecture of the course can be scheduled
at that period. Each lecture in a period unavailable for that course is
one violation.

2.2 Soft Constraints

(S1) RoomCapacity: For each lecture, the number of students that attend
the course must be less or equal than the number of seats of all the
rooms that host its lectures.

(S2) MinWorkingDays: The lectures of each course must be spread into the
given minimum number of days. Each day below the minimum counts
as 1 violation.

(S3) IsolatedLectures: Lectures belonging to a curriculum should be adjacent
to each other (i.e., in consecutive periods). For a given curriculum we
account for a violation every time there is one lecture not adjacent
to any other lecture within the same day. Each isolated lecture in a
curriculum counts as 1 violation.

(S4) RoomStability: All lectures of a course should be given in the same
room. Each distinct room used for the lectures of a course, but the
first, counts as 1 violation.

3



3 Local Search for CB-CTT

In order to design a local search algorithm for the problem we have to specify
some basic local search entities, namely the search space, the neighborhood
relation and the cost function.

The search space we consider is composed of all the assignment for which
the hard constraints (1) and (4) hold. States for which the hard constraints
(2) and (3) do not hold are allowed, but are penalized within the cost func-
tion.

As for the neighborhood relation, we employ two neighborhoods. For
the Move neighborhood, given a reference solution, we consider as neighbors
all the solutions in which a lecture is moved to a different room and/or to
a different timeslot. Only the moves that lead to an empty room/timeslot
pair are allowed. The Swap neighborhood considers as neighbors of a given
solution those solutions that have the room/time assignments of a pair of
lectures exchanged. The two neighborhoods are combined by means of the
set-union operator.

The cost function is a weighted sum of the violations of the aforemen-
tioned hard constraints and the violations of the soft constraints. In order
to give precedence to feasibility over the objectives, hard constraints are
assigned the weight wH , which is a value greater than the maximum value
of soft constraints violations.

In the following we describe in some detail the metaheuristics employed
in this study, namely Simulated Annealing and Dynamic Tabu Search, and
we illustrate the high-level strategy for combining them.

3.1 Simulated Annealing

Simulated Annealing (SA) [6] is a metaheuristic whose name comes after an
analogy with a simulated controlled cooling of a collection of hot vibrating
atoms. The idea is based on accepting non-improving moves with probability
that decreases with time.

The process starts by creating a random initial solution and randomly
generating at each iteration a neighbor of the current solution. The new
solution is accepted and becomes the current one if either it is an improving
one or with probability e−∆f/T , where T is a value called the temperature.
The temperature T is initially set to an appropriately high value T0. After a
fixed number of iterations, the temperature is decreased by the cooling rate
γ, so that at each cooling step n, Tn = γ×Tn−1. The procedure stops when
the temperature reaches a low-temperature region, that is when no solution
that increases the cost function is accepted anymore. In this case we say
that the system is frozen.

The control parameters of the procedure are summarized in Table 1.

4



Parameter
Description

name

T0 Starting temperature
Tmin Ending temperature

γ Cooling rate in the geometric scheme Tn = γ × Tn−1

n Number of neighbors sampled at each temperature level

Table 1: Control parameters of the Simulated Annealing metaheuristic

3.2 Dynamic Tabu Search

Tabu Search [4] is a meta-heuristic method in which a fundamental role is
played by keeping track of features of previously visited solutions.

The basic mechanism of Tabu Search is quite simple: at each iteration
a subset of the neighborhood of the current solution is explored and the
neighbor that gives the minimum value of the cost function becomes the
new current solution independently of the fact that its value is better or
worse than the current solution.

The neighborhood subset is induced by the so-called tabu list, i.e., a list
of moves that are forbidden to be performed. The tabu list comprises the last
moves (to prevent cycling), and it is run as a queue; that is, whenever a new
move is accepted as the new current solution, the oldest one is discarded.

In our implementation we adopt the robust TS mechanism for managing
the tabu list, that is the size of the tabu list is variable and each performed
move remains in the list for a number of iterations randomly selected in the
range [k−δ, k+δ], where k and δ are parameters of the method. Moreover, at
each iteration the full neighborhood is traversed and all non-tabu neighbors
are evaluated. A move is considered as tabu if a move in the list involves
the same lecture. The stop criterion we adopt is based on the number of
iterations since the last improvement.

Our TS algorithm is dynamic (DTS) in the sense that it changes con-
tinuously the shape of the cost function in an adaptive way, thus causing
the search trajectory to pass through infeasible states and visit states that
have a different structure than the previously visited ones. Namely, the
weight of each hard component is let to vary according to the so-called
shifting penalty mechanism: if for a number k of consecutive iterations all
constraints of that component are satisfied (resp. not satisfied), then the
weight is divided (multiplied) by a factor α. Besides α, we also consider the
minimum (wmin), the maximum (wmax), and the initial weight (wstart) of
the hard constraints.

In order to reduce the number of free control parameters, we set some
of the parameters values according to the results of a preliminary screen-
ing experiment (see Sect. 4.1) whose aim is to eliminate the non-influential
parameters. The control parameters for DTS and the values of the unim-

5



Parameter Parameter
Description

name value

k — Central value of the tabu list range
δ 5 Width of the tabu list range
α — Modification factor of the dynamic adaptive

modification
wstart 1.0 Starting weight
wmin 0.0005 Minimum weight
wmax 1.0 Maximum weight
maxii — Maximum number of iterations without im-

provement

Table 2: Control parameters of the Dynamic Tabu Search metaheuristic,
the dash indicates free parameters

portant ones are summarized in Table 2.

3.3 Combination of metaheuristics

In this work we study a high-level search control strategy that hybridize the
basic local search components. This idea is an instantiation of Hoos and
Stützle’s Generalized Local Search Machines (GLSM) [5, Chapter 3], which
is a formal framework for describing search control by clearly separating it
from the search components. In this framework, the basic search components
are represented as states (i.e., nodes) of a Finite State Machine, whereas the
transitions (i.e., edges) correspond to conditions for modeling the search
control.

In Figure 1 we describe the high-level control strategy for combining SA
and DTS. The notation employed in the figure is quite similar to the one
used by UML state diagrams. The search starts from an initial random
state built by the IS component; when this component has finished it un-
conditionally passes its solution to DTS, which searches until the number
of iterations without improvement has reached the maximum value allowed
(i.e., its stopping condition becomes true). Whenever this happens, DTS
passes its best solution to SA, which runs until its temperature is higher
than the minimum value Tmin. Then SA returns its best solution to DTS,
which starts again its search. The whole strategy is stopped from either
DTS or SA when an overall timeout τ has expired.

4 Statistical Analyses

The statistical analyses of a timetabling algorithm requires a sequence of
steps. Broadly speaking, they include preliminary screening, selection of a
suitable experimental design, data analysis and final validation. The use of

6



• IS

DTS

SA

•ii > maxiiTn ≤ Tmin

rt > τ

rt > τ

Figure 1: A schematic illustration of the high-level strategy for combining
SA and DTS

a statistical software is largely advisable, and our choice is given by the R
statistical software [9]. The single steps of the analysis are given as follows.

4.1 Preliminary screening

At first, a screening experiment was run to eliminate unimportant algorithm
parameters. In detail we executed SA and DTS with several “extreme” set-
tings of each parameter (keeping the other parameters at fixed “reasonable”
values) and we analyzed whether this has any impact in terms of the pro-
duced solutions. We eliminate from the study those parameters that seem
not to be sensitive to the values assigned.

After this step, we identified the most crucial parameters for minimizing
the total cost. Studying only few parameters is clearly a simplification,
but this allowed us to achieve a better understanding of the problem under
investigation. However, we kept in mind more general extensions, searching
a methodology which could be useful in more challenging settings.

4.2 Experimental design

The experimental design should be targeted to the goal of the analysis. In
order to analyse the role of algorithm parameters on the resulting perfor-
mances, it is useful to follow the principle of Response Surface Methodology
(RSM). The idea is to approximate the scaled cost (output) as a quadratic
function of the algorithm parameters (inputs). More precisely, if the algo-
rithm has h parameters under study, x = x1, . . . , xh , each coded in the
range [−1, 1], the meta-model for the scaled cost is given by

g(x, β) = β0 +

h
∑

i=1

βixi +

2h
∑

i=h+1

βix
2
i +

h−1
∑

i=1

h
∑

j>i

βi,jxixj , (1)

7



where the coefficients β are unknown parameters to be estimated from the
data.

Designs commonly used in RSM, such as Central Composite Designs
(CCD) are excellent for detecting interactions and quadratic terms, but do
not provide information about all portions of the experimental region. In
many cases, it might be preferable to make use of space-filling designs, which
spread points evenly throughout the experimental region [11]. In particular,
we adopt the modern solution given by Nearly Orthogonal and Space-filling
Latin Hypercubes, introduced by [2]. NOLH are space-filling designs which
provide a nearly orthogonal design matrix when used in a first-order regres-
sion model. Their main property is that they are particular suitable also
for large h, reducing drastically the number of input combinations (n) re-
quired. For example, n = 33 suffices for NOLH with 2 ≤ h ≤ 6, while for
h = 5 a typical CCD already requires n = 35 = 243. For each instance,
we then ran a NOLH with 65 design points, and 10 replications for each
design points. Despite the suggestion that random seed should be taken as
a blocking factor [10], preliminary experimentation suggested this was not
strongly required for the algorithm under study.

4.3 Data analysis

Statistical analyses have to be performed by considering the results of ex-
periments carried out for several different instances (20 in our case). In
order to pool together the results obtained from different instances, a sen-
sible strategy is to use a response variable which is a scaled version of the
total cost, suitably normalized using the best available result for each in-
stance. Namely, if z denotes the total cost and z∗ the best result, we took
as response variable y defined as

y =

[

c0 + Φ−1

(

1 −
z∗ + c1

z + c2

)]

1

s
.

Here c0, c1 and c2 are suitable constants ensuring that the resulting y is al-
ways positive, Φ(·) is the standard normal distribution function, and s is an
instance-specific estimate of scale. The monotonic increasing transforma-
tion defining the scaled cost y has the effect of obtaining results which are
comparable across the different instances. Moreover, for the scaled cost the
assumptions required by the statistical methods suitable for our framework
are to a good extent satisfied.

The experiments are still ongoing at the time of writing, and only some
partial results are already available. Some features are readily detectable,
such as the presence of a large amount of heterogeneity between instances
and the strong effect of algorithm parameters on the resulting performances.
Cooling rate appears to be by far the most important tuning parameter. In

8



the following, we illustrate the methodology that will be used for the analysis
of the experimental data.

First of all, our aim is to pool all the instances together, which is sensible
since it can be argued that there is a common structure. The methodological
tool for pooling together the results of different instances is given by random
coefficient models, an extension of the usual mixed effects ANOVA model
already proposed by Bang-Jensen et al. (SLS 2007; see also [8]). Mixed
models provide smoothed estimates of instance-specific models coefficients,
by taking advantage of the common structure assumed for all the data. The
details are as follows. If i is the index for the instance (i = 1, . . . , I), j is the
index for the design point (j = 1, . . . , J), and k is the index for the different
random seed (k = 1, . . . ,K), the model is

yijk = g(xij , βi) + uk + εijk .

Here g(xij , βi) is the the function (1) used for modelling the mean scaled
cost as a function of algorithm parameter and instance-specific coefficients
βi. The further step is to assume that β = β + bi , where β is a fixed
effect and bi are random deviations, often (but not necessarily) assumed to
be normally distributed. Furthermore, uk ∼ N(0, σ2

u), εijk ∼ N(0, σ2
e ). All

the random terms are independent of one another. When the random seed
effect is dropped, as the various runs are not blocked on seed, then σ2

u = 0.
The model can be fitted as illustrated in [8]. The estimates obtained in

such way should be preferable to those obtained in instance-specific analyses.
Hopefully, for most of the instances the fitted approximating surface should
display a minimum point within the acceptable operating region for the
algorithm parameters.

4.4 Final validation

The final step will be devoted to verify that the results obtained by means of
the RSM correspond to an algorithm combinations that actually is more ad-
vantageous than alternatives ones. Methodologically, however, rather than
considering a single point, it is more correct to consider confidence regions
for the optimal point. The size of the confidence region provides an effec-
tive method for summarising how informative is the RSM for the problem
at hand. Furthermore, the fitted model can be used to study the relation
between the optimal tuning of algorithm parameters and instance features.
This can be of some importance for predicting the performance of the algo-
rithm for unseen instances.

5 Conclusions and future work

This work is still ongoing and we fully accomplished only two of the four
phases described in the previous section. At present, therefore, our main

9



contribution is of methodological nature. We still are waiting for the full
data to be analyzed to shed light on the relevant features of the algorithm
studied. Nevertheless, preliminary results on a simplified version of the
algorithm [1] (namely employing only the DTS metaheuristic) seem to be
promising to this respect.

Our short-term roadmap is quite straightforward: we plan to finish the
computational experiments and the data analysis in a few weeks. As a mid-
term goal, instead, we plan to test the proposed methodology also on other
problems. This will allow to assess some general validity of the procedure
or, instead, will prompt for modifications.

References

[1] Ruggero Bellio, Luca Di Gaspero, and Andrea Schaerf. A statistical
analysis of the features of a dynamic tabu search algorithm for course
timetabling problems. In Edmund K. Burke and Michel Gendreau, ed-
itors, Proceedings of the 7th International Conference on Pratice and
Theory of Automated Timetabling (PATAT-2008), 2008. Electronic pro-
ceedings. Available at http://w1.cirrelt.ca/~patat2008/PATAT_7_
PROCEEDINGS/Papers/Schaerf-HC1a.pdf.

[2] Thomas M. Cioppa and Thomas W. Lucas. Efficient nearly orthogonal
and space-filling latin hypercubes. Technometrics, 49:45–55, 2007.

[3] Luca Di Gaspero, Barry McCollum, and Andrea Schaerf.
The second international timetabling competition (ITC-2007):
Curriculum-based course timetabling (track 3). Technical Re-
port QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1.0/1, School
of Electronics, Electrical Engineering and Computer Science,
Queens University, Belfast (UK), August 2007. ITC-2007 site:
http://www.cs.qub.ac.uk/itc2007/.

[4] Fred Glover and Manuel Laguna. Tabu search. Kluwer Academic Pub-
lishers, 1997.

[5] Holger H. Hoos and Thomas Stützle. Stochastic Local Search – Founda-
tions and Applications. Morgan Kaufmann Publishers, San Francisco,
CA (USA), 2005.

[6] S. Kirkpatrick, C. D. Gelatt, Jr, and M. P. Vecchi. Optimization by
simulated annealing. Science, 220:671–680, 1983.

[7] Lúıs Paquete, Marco Chiarandini, and Dario Basso, editors. Proceedings
of the Workshop on Empirical Methods for the Analysis of Algorithms,
EMAA 2006, Reykjavik, Iceland, September 9 2006.

10



[8] José C. Pinheiro and Douglas M. Bates. Mixed-Effects Models in S and
S-Plus. Springer, 2000.

[9] R Development Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2008.

[10] Enda Ridge and Daniel Kudenko. Screening the parameters affecting
heuristic performance. In Hod Lipson, editor, GECCO, page 180. ACM,
2007.

[11] Thomas P. Ryan. Modern Experimental Design. John Wiley & Sons,
2007.

[12] Thomas Stützle, Mauro Birattari, and Holger H. Hoos, editors. Engi-
neering Stochastic Local Search Algorithms. Designing, Implementing
and Analyzing Effective Heuristics. SLS 2007, volume 4638 of Lecture
Notes in Computer Science. Springer Verlag, Berlin, Germany, 2007.

11


