
Look-back Techniques for ASP Programs
with Aggregates

Wolfgang Faber1, Nicola Leone1, Marco Maratea1,2, and Francesco Ricca1

1 Department of Mathematics, University of Calabria, 87036 Rende (CS), Italy
{faber,leone,maratea,ricca}@mat.unical.it

2 DIST, University of Genova, 16145 Genova, Italy
marco@dist.unige.it

Abstract

One of the most significant language extensions to Answer SetProgram-
ming (ASP) has been the introduction of aggregates. A significant amount
of theoretical and practical work on aggregates in ASP has been published
in recent years. In spite of these developments, aggregatesare treated in a
quite straightforward and ad-hoc way in most ASP systems. For the system
DLV, several specialized techniques for aggregates have been described in
[6], however still leaving a lot of room for improvement.

In this paper, we build upon work on look-back optimization techniques
done recently for DLV, and extend its reason calculus for backjumping to
include reasons from aggregates. Furthermore, we describehow these rea-
sons can be used in order to tune look-back heuristic counters. We present a
preliminary experimental analysis, including also other state-of-the-art ASP
systems, showing that our approach is promising.

1 Introduction

Answer Set Programming (ASP) [9] has become a popular logic programming
framework during the last decade, the reason being mostly its intuitive declarative
reading, a mathematically precise expressivity, and last but not least the availability
of efficient systems. One of the most important extensions of the language of
ASP has been the introduction of aggregates. Aggregates significantly enhance the
language of ASP, allowing for natural and concise modelling of many problems. A
lot of work has been done both theoretically (mostly for determining the semantics
of aggregates that occur in recursion) [16, 20, 5] and practically, for endowing
systems with a selection of aggregate functions [19, 2, 6, 8].

However, work on optimizing system performance with respect to aggregates
is still sparse, and current implementations use more or less ad-hoc techniques. In
this work, we report on improvements in this field. In particular, we build upona
technique for backjumping, which had been developed in the setting of the solver
DLV in [18]. As a main contribution, we describe how thereason calculusde-
fined in [18] can be extended for keeping track of the reasons for several types of
aggregates supported in DLV. The information collected in this way can then be
exploited directly for backjumping, using the original method described in [18].

Proceedings of the 15th International RCRA workshop (RCRA 2008):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Udine, Italy, 12–13 December 2008

Importantly, reasons for aggregates can also be exploited for look-back heuris-
tic. Indeed, we show how the look-back heuristics presented in [4] can be extended
to the aggregate case. For this task, a key issue is the initialization of heuristic
values: since look-back heuristics use information of the computation done so far,
it would be completely uninformed at the beginning of the computation, as no in-
formation can be looked back on. In order to tackle this issue, we consideran
aggregate-free program, which corresponds to the given program with aggregates,
and use standard techniques for initializing the heuristic values. Importantly,in
our technique we make sure to not materialize this aggregate-free program,but
use the knowledge about its structure for computing the initialization values. This
method is exact in the aggregate-stratified case, in the sense that the aggregate-free
program is equivalent to the original program with aggregates. While the program
is in general not equivalent to the original one in the aggregate-unstratified case,
it can still be used for the purpose of a heuristics, as it will still be a reasonable
approximation.

We have implemented the proposed techniques for the aggregate-stratified set-
ting, and report on a performance evaluation of the obtained prototype on selected
benchmarks, in which we could observe performance benefits for the system rely-
ing on our optimization techniques.

2 Answer Set Programming with Aggregates

2.1 Syntax

We assume that the reader is familiar with standard logic programming; we refer
to the respective constructs asstandard atoms, standard literals, standard rules,
andstandard programs. Two literals are said to be complementary if they are of
the formp andnot p for some atomp. Given a literalL, ¬.L denotes its com-
plementary literal. Accordingly, given a setA of literals, ¬.A denotes the set
{¬.L | L ∈ A}. For further background, see [1, 9].

Set Terms. A DLPA set termis either a symbolic set or a ground set. Asymbolic
setis a pair{Vars :conj}, whereVars is a list of variables andconj is a conjunc-
tion of standard atoms.1 A ground setis a set of pairs of the form〈t :conj 〉, where
t is a list of constants andconj is a ground conjunction of standard atoms.

Aggregate Functions. An aggregate functionis of the formf(S), whereS is a
set term, andf is anaggregate function symbol. Intuitively, an aggregate function
can be thought of as a (possibly partial) function mapping multisets of constants to
a constant.

1Intuitively, a symbolic set{X : a(X, Y), p(Y)} stands for the set ofX-values making
a(X, Y), p(Y) true, i.e.,{X |∃Y s.t . a(X, Y), p(Y) is true}.

2

Example 1. In the examples, we adopt the syntax of DLV to denote aggregates.
Aggregate functions currently supported by theDLV system are:#count (number
of terms),#sum (sum of non-negative integers),#min (minimum term),#max

(maximum term)2.

Aggregate Literals. An aggregate atomis f(S) ≺ T , wheref(S) is an aggre-
gate function,≺∈ {=, <, ≤, >,≥} is a predefined comparison operator, andT is
a term (variable or constant) referred to as guard.

Example 2. The following aggregate atoms are inDLV notation, where the latter
contains a ground set and could be a ground instance of the former:

#max{Z : r(Z), a(Z, V)} > Y #max{〈2 : r(2), a(2, k)〉, 〈2 : r(2), a(2, c)〉} > 1

An atomis either a standard atom or an aggregate atom. Aliteral L is an atom
A or an atomA preceded by the default negation symbolnot; if A is an aggregate
atom,L is anaggregate literal.

DLPA Programs. A DLPA rule r is a construct

a1 v · · · v an :- b1, . . . , bk, not bk+1, . . . , not bm.

wherea1, · · · , an are standard atoms,b1, · · · , bm are atoms, andn ≥ 1, m ≥
k ≥ 0. The disjunctiona1 v · · · v an is referred to as theheadof r while the
conjunctionb1, ..., bk, not bk+1, ...,not bm is thebodyof r. We denote the set
of head atoms byH(r), and the set{b1, ..., bk, not bk+1, ...,not bm} of the body
literals byB(r). B+(r) andB−(r) denote, respectively, the set of positive and
negative literals inB(r). Note that this syntax does not explicitly allow integrity
constraints (rules without head atoms). They can, however, be simulated inthe
usual way by using a new symbol and negation.

A DLPA program is a set of DLPA rules. In the sequel, we will often drop
DLPA, when it is clear from the context. Aglobalvariable of a ruler appears in a
standard atom ofr (possibly also in other atoms); all other variables arelocal.

Safety. A rule r is safeif the following conditions hold: (i) each global variable
of r appears in a positive standard literal in the body ofr; (ii) each local variable
of r appearing in a symbolic set{Vars : conj} appears in an atom ofconj ; (iii)
each guard of an aggregate atom ofr is a constant or a global variable. A program
P is safe if allr ∈ P are safe. In the following we assume that programs are safe.

2The first two aggregates roughly correspond, respectively, to the cardinality and weight con-
straint literals of Smodels.#min and#max are undefined for empty set.

3

Stratification. A DLPA programP is aggregate-stratifiedif there exists a func-
tion || ||, calledlevel mapping, from the set of (standard) predicates ofP to ordi-
nals, such that for each paira andb of standard predicates, occurring in the head
and body of a ruler ∈ P, respectively: (i) ifb appears in an aggregate atom, then
||b|| < ||a||, and (ii) if b occurs in a standard atom, then||b|| ≤ ||a||.

Example 3. Consider the program consisting of a set of facts for predicatesa and
b, plus the following two rules:

q(X) :- p(X), #count{Y : a(Y,X), b(X)} ≤ 2.
p(X) :- q(X), b(X).

The program is aggregate-stratified, as the level mapping||a|| = ||b|| = 1, ||p|| =
||q|| = 2 satisfies the required conditions. If we add the ruleb(X):- p(X), then
no such level-mapping exists and the program becomes aggregate-unstratified.

Intuitively, aggregate-stratification forbids recursion through aggregates. While
the semantics of aggregate-stratified programs is more or less agreed upon, dif-
ferent and disagreeing semantics for aggregate-unstratified programshave been
defined in the past, cf. [16, 20, 5]. In this work, we will consider only aggregate-
stratified programs, but all considerations should apply also to aggregate-unstratified
programs under any of the proposed semantics.

2.2 Answer Set Semantics

Universe and Base. Given a DLPA programP, let UP denote the set of con-
stants appearing inP, andBP be the set of standard atoms constructible from the
(standard) predicates ofP with constants inUP . Given a setX, let 2X denote the
set of all multisets over elements fromX. Without loss of generality, we assume
that aggregate functions map toI (the set of integers).

Example 4. #count is defined over2
UP, #sum over 2

N
, #min and #max are

defined over2
N
− {∅}.

Instantiation. A substitutionis a mapping from a set of variables toUP . A
substitution from the set of global variables of a ruler (to UP) is aglobal substi-
tution for r; a substitution from the set of local variables of a symbolic setS (to
UP) is a local substitution forS. Given a symbolic set without global variables
S = {Vars : conj}, the instantiation ofS is the following ground set of pairs
inst(S): {〈γ(Vars) : γ(conj)〉 | γ is a local substitution forS}.3

A ground instanceof a ruler is obtained in two steps: (1) a global substitution
σ for r is first applied overr; (2) every symbolic setS in σ(r) is replaced by its
instantiationinst(S). The instantiationGround(P) of a programP is the set of
all possible instances of the rules ofP.

3Given a substitutionσ and a DLPA objectObj (rule, set, etc.), we denote byσ(Obj) the object
obtained by replacing each variableX in Obj by σ(X).

4

Interpretations. An interpretationfor a DLPA programP is a consistent set of
standard ground literals, that isI ⊆ (BP ∪ ¬.BP) such thatI ∩ ¬.I = ∅. A
standard ground literalL is true (resp. false) w.r.tI if L ∈ I (resp.L ∈ ¬.I). If
a standard ground literal is neither true nor false w.r.tI then it is undefined w.r.t
I. We denote byI+ (resp.I−) the set of all atoms occurring in standard positive
(resp. negative) literals inI. We denote bȳI the set of undefined atoms w.r.t.I (i.e.
BP \ I+ ∪ I−). An interpretationI is total if Ī is empty (i.e.,I+ ∪¬.I− = BP),
otherwiseI is partial.

An interpretation also provides a meaning for aggregate literals. Their truth
value is first defined for total interpretations, and then generalized to partial ones.

Let I be a total interpretation. A standard ground conjunction is true (resp.
false) w.r.tI if all (resp. any of) its literals are true (resp. false). The meaning
of a set, an aggregate function, and an aggregate atom under an interpretation, is
a multiset, a value, and a truth-value, respectively. Letf(S) be a an aggregate
function. The valuationI(S) of S w.r.t. I is the multiset of the first constant of the
elements inS whose conjunction is true w.r.t.I. More precisely, letI(S) denote
the multiset[t1 | 〈t1, ..., tn : conj 〉 ∈ S∧ conj is true w.r.t. I]. The valuation
I(f(S)) of an aggregate functionf(S) w.r.t. I is the result of the application off
on I(S). If the multisetI(S) is not in the domain off , I(f(S)) = ⊥ (where⊥ is
a fixed symbol not occurring inP).

An instantiated aggregate atomA of the formf(S) ≺ k is true w.r.t.I if: (i)
I(f(S)) 6= ⊥, and, (ii)I(f(S)) ≺ k holds; otherwise,A is false. An instantiated
aggregate literalnotA = notf(S) ≺ k is true w.r.t.I if (i) I(f(S)) 6= ⊥, and, (ii)
I(f(S)) ≺ k does not hold; otherwise,A is false.

If I is apartial interpretation, an aggregate literalA is true (resp. false) w.r.t.I
if it is true (resp. false) w.r.t.each totalinterpretationJ extendingI (i.e.,∀ J s.t.
I ⊆ J , A is true (resp. false) w.r.t.J); otherwise it is undefined.

Example 5. Consider the atomA = #sum{〈1 :p(2, 1)〉, 〈2 :p(2, 2)〉} > 1. LetS
be the ground set inA. For the interpretationI = {p(2, 2)}, each extending total
interpretation contains eitherp(2, 1) or notp(2, 1). Therefore, eitherI(S) = [2]
or I(S) = [1, 2] and the application of#sum yields either2 > 1 or 3 > 1, hence
A is true w.r.t.I.

Remark 1. Our definitions of interpretation and truth values preserve “knowledge
monotonicity”. If an interpretationJ extendsI (i.e., I ⊆ J), then each literal
which is true w.r.t.I is true w.r.t.J , and each literal which is false w.r.t.I is false
w.r.t. J as well.

Minimal Models. Given an interpretationI, a ruler is satisfied w.r.t.I if some
head atom is true w.r.t.I whenever all body literals are true w.r.t.I. A total inter-
pretationM is amodelof a DLPA programP if all r ∈ Ground(P) are satisfied
w.r.t. M . A modelM for P is (subset) minimal if no modelN for P exists such
thatN+ ⊂ M+. Note that, under these definitions, the wordinterpretationrefers
to a possibly partial interpretation, while amodelis always a total interpretation.

5

Answer Sets. We now recall the generalization of the Gelfond-Lifschitz trans-
formation and answer sets for DLPA programs from [5]: Given a ground DLPA

programP and a total interpretationI, letPI denote the transformed program ob-
tained fromP by deleting all rules in which a body literal is false w.r.t.I. I is an
answer set of a programP if it is a minimal model ofGround(P)I .

Example 6. Consider interpretationI1 = {p(a)}, I2 = {notp(a)} and two pro-
gramsP1 = {p(a):-#count{X : p(X)} > 0.} andP2 = {p(a):-#count{X : p(X)}

< 1.}. Ground(P1) = {p(a):-#count{〈a : p(a)〉} > 0.} andGround(P1)
I1 = Ground(P1),

Ground(P1)
I2 = ∅. Furthermore,Ground(P2) = {p(a):-#count{〈a : p(a)〉} < 1.},

and Ground(P2)
I1 = ∅, Ground(P2)

I2 = Ground(P2) hold. I2 is the only answer
set ofP1 (sinceI1 is not a minimal model ofGround(P1)

I1), whileP2 admits no
answer set (I1 is not a minimal model ofGround(P2)

I1 , andI2 is not a model of
Ground(P2) = Ground(P2)

I2).

Note that any answer setA of P is also a model ofP becauseGround(P)A ⊆
Ground(P), and rules inGround(P) − Ground(P)A are satisfied w.r.t.A.

3 Backjumping and Reason Calculus inDLV

DLV is the state-of-the-artdisjunctiveASP system. DLV relies on backtracking
search similar to the DPLL procedure for SAT solving (most other competitiveASP
systems exploit similar techniques). Basically, starting from the empty (partial)
interpretation, the solver repeatedly assumes truth-values for atoms (chosen ac-
cording to an heuristic), subsequently computing their deterministic consequences
(propagation). This is done until either an answer set is found or an inconsis-
tency is detected. In the latter case, (chronological) backtracking occurs. Since
the last choice does not necessarily influence the inconsistency, the procedure may
perform a lot of useless computations. In [18], DLV has been enhanced by back-
jumping [7, 17], which allows for going back to a choice which is relevant for the
found inconsistency.4 A crucial point is how relevance for an inconsistency can be
determined. In [18], the necessary information for deciding relevance isrecorded
by means of a reason calculus, which collects information about the choices(“rea-
sons”) whose truth-values have caused truth-values of other deterministically de-
rived atoms.

In practice, once an atom has been assigned a truth-value during the compu-
tation, we can associate a reason to it. For instance, given a rulea:- b, c,not d.,
if b andc are true andd is false in the current partial interpretation, thena will
be derived as true. In this case,a is true becauseb andc are true andd is false.
Therefore, the reasons fora will consist of the reasons forb, c, andd. Chosen
literals are seen as their own reason. So each literall derived during the propaga-
tion has an associated set of positive integersR(l) representing the reasons forl,
which contains essentially the recursion levels of the choices which entaill. In the

4For more details, see [3] for the basic DLV algorithm and [18] for backjumping.

6

following, we will describe the inference rules needed for correctly implementing
aggregates [19, 2], and we present the associated extension of the reason calculus
which allows for dealing with aggregates.

4 Reason Calculus for Aggregates

We next report the reason calculus for each aggregate supported byDLV. Here-
after, a partial interpretation (here a set of literals)I is assumed to be given.

Consider a pair〈t : conj〉 wheret is a sequence of terms andconj a con-
junction of literals. We denote byCconj (resp. Sconj) the reason forconj to
be false (resp. true) w.r.t.I. In particular,Cconj is the reason of a false literal
in conj5, while Sconj =

⋃

l∈conj R(l), i.e. all reasons for the literals inconj.
Moreover, letA = {〈t1 : conj1〉, . . . , 〈tn : conjn〉} be a set term, defineCA =
⋃

〈t:conj〉∈A∧conj /∈I Cconj andSA =
⋃

〈t:conj〉∈A∧conj∈I Sconj , where a true (resp.
false) conjunction w.r.t. interpretationI is denoted byconj ∈ I (resp.conj /∈ I).
Intuitively, CA represents the reasons for false conjunctions inA, while SA repre-
sents the reason for true conjunctions inA.

In the following, each propagation rule and the corresponding reason calcu-
lus are detailed. Without loss of generality, we focus on rulesh : −f(A)Θk,
Θ ∈ {<, >}, since the calculus can easily be extended to the general case. More
in detail, we consider two different scenarios depending on whether the propaga-
tion proceeds from literals inA to aggregate literalsf(A)Θk (forward inference)
or the other-way round (backward inference). Basically, in the first case we derive
the truth/falsity of the aggregate literalf(A)Θk from the truth/falsity of some con-
junction occurring inA; whereas, in the second case, given a rule containing an
aggregate atom which is already known to be true or false w.r.t. the currentinter-
pretation,6 we infer some literals occurring in the conjunctions inA to be true/false.

4.1 Forward Inference

This kind of propagation rules apply when it is possible to derive an aggregate
literal f(A)Θk to be true or false because some conjunction inA is true or false
w.r.t. I. As an example consider the program:

a(1). a(2). h : −#count{〈1 : a(1)〉, 〈1 : a(2)〉} < 1.

Since botha(1) anda(2) are facts, they are first assumed to be true; then, since
the actual count for the aggregate is 2, the aggregate literal is inferred tobe false
by forward inference. In the following, we report in a separate paragraph both

5Since a satisfied conjunction can have several “satisfying literals”, the literal should be chosen
as the reason that allows for the “longest jump,” as argued in [18].

6This can happen in our setting as a consequence of the application of eithercontraposition for
true heador contraposition for false headpropagation rules, see [18].

7

propagation rules and corresponding reason calculus for the aggregates supported
by DLV; #max{A}Θk is symmetric to#min{A}Θk and is not reported.

#count{A} < k (resp. #count{A} > k). Suppose that there exists7 a set
A′ ⊆ A s.t. for each〈t : conj〉 ∈ A′,8 conj is true (resp. false) inI and|A′| ≥ k
(resp.|A′| ≥ |A| − k), then#count{A} < k (resp.#count{A} > k) is inferred
to be false and its reasons are set toSA′ (resp.CA′). Conversely, suppose that there
exists a setA′ ⊆ A s.t. for each〈t : conj〉 ∈ A′, conj is false (resp. true) inI
and|A′| > |A| − k (resp. |A′| > k), then we infer that#count{A} < k (resp.
#count{A} > k) is true and we set its reason toCA′ (resp.SA′).

#min{A} < k (resp. #min{A} > k). Let A′ be the set of all pairs〈v, t :
conj〉 ∈ A s.t. v < k (resp.v ≤ k). If for each〈v, t : conj〉 ∈ A′, conj is false
in I, then#min{A} < k is derived to be false (resp.#min{A} > k derived to
be true) and we set its reasons toSconjm

. Conversely, suppose there exists a pair
〈v, t : conj〉 ∈ A s.t. conj is true inI andv < k (resp.v ≤ k), then we infer that
#min{A} < k is true (resp.#min{A} > k is false) and set its reason toSconj .

#sum{A} < k (resp.#sum{A} > k). Suppose that there exists a setA′ ⊆ A s.t.
for each〈v, t : conj〉 ∈ A′, conj is true (resp. false) inI andΣ{v|〈v,t:conj〉∈A′}v ≥
k (resp.Σ{v|〈v,t:conj〉∈A}v − Σ{v|〈v,t:conj〉∈A′}v ≤ k), then#sum{A} < k (resp.
#sum{A} > k) is false and we set its reason toSA′ (resp. CA′). Conversely,
suppose that there exists a setA′ ⊆ A s.t. for each〈v, t : conj〉 ∈ A′, conj
is false (resp. true) inI andΣ{v|〈v,t:conj〉∈A}v − Σ{v|〈v,t:conj〉∈A′}v < k (resp.
Σ{v|〈v,t:conj〉∈A′}v > k), then#sum{A} < k (resp.#sum{A} > k) is true and its
reason isCA′ (resp.SA′).

4.2 Backward Inference

This kind of propagation rules apply when an aggregate literalf(A)Θk, Θ ∈ {<
, >} has been derived true (or false), and there isa unique way9 to satisfy it by
inferring that some literals belonging to the conjunctions inA is true or false. For
example, suppose thatI is empty and consider the program:

:- not h. h : −#count{〈1 : a〉, 〈1 : b〉} > 1.

During propagation we first inferh to be true for satisfying the constraint,
and then, in order to satisfy the rule, also the aggregate literal is inferred tobe

7As far as the implementation is concerned, in case there are several different sets with this
property, a safe choice is to consider their union. Another, less expensive, solution is to buildA′ by
iterating over the elements ofA until the condition is met.

8Hereafter,〈v, t : conj〉 is a syntactic shorthand for〈v, t1, · · · , tn〉, wherev is a constant andt
is the list of constantst1, · · · , tn, n ≥ 0.

9Since the propagation process must bedeterministic.

8

true (independently by its aggregate set). At this point, backward propagation can
happen, since the unique way to satisfy the aggregate literal is to infer botha
andb to be true. Thus, backward propagation happens when an aggregate literal
f(A)Θk has been derived true (or false) in the current interpretation, and there
is only one wayto satisfy it bydeterministicallysetting someconji (s.t. 〈ti :
conji〉 ∈ A) true (or false) w.r.tI. For doing so, an implementation detail of
DLV is exploited, which internally replaces conjunctions in aggregates by freshly
introduced auxiliary atoms, along with a rule defining the auxiliary atom by means
of the conjunction. So inside DLV,conji will always be an atom, which can simply
be set to true or false, and its defining rule will then act as a constraint eventually
enforcing truth or falsity of the conjunctionconji. As far as the reason calculus
is concerned, literals are inferred to be true or false by this operation because both
the aggregate literal is true/false and some conjunctions inA (being either true or
false) made the process deterministic; thus, the reason for each literalli inferred by
backward inference is set toR(li) = R(f(A)Θk) ∪ CA ∪ SA.

The following paragraphs report sufficient conditions for applying backward
inference in the case of the aggregates supported by DLV. Since conditions for
f(A) > k to be true (resp. false) basically coincides with the ones off(A) < k+1
to be false (resp. true), only one of the two cases is reported for each aggregate.
Moreover, from now on, we assume that, whenever backward inference requires to
derive something, this action can be done deterministically (if this is not possible
then backward inference is not performed).

#count{A} < k. Let TA be the setTA = {〈ti : conji〉 ∈ A s.t. conji is true
w.r.t. I}, andFA be the setFA = {〈ti : conji〉 ∈ A s.t. conji is false w.r.t.I},
and suppose#count{A} < k is true w.r.t.I and|TA| = k − 1, then all undefined
conjunctions inA are made false. Conversely, suppose#count{A} < k is false
w.r.t. I and|A| − |FA| = k, then all undefined conjunctions inA are made true.

#min{A} < k. Suppose that,#min{A} < k is true w.r.t. I, and there is only
one〈v, t : conj〉 ∈ A such thatv < k andconj is neither true or false w.r.t.I;
suppose also that, all the remaining〈vi, ti : conji〉 ∈ A s.t. vi < k are such
that conji is false w.r.t. I, then conj is made true. Conversely, suppose that
#min{A} < k is false w.r.t. I and, there is no〈v, t : conj〉 ∈ A such that
v < k andconj is true w.r.t. I. In addition, suppose that either(i) there exist
〈v′, t′ : conj′〉 ∈ A s.t. v′ > k andconj′ is true w.r.t.I or (ii) there is only one
〈v′′, t′′ : conj′′〉 ∈ A s.t. v′′ > k with conj′′ undefined w.r.t.I. Then all theconji

such that〈vi, ti : conji〉 ∈ A andvi < k are made to be false, and, if case (ii)
holds, alsoconj′′ is made true w.r.t.I.

#max{A} < k. Suppose that,#max{A} < k is false w.r.t. I, and there is
only one〈v, t : conj〉 ∈ A such thatv > k and conj is neither true or false
w.r.t. I; suppose also that, all the remaining〈vi, ti : conji〉 ∈ A s.t. vi > k

9

are such thatconji is false w.r.t.I, thenconj is made true. Conversely, suppose
that #max{A} < k is true w.r.t. I and, there is no〈v, t : conj〉 ∈ A such that
v > k andconj is true w.r.t. I. In addition, suppose that either(i) there exist
〈v′, t′ : conj′〉 ∈ A s.t. v′ < k andconj′ is true w.r.t.I or (ii) there is only one
〈v′′, t′′ : conj′′〉 ∈ A s.t. v′′ < k with conj′′ undefined w.r.t.I. Then all theconji

such that〈vi, ti : conji〉 ∈ A andvi < k are made to be false, and, in if case (ii)
holds, alsoconj′′ is made true w.r.t.I.

#sum{A} < k. Let us denote byS(X) the sumS(X) =
∑

〈vi,ti:conji〉∈X vi, and
suppose that#sum{A} < k is true w.r.t.I andS(TA) = k − 1, then all undefined
atoms inA are made false. Conversely, suppose that#sum{A} < k is false inI
andS(A) − S(FA) = k, then all undefined atoms inA are made true.

5 Look-back Heuristics in the Presence of Aggregates

Look-back heuristics, which have been originally exploited in SAT solverslike
Chaff [13] (where the heuristic is called VSIDS), have also been considered for
DLV in [4], in conjunction with backjumping, leading to positive results.

A key factor of this type of heuristic is the initialization of the weights of the
literals [4], to be updated with the reasons calculus during the search. A common
practice is to initialize those values with the number of occurrences in the input
(ground) programs. But, if there are aggregates in the program, we would like to
take them into account in order to guide the search. The idea is thus to implicitly
consider the equivalent10 standard program for an aggregate and count also these
occurrences for the heuristic. It is worth noting that this equivalent program does
not have to be “materialized” in memory. As before, we consider only rules of
the formh : −f(A)Θk for simplicity. We denote byli1, . . . , lim the literals be-
longing to eachconji ∈ A, (m > 0). Table 1 summarizes the formulas employed
for computing literal occurrences. Note that equivalent programs in the case of
#sum are quite involved, rendering the computation of the exact values fairly in-
efficient (many binomial coefficients). Therefore we decided to approximate the
corresponding heuristic value, replacing#sum{A} by #count{A∗} whereA∗

containsvi different elements, one for each〈vi, ti : conji〉 ∈ A.
As an example, consider a rule of the formh : −#min{A} < k. The equiva-

lent standard program contains a rule of the typeh : −conji, for eachvi, 1 ≤ i ≤ n
s.t.vi < k. In this way,h becomes true if one of theconji havingvi < k becomes
true, i.e. if the minimum computed by the aggregate is less thank in current answer
set. Thus, the number of occurrences ofh in the corresponding standard program
areocc(h) = |{vi : 〈vi, ti : conji〉 ∈ A, vi < k}|, while for each literalliz, i.e. the
z-th literal of conji, occ(liz) = 1 if vi < k, otherwiseocc(liz) = 0.

10Equivalence in general holds only in a stratified setting, which however can serve as an approx-
imation also in non-recursive settings.

10

#count{A} < k #min{A} < k #max{A} < k #sum{A} < k

occ(h)

{

∑k−1

i=0

(

|A|
i

)

k ≤ |A|
1 else

|{vi | 〈vi, ti : conji〉 ∈ A, vi < k}| 1

{

∑k−1

i=0

(

|A∗|
i

)

k ≤ |A∗|
1 else

occ(liz) 0

{

1 vi < k
0 else

0 0

occ(not liz)

{

∑k−1

i=0

(

|A|
i

)

k ≤ |A|
1 else

0

{

1 vi ≥ k
0 else

{

∑k−1

i=0

(

|A∗|
i

)

k ≤ |A∗|
1 else

#count{A} > k #min{A} > k #max{A} > k #sum{A} > k

occ(h)

{

∑k−1

i=0

(

|A|
i

)

k < |A|
1 else

1 |{vi | 〈vi, ti : conji〉 ∈ A, vi > k}|

{

∑k−1

i=0

(

|A∗|
i

)

k < |A∗|
1 else

occ(liz)

{

∑k−1

i=0

(

|A|
i

)

k < |A|
1 else

0

{

1 vi > k
0 else

{

∑k−1

i=0

(

|A∗|
i

)

k < |A∗|
1 else

occ(not liz) 0

{

1 vi ≤ k
0 else

0 0

Table 1: Occurrence formulas for literals involved in aggregates.

11

6 Experimental analysis

We have performed an experimental analysis on benchmarks with aggregates. In
particular, we have considered some domains of the last ASP Competition11 be-
longing to the MGS class, together with other benchmarks reported in [2]. For
the domains of the ASP Competition, we have downloaded the benchmarks at
“http://asparagus.cs.uni-potsdam.de/contest/downloads/benchmarks-mgs.tgz” and
selected the logic programs with aggregates.

All the experiments were performed on a 3GHz PentiumIV equipped with 1GB
of RAM, 2MB of level 2 cache running Debian GNU/Linux. Time measurements
have been done using thetime command shipped with the system, counting total
CPU time for the respective process. We report the results in terms of execution
time for finding one answer set, if any, within20 minutes. Results are summarized
in Table 2, where the first column reports the domain name, the second column the
total number of instances considered (in the given domain), the third and fourth
columns report the results for the standard version of DLV ver. of 2007-10-11 in
the standard settings and the new system DLVBJA featuring both backjumping and
look-back heuristics, and the remaining columns report the results forCLASP [8]
ver. 1.0.4,CMODELS [11] ver. 3.75,SMODELS [14] ver. 2.31 andSMODELS-
CC [21] ver 1.08, which useLPARSE12 for grounding. The results for the systems
are presented as the mean CPU time of solved instances, along with the number of
instances solved within the time limit (in parentheses). RegardingSMODELS-CC,
two results are missing (i.e., there is a “no enc.” in the Table) because it can not
deal with weight constraint rules.

Domain #I DLV DLV BJA CLASP CMODELS SMODELS SMODELS-CC

BoundedSpanningTree8 0.13 (8) 0.04 (8) 6.01 (8) 5.69 (8)101.47 (5) 343.35 (8)
TowerOfHanoi 8 1.16 (8) 1.1 (8)32.84 (8)117.32 (7)259.82 (8) 154.74 (7)
WeightedSpanningTree8 0.04 (8) 0.02 (8) 2.16 (8) 2.31 (8) 28.51 (6) no enc.
WeightedLatinSquares8 542.23 (6)140.83 (7) 0.03 (8) 0.34 (8) 326.2 (8) no enc.
TimeTabling 9 4.49 (9) 0.34 (9) 1.15(9) 0.84 (9) 5.12 (3) 96.39 (9)

Table 2: Average execution times (s) (and number of solved instances).

It is useful to know what kinds of aggregates each domain involves: the third
and fourth domains involve “#count” and “#sum”, the first and last domains
involve “#count”, while the second domain contains only the “#max” aggregate.

We can see that the first three domains presented are easily solved by bothDLV
and DLVBJA, slightly better by the enhanced system, while the remaining solvers
show higher mean CPU time and/or solve less instances. The last two domains
further show the potential of the enhanced system w.r.t. DLV, given that itis able
to solve more instances (WeightedLatinSquaresdomain) in considerably shorter
time (DLVBJA is on average15 times faster onTimeTabling, where the systems

11http://asparagus.cs.uni-potsdam.de/contest/.
12http://www.tcs.hut.fi/Software/lparse.

12

solve the same instances, and significantly faster onWeightedLatinSquares, solv-
ing also more instances): interestingly, if compared to the remaining systems, this
gain leads DLVBJA to be the best performing solver in 4 domains out of 5 and it
performs well in particular in theTimeTablingdomain. Also in theWeightedLatin-
Squares, DLVBJA has a clear advantage over DLV. However, DLVBJA is still
inferior with respect toCLASP, CMODELS andSMODELS.

We have conducted further investigations regarding the differences in perfor-
mance in the particular domainWeightedLatinSquares. One explanation could be
the absence of learning in DLVBJA, but also other factors may be important, as
discussed next. As a matter of fact, two main parameters affecting VSIDS behavior
are the “importance” of literals in reasons (called “reward”, i.e., how much the re-
lated counters for such literals is to be increased) and the constant factorby which
counters are periodically divided (called “aging”) in order to possibly focus the
search on the last literals involved in reasons (see [4] for details on VSIDS heuris-
tics). In the experiments we have presented so far, these parameters were set to1,
and2, respectively, i.e., to the original values used by Chaff. But obviously,these
might not be the best values for some domains, for example sometimes one would
prefer higher values for these parameters in order to let the heuristic value updates
take effect earlier in the search. We have informally conducted some experiments
with different values for reward and aging. Interestingly, with some of thenew
setting we were able to solve allWeightedLatinSquares, indicating that also these
factors may be an important reason for the comparatively poor performance of
DLV BJA for this domain.

We have also conducted further benchmarks on selected domains, comparing
only DLVBJA and DLV. Of these, we would like to mention as an example the
Seatingbenchmarks from [2]. Here, DLVBJA is able to solve more instances than
DLV, with a mean CPU time of1.24 for DLV BJA and31.46 seconds for DLV.

7 Related Work and Conclusion

Aggregates are an important linguistic enhancement of ASP, and most of the avail-
able systems are already able do deal with them. In particular,SMODELS [14, 15],
CMODELS [11] andCLASP [8] support cardinality and weight constraints, which
correspond to count and sum aggregates, respectively, whileSMODELScc [21] im-
plements only cardinality constraints, and bothGNT [10] andASSAT [12] do not
support aggregates. About solvers based on look-back techniques, aggregates are
considered explicitly for backjumping inSMODELScc (where additional arcs are
added to the implication graph) andCLASP; conversely,CMODELS translates the
original program into a propositional formula that is then evaluated by a SATsolver
(possibly exploiting backjumping). Notably, none of the existing systemsdirectly
exploits aggegates for the computation of heuristics, indeed for all of them the con-
flict analysis works in a similar way as in the case of “normal” programs (i.e., by
exploiting the UIP-based conflict analysis technique borrowed from SAT).

13

In this paper we have described look-back techniques for the evaluationof
aggregates. In particular the main contributions are:(i) an extension of thereason
calculusdefined in [18]; and,(ii) an enhanced version of the heuristic presented in
[4] that explicitly takes into account the presence of aggregates. Moreover, we have
implemented the proposed techniques in a prototype version of the DLV system
and performed a set of benchmarks, which indicate performance benefits of the
enhanced system.

Encouraged by the results of the performance evaluations, we are currently
continuing our work in order to improve the performance of DLVBJA by develop-
ing further optimizations both by enhancing the implementation of the reason cal-
culus, by considering different “equivalent programs”, and, thus,different VSIDS
initializations and by tuning various VSIDS parameters. Additionally, we are also
enlarging both the set of domains on which we conduct the performance evalua-
tion, primarly considering other domains from the ASP Competition, and the set
of systems, by includingPBMODELS13 in the analysis.

Acknowledgements

Supported by M.I.U.R. within projects “Potenziamento e Applicazioni della Pro-
grammazione Logica Disgiuntiva” and “Sistemi basati sulla logica per la rappre-
sentazione di conoscenza: estensioni e tecniche di ottimizzazione.”

References

[1] C. Baral. Knowledge Representation, Reasoning and Declarative Problem
Solving. Cambridge University Press, 2003.

[2] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate Func-
tions in DLV. In Proceedings ASP03, pages 274–288, CEUR Vol-78, 2003.

[3] W. Faber.Enhancing Efficiency and Expressiveness in Answer Set Program-
ming Systems. PhD thesis, Institut f̈ur Informationssysteme, TU Wien, 2002.

[4] W. Faber, N. Leone, M. Maratea, and F. Ricca. Experimenting with Look-
Back Heuristics for Hard ASP Programs. InProceedings of LPNMR 2007,
LNAI) 4483, pages 110–122, 2007. Springer.

[5] W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic
programs: Semantics and complexity. InProceedings of JELIA 2004, LNAI
3229, pages 200–212. Springer, 2004.

[6] W. Faber, G. Pfeifer, N. Leone, T. Dell’Armi, and G. Ielpa. Designand
implementation of aggregate functions in the dlv system.TPLP. in press.

13http://www.cs.uky.edu/ai/pbmodels/.

14

[7] J. Gaschnig.Performance measurement and analysis of certain search algo-
rithms. PhD thesis, C.M. University, Pittsburgh, USA, 1979.

[8] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven an-
swer set solving. Proc. ofIJCAI-07, pp 386–392. Morgan Kaufmann, 2007.

[9] M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs andDis-
junctive Databases.New Generation Computing, 9:365–385, 1991.

[10] T. Janhunen and I. Niemelä. Gnt - a solver for disjunctive logic programs. In
Proceedings of LPNMR-7, LNAI 2923, pages 331–335. Springer, 2004.

[11] Y. Lierler. Disjunctive Answer Set Programming via Satisfiability. InPro-
ceedings of LPNMR’05, LNAI 3662, pages 447–451. Springer, 2005.

[12] F. Lin and Y. Zhao. ASSAT: computing answer sets of a logic program by
SAT solvers.Artificial Intelligence, 157(1–2):115–137, 2004.

[13] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an Efficient SAT Solver. InProceedings of DAC 2001, pages
530–535, Las Vegas, NV, USA, June 2001. ACM.

[14] I. Niemel̈a and P. Simons. Smodels – An Implementation of the Stable Model
and Well-founded Semantics for Normal Logic Programs. InProceedings of
LPNMR’97, LNAI 1265, pages 420–429, Dagstuhl, Germany, 1997. Springer.

[15] I. Niemel̈a, P. Simons, and T. Soininen. Stable Model Semantics of Weight
Constraint Rules. InProceedings of LPNMR’99), LNAI 1730, 1999. Springer.

[16] N. Pelov, M. Denecker, and M. Bruynooghe. Well-founded andStable Se-
mantics of Logic Programs with Aggregates.TPLP, 7(3):301–353, 2007.

[17] P. Prosser. Hybrid Algorithms for the Constraint Satisfaction Problem. Com-
putational Intelligence, 9:268–299, 1993.

[18] F. Ricca, W. Faber, and N. Leone. A Backjumping Technique for Disjunctive
Logic Programming.AI Communications, 19(2):155–172, 2006.

[19] P. Simons, I. Niemelä, and T. Soininen. Extending and Implementing the
Stable Model Semantics.Artificial Intelligence, 138:181–234, June 2002.

[20] T. C. Son and E. Pontelli. A Constructive Semantic Characterization ofAg-
gregates in ASP.TPLP, 7:355–375, May 2007.

[21] J. Ward and J. S. Schlipf. Answer Set Programming with Clause Learning. In
Proceedings of LPNMR-7, LNAI 2923, pages 302–313. Springer, Jan. 2004.

15

