Look-back Techniques for ASP Programs
with Aggregates

Wolfgang Faber, Nicola Leoné, Marco Marate&?, and Francesco Ricta

L Department of Mathematics, University of Calabria, 8702&ée (CS), Italy
{f aber, | eone, maratea, ri cca}@mt.unical .it

2 DIST, University of Genova, 16145 Genova, Italy
mar co@li st.unige.it

Abstract

One of the most significant language extensions to AnsweP®efram-
ming (ASP) has been the introduction of aggregates. A saarifiamount
of theoretical and practical work on aggregates in ASP has Ipaiblished
in recent years. In spite of these developments, aggregegetseated in a
quite straightforward and ad-hoc way in most ASP systemstHeosystem
DLV, several specialized techniques for aggregates haga Hescribed in
[6], however still leaving a lot of room for improvement.

In this paper, we build upon work on look-back optimizatiestiniques
done recently for DLV, and extend its reason calculus forkhamping to
include reasons from aggregates. Furthermore, we deduwivehese rea-
sons can be used in order to tune look-back heuristic caainfée present a
preliminary experimental analysis, including also othatesof-the-art ASP
systems, showing that our approach is promising.

1 Introduction

Answer Set Programming (ASP) [9] has become a popular logic programming
framework during the last decade, the reason being mostly its intuitive daetar
reading, a mathematically precise expressivity, and last but not leasiaifeality
of efficient systems. One of the most important extensions of the langdage o
ASP has been the introduction of aggregates. Aggregates significahtipenthe
language of ASP, allowing for natural and concise modelling of many pmalé
lot of work has been done both theoretically (mostly for determining the semantics
of aggregates that occur in recursion) [16, 20, 5] and practicaltyefalowing
systems with a selection of aggregate functions [19, 2, 6, 8].

However, work on optimizing system performance with respect to agg®ga
is still sparse, and current implementations use more or less ad-hoc tezhnligqu
this work, we report on improvements in this field. In particular, we build upon
technique for backjumping, which had been developed in the setting of ther solv
DLV in [18]. As a main contribution, we describe how theason calculusie-
fined in [18] can be extended for keeping track of the reasons feraktypes of
aggregates supported in DLV. The information collected in this way can then b
exploited directly for backjumping, using the original method described ih [18

Proceedings of the 15th International RCRA workshop (RCRBS):
Experimental Evaluation of Algorithms for Solving Problemsm€ombinatorial Explosion
Udine, Italy, 12—-13 December 2008

Importantly, reasons for aggregates can also be exploited for lodkHearis-
tic. Indeed, we show how the look-back heuristics presented in [4] eaxtended
to the aggregate case. For this task, a key issue is the initialization of heuristic
values: since look-back heuristics use information of the computation dofae, s
it would be completely uninformed at the beginning of the computation, as no in-
formation can be looked back on. In order to tackle this issue, we conaider
aggregate-free program, which corresponds to the given progidmaggregates,
and use standard techniques for initializing the heuristic values. Importamtly,
our techniqgue we make sure to not materialize this aggregate-free prolguam,
use the knowledge aboult its structure for computing the initialization values. Th
method is exact in the aggregate-stratified case, in the sense that thgedgidree
program is equivalent to the original program with aggregates. Whilertigrgam
is in general not equivalent to the original one in the aggregate-untdatifise,
it can still be used for the purpose of a heuristics, as it will still be a redsen
approximation.

We have implemented the proposed techniques for the aggregate-stratified s
ting, and report on a performance evaluation of the obtained prototypel@ctexd
benchmarks, in which we could observe performance benefits for shensyely-
ing on our optimization techniques.

2 Answer Set Programming with Aggregates

2.1 Syntax

We assume that the reader is familiar with standard logic programming; we refer
to the respective constructs sandard atoms, standard literals, standard ryles
andstandard programs Two literals are said to be complementary if they are of
the formp andnot p for some atonp. Given a literallL, —.L denotes its com-
plementary literal. Accordingly, given a sei of literals, —.A denotes the set
{—.L | L € A}. For further background, see [1, 9].

Set Terms. A DLP+ setternis either a symbolic set or a ground setsyimbolic
setis a pair{ Vars: conj }, whereVars is a list of variables andon; is a conjunc-
tion of standard atomSA ground sefs a set of pairs of the forn¥: conj), where
t is a list of constants anebn; is a ground conjunction of standard atoms.

Aggregate Functions. An aggregate functiotis of the formf(S), whereS is a
set term, and is anaggregate function symhadlntuitively, an aggregate function
can be thought of as a (possibly partial) function mapping multisets of cdastan
a constant.

YIntuitively, a symbolic set{X : a(X,Y),p(Y)} stands for the set ofX-values making
a(X,Y),p(Y) true, i.e. {X|3Ys.t. a(X,Y),p(Y) is true}.

Example 1. In the examples, we adopt the syntax of DLV to denote aggregates.
Aggregate functions currently supported by eV system are#count (number

of terms),#sum (sum of non-negative integers¥min (Minimum term),#max
(maximum ternt)

Aggregate Literals. An aggregate atonis f(S) < T, wheref(S) is an aggre-
gate function<e€ {=, <, <,>, >} is a predefined comparison operator, dhi$
a term (variable or constant) referred to as guard.

Example 2. The following aggregate atoms areldLV notation, where the latter
contains a ground set and could be a ground instance of the former:

#max{Z :r(Z),a(Z,V)} > Y #max{(2:7(2),a(2,k)),(2:7r(2),a(2,¢))} > 1

An atomis either a standard atom or an aggregate atofiteral L is an atom
A or an atomA preceded by the default negation symhet; if A is an aggregate
atom, L is anaggregate literal

DLPA Programs. A DLP- rule r is a construct

ay; v o--- Vay - by,...,bg, not byyq,..., not b,,.
whereas,--- ,a, are standard atoms;,--- ,b,, are atoms, aneéh > 1, m >
k > 0. The disjunctioru; v --- v a, is referred to as thbeadof » while the

conjunctionby, ..., by, not bx.1,...,not b, is thebodyof ». We denote the set
of head atoms by (r), and the sefb, ..., bg, not b1, ..., not by, } of the body
literals by B(r). B*(r) and B~ (r) denote, respectively, the set of positive and
negative literals inB(r). Note that this syntax does not explicitly allow integrity
constraints (rules without head atoms). They can, however, be simulathad in
usual way by using a new symbol and negation.

A DLP4 programis a set of DLP! rules. In the sequel, we will often drop
DLP#, when it is clear from the context. §lobalvariable of a rule- appears in a
standard atom of (possibly also in other atoms); all other variableslacal.

Safety. A rule r is safeif the following conditions hold: (i) each global variable
of » appears in a positive standard literal in the body-;ofii) each local variable

of r appearing in a symbolic s€tVars : conj} appears in an atom abnj; (iii)
each guard of an aggregate atom- @ a constant or a global variable. A program
P is safe if allr € P are safe. In the following we assume that programs are safe.

The first two aggregates roughly correspond, respectively, to tliinedity and weight con-
straint literals of Smodels#min and#max are undefined for empty set.

Stratification. A DLP- programP is aggregate-stratified there exists a func-
tion || ||, calledlevel mappingfrom the set of (standard) predicatesto ordi-
nals, such that for each pairandb of standard predicates, occurring in the head
and body of a rule: € P, respectively: (i) ifb appears in an aggregate atom, then
[1b]] < ||a||, and (ii) if b occurs in a standard atom, thgbl| < ||a||.

Example 3. Consider the program consisting of a set of facts for predicatasd
b, plus the following two rules:

q(X) - p(X), #count{Y : (Y, X),b(X)} < 2.
p(X) - ¢(X), b(X).

The program is aggregate-stratified, as the level mappipg| = ||b|| =1, ||p|| =
llg|| = 2 satisfies the required conditions. If we add the (&) : - p(X), then
no such level-mapping exists and the program becomes aggregdtatifiesl.

Intuitively, aggregate-stratification forbids recursion through agaesg While
the semantics of aggregate-stratified programs is more or less agreeddifpon
ferent and disagreeing semantics for aggregate-unstratified prodparasbeen
defined in the past, cf. [16, 20, 5]. In this work, we will consider onlgragate-
stratified programs, but all considerations should apply also to aggregsteatified
programs under any of the proposed semantics.

2.2 Answer Set Semantics

Universe and Base. Given a DLP* programP, let Up denote the set of con-
stants appearing i, and Bp be the set of standard atoms constructible from the
(standard) predicates &f with constants iU/p. Given a setX, let 2* denote the
set of all multisets over elements from. Without loss of generality, we assume
that aggregate functions maplit¢the set of integers).

Example 4. #count is defined ovep”” #sum over?2" #min and #max are
defined ovel' — {0}.

Instantiation. A substitutionis a mapping from a set of variables t@. A
substitution from the set of global variables of a rul@o Up) is aglobal substi-
tution for r; a substitution from the set of local variables of a symbolic$¢to
Up) is alocal substitution forS. Given a symbolic set without global variables
S = {Vars : conj}, theinstantiation ofS is the following ground set of pairs
inst(S): {(v(Vars) : v(conj)) | v is a local substitution forS}.3

A ground instanceof a ruler is obtained in two steps: (1) a global substitution
o for r is first applied over; (2) every symbolic sef in o(r) is replaced by its
instantiationinst(S). The instantiatiorGround(P) of a programpP is the set of
all possible instances of the rules®f

3Given a substitutiom and a DLP* objectObj (rule, set, etc.), we denote by Ob;) the object
obtained by replacing each variabein Obj by o(X).

4

Interpretations. An interpretationfor a DLPA programP is a consistent set of
standard ground literals, that isC (Bp U —.Bp) such thatl N —.] = (. A
standard ground literal is true (resp. false) w.rk if L € I (resp.L € —.0). If

a standard ground literal is neither true nor false wW.tthen it is undefined w.r.t
I. We denote by + (resp./ ™) the set of all atoms occurring in standard positive
(resp. negative) literals ih. We denote by the set of undefined atoms w.tt(i.e.

Bp \ I UT7). Aninterpretatior/ is total if 7 is empty (i.e./" U—-.I- = Bp),
otherwisel is partial.

An interpretation also provides a meaning for aggregate literals. Their truth
value is first defined for total interpretations, and then generalized tialpames.

Let / be a total interpretation. A standard ground conjunction is true (resp.
false) w.r.t] if all (resp. any of) its literals are true (resp. false). The meaning
of a set, an aggregate function, and an aggregate atom under andteggop, is
a multiset, a value, and a truth-value, respectively. ff) be a an aggregate
function. The valuatiod (S) of S w.r.t. I is the multiset of the first constant of the
elements inS whose conjunction is true w.rf. More precisely, lef (S) denote
the multiset]t; | (t1,...,tn : conj) € SA conj is true w.r.t. I]. The valuation
I(f(S)) of an aggregate functiofi(S) w.r.t. I is the result of the application gf
onI(S). If the multiset/(S) is not in the domain of, I(f(S)) = L (whereLl is
a fixed symbol not occurring i®).

An instantiated aggregate atamof the form f(S) < k is true w.r.t. I if: (i)
I(f(9)) # L,and, (i) I(f(S)) < k holds; otherwiseA is false. An instantiated
aggregate literahot A = not f(S) < kistrue w.r.t. I if (i) I(f(S)) # L, and, (ii)
I(f(S)) < k does not hold; otherwisel is false.

If I is apartial interpretation, an aggregate literdlis true (resp. false) w.r.f.
if it is true (resp. false) w.r.teach totalinterpretation/ extending/ (i.e.,V J s.t.

I C J, Aistrue (resp. false) w.r.tl); otherwise it is undefined.

Example 5. Consider the atoml = #sum{(1:p(2,1)),(2:p(2,2))} > 1. LetS
be the ground set inl. For the interpretation/ = {p(2,2)}, each extending total
interpretation contains eithep(2, 1) or notp(2,1). Therefore, eitherd (S) = [2]
or I(S) = [1,2] and the application of4sum yields either2 > 1 or 3 > 1, hence
Alis true w.rt.].

Remark 1. Our definitions of interpretation and truth values preserve “knowledge
monotonicity”. If an interpretation/ extends/ (i.e., I C J), then each literal
which is true w.r.t. is true w.r.t..J, and each literal which is false w.rk.is false
w.r.t. J as well.

Minimal Models. Given an interpretatiod, a ruler is satisfied w.r.t. if some
head atom is true w.r.f. whenever all body literals are true w.tt. A total inter-
pretation) is amodelof a DLPA programP if all » € Ground(P) are satisfied
w.r.t. M. A model M for P is (subset) minimal if no modeV for P exists such
that Nt c M™. Note that, under these definitions, the worterpretationrefers
to a possibly partial interpretation, whilengodelis always a total interpretation.

5

Answer Sets. We now recall the generalization of the Gelfond-Lifschitz trans-
formation and answer sets for D¥Rprograms from [5]: Given a ground DIP
programP and a total interpretatioh, let P! denote the transformed program ob-
tained fromP by deleting all rules in which a body literal is false w.lt.] is an
answer set of a prograf if it is a minimal model ofGround(P)*.

Example 6. Consider interpretation; = {p(a)}, I = {notp(a)} and two pro-
gramsP; = {p(a) :- #count{X : p(X)} > 0.} andP, = {p(a): - #count{X : p(X)}

< 1.}. Ground(Py) = {p(a) : - #count{{a : p(a))} > 0.} andGround(P1)"* = Ground(Py),
Ground(Py)" = (. FurthermoreGround(Pz) = {p(a) : - #count{(a : p(a))} < 1.},

and Ground(P,)"* = 0, Ground(P,)'? = Ground(P,) hold. I, is the only answer

set of P, (sincel; is not a minimal model offround(Py)™), while P, admits no
answer setf; is not a minimal model of'round(P;)", and I, is not a model of
Ground(Py) = Ground(Ps)'?).

Note that any answer sétof P is also a model oP becaus&round(P)* C
Ground(P), and rules inGround(P) — Ground(P)* are satisfied w.r.tA.

3 Backjumping and Reason Calculus inrDLV

DLV is the state-of-the-artlisjunctiveASP system. DLV relies on backtracking
search similar to the DPLL procedure for SAT solving (most other compe#ise
systems exploit similar techniques). Basically, starting from the empty (partial)
interpretation, the solver repeatedly assumes truth-values for atomsiichos
cording to an heuristic), subsequently computing their deterministic conseggie
(propagation). This is done until either an answer set is found or am$msco
tency is detected. In the latter case, (chronological) backtracking ©ic&ince
the last choice does not necessarily influence the inconsistency, texpre may
perform a lot of useless computations. In [18], DLV has been enltbog®dack-
jumping [7, 17], which allows for going back to a choice which is relevanttie
found inconsistency.A crucial point is how relevance for an inconsistency can be
determined. In [18], the necessary information for deciding relevanaz@ded
by means of a reason calculus, which collects information about the cl{tieas
sons”) whose truth-values have caused truth-values of other detetioaitysde-
rived atoms.

In practice, once an atom has been assigned a truth-value during the-comp
tation, we can associate a reason to it. For instance, given a rulé, ¢, not d.,
if b andc are true andi is false in the current partial interpretation, themvill
be derived as true. In this casejs true becausé andc are true andl is false.
Therefore, the reasons farwill consist of the reasons fdr, ¢, andd. Chosen
literals are seen as their own reason. So each litetatived during the propaga-
tion has an associated set of positive integefs representing the reasons fipr
which contains essentially the recursion levels of the choices which éntailthe

“For more details, see [3] for the basic DLV algorithm and [18] for batiging.

following, we will describe the inference rules needed for correctly impiging
aggregates [19, 2], and we present the associated extension oaslom ialculus
which allows for dealing with aggregates.

4 Reason Calculus for Aggregates

We next report the reason calculus for each aggregate supported\byHere-
after, a partial interpretation (here a set of literdl$3 assumed to be given.

Consider a pair(t : conj) wheret is a sequence of terms amdn; a con-
junction of literals. We denote by..,; (resp. Sconj) the reason foron;j to
be false (resp. true) w.r.tl. In particular,C..,; is the reason of a false literal
in conj®, while Sconj = Ujceon; B(1), 1.€. all reasons for the literals ieon;j.
Moreover, letA = {(t; : conj1), ..., (t, : conj,)} be a set term, definéy =
Uconjyeanconjer Ceoni @NASA = U g.conjye anconjer Sconjr Where a true (resp.
false) conjunction w.r.t. interpretatiahis denoted byonj € I (resp.conj ¢ I).
Intuitively, C4 represents the reasons for false conjunctiond,iwhile S, repre-
sents the reason for true conjunctionsdin

In the following, each propagation rule and the corresponding reaalon-c
lus are detailed. Without loss of generality, we focus on rules — f(A)Ok,
© € {<, >}, since the calculus can easily be extended to the general case. More
in detail, we consider two different scenarios depending on whethertpaga-
tion proceeds from literals il to aggregate literalg(A)Ok (forward inference)
or the other-way round (backward inference). Basically, in the faseave derive
the truth/falsity of the aggregate literf{ A)©k from the truth/falsity of some con-
junction occurring inA; whereas, in the second case, given a rule containing an
aggregate atom which is already known to be true or false w.r.t. the cumtent
pretation® we infer some literals occurring in the conjunctionsiito be true/false.

4.1 Forward Inference

This kind of propagation rules apply when it is possible to derive an ggtge
literal f(A)©Ok to be true or false because some conjunctiod iis true or false
w.r.t. I. As an example consider the program:

a(l). a(2). h:—#count{(l:a(l)),(1:a(2))} <1.

Since bothu(1) anda(2) are facts, they are first assumed to be true; then, since
the actual count for the aggregate is 2, the aggregate literal is inferizsl fadse
by forward inference. In the following, we report in a separate pagayboth

5Since a satisfied conjunction can have several “satisfying literals”, thalléaould be chosen
as the reason that allows for the “longest jump,” as argued in [18].

®This can happen in our setting as a consequence of the application ofcsitiigaposition for
true heador contraposition for false heapropagation rules, see [18].

propagation rules and corresponding reason calculus for the aggsesupported
by DLV; #max{A}©Fk is symmetric to#min{ A}©k and is not reported.

#count{A} < k (resp. #count{A} > k). Suppose that there exista set
A’ C As.t. foreach? : conj) € A2 conjis true (resp. false) if and|A’| > k
(resp.|A’| > |A| — k), then#tcount{A} < k (resp.#count{A} > k) is inferred

to be false and its reasons are se$i@ (resp.C4/). Conversely, suppose that there
exists a setd’ C A s.t. for each(t : conj) € A’, conj is false (resp. true) id
and|A’| > |A| — k (resp.|A’| > k), then we infer that:count{A} < k (resp.
#count{A} > k) is true and we set its reasondq: (resp.Sa/).

#min{A} < k (resp. #min{A} > k). Let A’ be the set of all pairgv,? :
conj) € As.t.v < k (resp.v < k). If for each(v,t : conj) € A, conj is false

in I, then#min{A} < k is derived to be false (resg#min{A} > k derived to

be true) and we set its reasonsdg,,;,,. Conversely, suppose there exists a pair
(v,t: conj) € As.t. conjistrueinl andv < k (resp.v < k), then we infer that
#min{A} < kis true (resp#min{A} > k is false) and set its reason&,,;.

#sum{A} < k (resp.#sum{A} > k). Suppose thatthere exists a détC A s.t.

for each(v, : conj) € A’, conjis true (resp. false) ith andXy, ., 7.conjjc 4130 =

k (resp.X) v iconj)e A}V — Sfo|(viconjycatV < k), then#tsum{A} < k (resp.
#sum{A} > k) is false and we set its reason & (resp. C4/). Conversely,
suppose that there exists a s€t C A s.t. for each(v,t : conj) € A’, conj

is false (resp. true) id and Xy, .conj)ca}V — Zio|(v,f:conjicaryV < k (resp.
E{u\<u,%:gonj>eA'}U > k), then#sum{A} < k (resp.#sum{ A} > k) is true and its
reason i€ 4 (resp.Sa).

4.2 Backward Inference

This kind of propagation rules apply when an aggregate litgfd)) Ok, © € {<
,>} has been derived true (or false), and thera isnique way to satisfy it by
inferring that some literals belonging to the conjunctionstliis true or false. For
example, suppose thais empty and consider the program:

;- not h. h:—#count{(l:a),(1:b)} > 1.

During propagation we first infeh to be true for satisfying the constraint,
and then, in order to satisfy the rule, also the aggregate literal is inferrbd to

"As far as the implementation is concerned, in case there are seveeskdifsets with this
property, a safe choice is to consider their union. Another, less exgesslution is to buildA’ by
iterating over the elements d&f until the condition is met.

8Hereafter, (v, : conj) is a syntactic shorthand fdp, t1, - - - ,t,,), wherev is a constant andl
is the list of constants,, - - - , t,, n > 0.

%Since the propagation process mustlegerministic

true (independently by its aggregate set). At this point, backward patipagcan
happen, since the unique way to satisfy the aggregate literal is to inferaboth
andb to be true. Thus, backward propagation happens when an aggregate lite
f(A)®k has been derived true (or false) in the current interpretation, and ther
is only one wayto satisfy it by deterministicallysetting someconj; (s.t. (¢; :
conj;) € A) true (or false) w.r.tl. For doing so, an implementation detail of
DLV is exploited, which internally replaces conjunctions in aggregatesdshfy
introduced auxiliary atoms, along with a rule defining the auxiliary atom by means
of the conjunction. So inside DL\¢pnj; will always be an atom, which can simply
be set to true or false, and its defining rule will then act as a constraintuaily
enforcing truth or falsity of the conjunctiofonj;. As far as the reason calculus
is concerned, literals are inferred to be true or false by this operati@ubedoth

the aggregate literal is true/false and some conjunctions (ineing either true or
false) made the process deterministic; thus, the reason for eachllitefatred by
backward inference is set ®(1;) = R(f(A)Ok) UC4x U Sa4.

The following paragraphs report sufficient conditions for applyingkiard
inference in the case of the aggregates supported by DLV. Since caorditio
f(A) > kto be true (resp. false) basically coincides with the one&g df) < k41
to be false (resp. true), only one of the two cases is reported for emrbgate.
Moreover, from now on, we assume that, whenever backward irdeneguires to
derive something, this action can be done deterministically (if this is not possible
then backward inference is not performed).

#count{A} < k. LetTy be the sefl’y = {({; : conj;) € A s.t. conyj; is true
w.rt. I}, andF4 be the sef’y = {(t; : conj;) € A s.t. conj; is false w.r.t. I},
and supposétcount{A} < kistrue w.r.t.7 and|T4| = k — 1, then all undefined
conjunctions in4A are made false. Conversely, suppgseount{A} < k is false
w.r.t. I and|A| — |F4| = k, then all undefined conjunctions ihare made true.

#min{A} < k. Suppose that#min{A} < kis true w.r.t. I, and there is only
one(v,t : conj) € A such thay < k andconj is neither true or false w.r.tf;
suppose also that, all the remainifg,?; : conj;) € A s.t. v; < k are such
that conj; is false w.r.t. I, thenconj is made true. Conversely, suppose that
#min{A} < k is false w.r.t. I and, there is ndv,t : conj) € A such that

v < k andconj is true w.r.t. I. In addition, suppose that eithét) there exist
(W', t : conj') € Ast.v' > kandeonj’ is true w.r.t. I or (ii) there is only one
(" 1" conj") € As.t.v" > k with conj” undefined w.r.tl. Then all theconj;
such that(v;, ¢; : conj;) € A andv; < k are made to be false, and, if case (ii)
holds, alsaonj” is made true w.r.tl.

#max{A} < k. Suppose that#max{A} < k is false w.r.t. I, and there is
only one(v,t : conj) € A such thatv > k andconj is neither true or false
w.r.t. I; suppose also that, all the remainifg,?; : conj;) € Ast v; > k

are such thatonj; is false w.r.t. I, thenconj is made true. Conversely, suppose
that #max{A} < k is true w.r.t. I and, there is ndv, ¢ : conj) € A such that

v > k andconj is true w.r.t. I. In addition, suppose that eithét) there exist
(W', t : conj') € As.t.v' < kandeonj’ is true w.r.t. I or (ii) there is only one
(" 1" conj") € As.t.v" < kwith conj” undefined w.r.tI. Then all theconj;
such that(v;, ¢; : conj;) € A andv; < k are made to be false, and, in if case (ii)
holds, alsa-onj” is made true w.r.tl.

#sun{A} < k. Letusdenote by(X)the sumS(X) = >/, 7 conj,ex Vi and
suppose thagsum{ A} < kis true w.r.t.] andS(74) = k — 1, then all undefined
atoms inA are made false. Conversely, suppose #hatm{ A} < k is false inf
andS(A) — S(F4) = k, then all undefined atoms i are made true.

5 Look-back Heuristics in the Presence of Aggregates

Look-back heuristics, which have been originally exploited in SAT solikes
Chaff [13] (where the heuristic is called VSIDS), have also been cersibfor
DLV in [4], in conjunction with backjumping, leading to positive results.

A key factor of this type of heuristic is the initialization of the weights of the
literals [4], to be updated with the reasons calculus during the searchm#oa
practice is to initialize those values with the number of occurrences in the input
(ground) programs. But, if there are aggregates in the program, wiel el to
take them into account in order to guide the search. The idea is thus to implicitly
consider the equivalettstandard program for an aggregate and count also these
occurrences for the heuristic. It is worth noting that this equivalerngnarm does
not have to be “materialized” in memory. As before, we consider only rules o
the formh : —f(A)©k for simplicity. We denote by, ..., ;) the literals be-
longing to eaclronj; € A, (m > 0). Table 1 summarizes the formulas employed
for computing literal occurrences. Note that equivalent programs indke of
#sum are quite involved, rendering the computation of the exact values fairly in-
efficient (many binomial coefficients). Therefore we decided to apprate the
corresponding heuristic value, replaciggum{A} by #count{A*} where A*
containsy; different elements, one for ea¢h;, ¢; : conj;) € A.

As an example, consider a rule of the form —#min{A} < k. The equiva-
lent standard program contains a rule of the tgpe-conj;, foreachv;, 1 <i <n
s.t.v; < k. In this way,h becomes true if one of thenj; havingv; < k becomes
true, i.e. if the minimum computed by the aggregate is lesskhamurrent answer
set. Thus, the number of occurrencesiah the corresponding standard program
areocc(h) = [{v; : (v, t; : conj;) € A, v; < k}|, while for each literal;, i.e. the
z-th literal of conj;, occ(l;,) = 1if v; < k, otherwiseocc(l;,) = 0.

Equivalence in general holds only in a stratified setting, which howeveseave as an approx-
imation also in non-recursive settings.

10

T

I #count{A} <k \ #min{A} <k | #max{A} <k | #sum{A} <k
Sico () E<IAL [0| s congi) € Ao () k<]
occ(h) { 1 olse [{v; | (vi,t; : cong;) € A,v; < k}| 1 clse
1 v <k
oce(liz) 0 { 0 else 0
S ES 0 k<4 Loo>k [[350 ‘AZ) k<]
oce(not ;) { 1 clse 0 0 else 1 else
I #Hcount{A} > k | #min{A} >k | #max{A} >k \ #sum{A} >k
Yiso (7) k<4 (o Es < cons) € Ao, Yico (7)) k<14r]
occ(h) { 1 olse 1 {v; | (vi,t; : cong;) € A v; > k}|] clse
| S k< |A] 1 v >k S (M) k< A7
occ(liz) { 1 else 0 0 else 1 else
oce(not ;) 0 { (1) z;(; K 0 0

Table 1: Occurrence formulas for literals involved in aggregates.

6 Experimental analysis

We have performed an experimental analysis on benchmarks with atggeda
particular, we have considered some domains of the last ASP Compktitien
longing to the MGS class, together with other benchmarks reported in [2]. Fo
the domains of the ASP Competition, we have downloaded the benchmarks at
“http://asparagus.cs.uni-potsdam.de/contest/downloads/benchmarks-mgsdgz
selected the logic programs with aggregates.

All the experiments were performed on a 3GHz PentiumlV equipped with 1GB
of RAM, 2MB of level 2 cache running Debian GNU/Linux. Time measurements
have been done using thé me command shipped with the system, counting total
CPU time for the respective process. We report the results in terms aftexec
time for finding one answer set, if any, with20 minutes. Results are summarized
in Table 2, where the first column reports the domain name, the second colemn th
total number of instances considered (in the given domain), the third amthfo
columns report the results for the standard version of DLV ver. of 20B71 in
the standard settings and the new system B{¥featuring both backjumping and
look-back heuristics, and the remaining columns report the resulisLiesP [8]
ver. 1.0.4,cMODELS [11] ver. 3.75,SMODELS [14] ver. 2.31 andSMODELS
cc[21] ver 1.08, which usePARSE' for grounding. The results for the systems
are presented as the mean CPU time of solved instances, along with the niimber o
instances solved within the time limit (in parentheses). RegarslingDELS-CC,
two results are missing (i.e., there is a “no enc.” in the Table) because itatan n
deal with weight constraint rules.

[Domain [#]] DLV[DLV ?74] CLASP[CMODELS|SMODELYSMODELS-CC]
BoundedSpanningTré&][0.13 (8] 0.04 (8] 6.01 (8] 5.69 (8]101.47 (5) 343.35(8
TowerOfHanoi 8| 1.16(8] 1.1(8)32.84(8)117.32(7)259.82(8) 154.74(7
WeightedSpanningTre8| 0.04 (8) 0.02(8) 2.16 (8) 2.31(8) 28.51 (6 no enc|
WeightedLatinSquares3|/542.23 (6)140.83 (7) 0.03 (8) 0.34(8) 326.2 (8 no enc|
TimeTabling 9|| 4.49(9) 0.34(9] 1.15(9) 0.84(9) 5.12(3 96.39 (9

Table 2: Average execution times (s) (and number of solved instances).

It is useful to know what kinds of aggregates each domain involves: ttee th
and fourth domains involve#count” and “#sum”, the first and last domains
involve “#count”, while the second domain contains only thérhax” aggregate.

We can see that the first three domains presented are easily solved Bihbth
and DLVB74, slightly better by the enhanced system, while the remaining solvers
show higher mean CPU time and/or solve less instances. The last two domains
further show the potential of the enhanced system w.r.t. DLV, given tiaglle
to solve more instancesMeightedLatinSquaredomain) in considerably shorter
time (DLVB74 is on averagd5 times faster ofimeTabling where the systems

Uhttp://asparagus.cs.uni-potsdam.de/contest/.
Lhttp://www.tcs.hut.fi/Software/lparse.

12

solve the same instances, and significantly fasteWeightedLatinSquaresolv-

ing also more instances): interestingly, if compared to the remaining systems, this
gain leads DL\P/4 to be the best performing solver in 4 domains out of 5 and it
performs well in particular in th&meTablingdomain. Also in thaVeightedLatin-
Squares DLV B74 has a clear advantage over DLV. However, DA/ is still
inferior with respect ta”LASP, CMODELS andSMODELS.

We have conducted further investigations regarding the differencesriarp
mance in the particular domaiffeightedLatinSquare€One explanation could be
the absence of learning in DI&/4, but also other factors may be important, as
discussed next. As a matter of fact, two main parameters affecting VSIC&ibeh
are the “importance” of literals in reasons (called “reward”, i.e., how mueh¢h
lated counters for such literals is to be increased) and the constanttigiatdrich
counters are periodically divided (called “aging”) in order to possiblsufothe
search on the last literals involved in reasons (see [4] for details on & GHrris-
tics). In the experiments we have presented so far, these parametersetenl,
and2, respectively, i.e., to the original values used by Chaff. But obviotisgge
might not be the best values for some domains, for example sometimes one would
prefer higher values for these parameters in order to let the heuristie wptiates
take effect earlier in the search. We have informally conducted someiques
with different values for reward and aging. Interestingly, with some ofnibe
setting we were able to solve &eightedLatinSquareedicating that also these
factors may be an important reason for the comparatively poor perfaanain
DLV 574 for this domain.

We have also conducted further benchmarks on selected domains, campar
only DLV 574 and DLV. Of these, we would like to mention as an example the
Seatingbenchmarks from [2]. Here, DL¥4 is able to solve more instances than
DLV, with a mean CPU time of.24 for DLV 574 and31.46 seconds for DLV.

7 Related Work and Conclusion

Aggregates are an important linguistic enhancement of ASP, and most ofihe a
able systems are already able do deal with them. In partieNespELS[14, 15],
CMODELS [11] andcLASP [8] support cardinality and weight constraints, which
correspond to count and sum aggregates, respectively, smib®DELS.. [21] im-
plements only cardinality constraints, and bathT [10] and ASSAT [12] do not
support aggregates. About solvers based on look-back technaggp®gates are
considered explicitly for backjumping iBMODELS.. (where additional arcs are
added to the implication graph) amilAsP; converselyCMODELS translates the
original program into a propositional formula that is then evaluated by as®AEr
(possibly exploiting backjumping). Notably, none of the existing systdinestly
exploits aggegates for the computation of heuristics, indeed for all of theootit
flict analysis works in a similar way as in the case of “normal” programs (i.e., by
exploiting the UIP-based conflict analysis technique borrowed from) SAT

13

In this paper we have described look-back techniques for the evaluaition
aggregates. In particular the main contributions &ean extension of theeason
calculusdefined in [18]; and(i:) an enhanced version of the heuristic presented in
[4] that explicitly takes into account the presence of aggregates. Merage have
implemented the proposed techniques in a prototype version of the DLV system
and performed a set of benchmarks, which indicate performance tseokthe
enhanced system.

Encouraged by the results of the performance evaluations, we aentyrr
continuing our work in order to improve the performance of B14# by develop-
ing further optimizations both by enhancing the implementation of the reason cal-
culus, by considering different “equivalent programs”, and, thliffierent VSIDS
initializations and by tuning various VSIDS parameters. Additionally, we are als
enlarging both the set of domains on which we conduct the performaabeaev
tion, primarly considering other domains from the ASP Competition, and the set
of systems, by includingeMoDELS'® in the analysis.

Acknowledgements

Supported by M.I.U.R. within projects “Potenziamento e Applicazioni della Pro-
grammazione Logica Disgiuntiva” and “Sistemi basati sulla logica per la eappr
sentazione di conoscenza: estensioni e tecniche di ottimizzazione.”

References

[1] C. Baral. Knowledge Representation, Reasoning and Declarative Problem
Solving Cambridge University Press, 2003.

[2] T. DellArmi, W. Faber, G. lelpa, N. Leone, and G. Pfeifer. Agga¢e Func-
tions in DLV. In Proceedings ASPQ®ages 274-288, CEUR \Vol-78, 2003.

[3] W. Faber.Enhancing Efficiency and Expressiveness in Answer Set Program-
ming SystemsPhD thesis, Institutifr Informationssysteme, TU Wien, 2002.

[4] W. Faber, N. Leone, M. Maratea, and F. Ricca. Experimenting witbkko
Back Heuristics for Hard ASP Programs. Pmoceedings of LPNMR 2007
LNAI) 4483, pages 110-122, 2007. Springetr.

[5] W. Faber, N. Leone, and G. Pfeifer. Recursive aggregateisjargtive logic
programs: Semantics and complexity. Rroceedings of JELIA 2004.NAI
3229, pages 200-212. Springer, 2004.

[6] W. Faber, G. Pfeifer, N. Leone, T. Del’lArmi, and G. lelpa. Designd
implementation of aggregate functions in the dlv syst@fLP. in press.

Bhttp://www.cs.uky.edu/ai/pbmodels/.

14

[7] J. GaschnigPerformance measurement and analysis of certain search algo-
rithms PhD thesis, C.M. University, Pittsburgh, USA, 1979.

[8] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Confligedran-
swer set solving. Proc. ¢dCAI-07, pp 386—392. Morgan Kaufmann, 2007.

[9] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs Bt
junctive Databasef\ew Generation Computing:365—-385, 1991.

[10] T. Janhunen and I. Nientel Gnt - a solver for disjunctive logic programs. In
Proceedings of LPNMR;LNAI 2923, pages 331-335. Springer, 2004.

[11] Y. Lierler. Disjunctive Answer Set Programming via Satisfiability. Rro-
ceedings of LPNMR’Q3.NAI 3662, pages 447-451. Springer, 2005.

[12] F. Lin and Y. Zhao. ASSAT: computing answer sets of a logic pnogby
SAT solvers.Atrtificial Intelligence 157(1-2):115-137, 2004.

[13] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malihaff:
Engineering an Efficient SAT Solver. IRAroceedings of DAC 20Q0Pbages
530-535, Las Vegas, NV, USA, June 2001. ACM.

[14] I. Niemek and P. Simons. Smodels — An Implementation of the Stable Model
and Well-founded Semantics for Normal Logic ProgramsPioceedings of
LPNMR’97 LNAI 1265, pages 420-429, Dagstuhl, Germany, 1997. Springer.

[15] I. Niemeh, P. Simons, and T. Soininen. Stable Model Semantics of Weight
Constraint Rules. IRProceedings of LPNMR'99)LNAI 1730, 1999. Springer.

[16] N. Pelov, M. Denecker, and M. Bruynooghe. Well-founded &table Se-
mantics of Logic Programs with Aggregatd®LP, 7(3):301-353, 2007.

[17] P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Probfeéom-
putational Intelligence9:268-299, 1993.

[18] F. Ricca, W. Faber, and N. Leone. A Backjumping Technique fsjuDctive
Logic ProgrammingAl Communicationsl19(2):155-172, 2006.

[19] P. Simons, I. Niemd, and T. Soininen. Extending and Implementing the
Stable Model Semantic#rtificial Intelligence 138:181-234, June 2002.

[20] T. C. Son and E. Pontelli. A Constructive Semantic Characterizatiédwgof
gregates in ASPTPLP, 7:355-375, May 2007.

[21] J. Ward and J. S. Schlipf. Answer Set Programming with Clauseniregrin
Proceedings of LPNMR;T.NAI 2923, pages 302—-313. Springer, Jan. 2004.

15

