
Preprocessing Techniques for QBFs

Enrico Giunchiglia1, Paolo Marin1, and Massimo Narizzano1

DIST - Università di Genova
Viale Causa 13, 16145 Genova, Italy

name.lastname@unige.it

Abstract

In this paper we present sQueezeBF, an effective preprocessor for
QBFs that combines various techniques for eliminating variables and/or
clauses. In particular sQueezeBF combines (i) variable elimination
by Q-resolution and equality reduction, and (ii) clause simplification
via subsumption and self-subsumption resolution. The experimental
analysis shows that sQueezeBF can produce significant reductions in
the number of clauses and/or variables — up to the point that some
instances are solved directly by sQueezeBF — and that it can sig-
nificantly improve the efficiency of a range of state-of-the-art QBF
solvers — up to the point that some instances cannot be solved with-
out sQueezeBF preprocessing.

1 Introduction

Quantified Boolean Formulas are a powerful extension of the Satisfiability
(SAT) problem in which the variables are universally as well as existen-
tially quantified. Adding the quantification makes QBF a more expressively
compact language with respect to SAT, but this comes with a price: QBF
are believed to be in practice much harder to solve than SAT formulas.
Many different problems can be efficiently encoded as QBF instances, and
recently there has been a great interest and progress in solving such in-
stances efficiently, such as in Verification [1, 2], Planning (Synthesis) [3, 4],
and Reasoning about Knowledge [5].

Preprocessing formulas has been proven to be very effective for solving
SAT instances since it can reduce their size considerably and decrease the
solving time substantially, even taking into account the time required to
perform the preprocessing. Recently two preprocessors have been presented
in the QBF literature. preQuel [6, 7] tries to simplify the formula deriving
as many binary clauses as possible, then it applies binary equality reduction
to eliminate variables and clause subsumption to eliminate clauses. preQuel
iterates these operations until no other simplification is possible, decreasing
substantially the size of the formula. proverbox [8], instead, attempts to
reduce the number of variables by selectively applying expansion on universal
variables and resolution on the existential ones. This approach is similar
to the quantifier expansion presented in Quantor [9] first and in Nenofex
later [10]. It is well known that expansion can increase dramatically the

Proceedings of the 15th International RCRA workshop (RCRA 2008):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Udine, Italy, 12–13 December 2008

size of the formula, but in proverbox only a conveniently selected subset of
universally quantified variables with bounded expansion costs, is expanded.

In this paper we present sQueezeBF, an effective preprocessor for QBFs
that combines various techniques for eliminating variables and/or clauses.
In particular sQueezeBF combines variable elimination by Q-resolution and
equality reduction, and clause simplification via subsumption and self-sub-
sumption resolution. Some of the techniques implemented in sQueezeBF
have been first proposed in SAT (see for example [11], [12]), however their
extension to QBF poses many issues, one for all the variable ordering in the
prefix has to be taken into account during the variable elimination. The
experimental analysis shows that sQueezeBF significantly improves the effi-
ciency of a range of state-of-the-art QBF solvers. In particular sQueezeBF:
(i) reduces the size of the preprocessed formula, (ii) resolves by itself some
instances and (iii) when coupled with a QBF solver, is able to improve the
solver efficiency significantly. On the other side the experimental analysis
also shows that in some cases sQueezeBF is not able to simplify the for-
mula and thus to positively affect the performances of the coupled QBF
solver. Finally, comparing sQueezeBF with preQuel and proverbox we see
that most of the time sQueezeBF outperforms both the preprocessors in
terms of size reduction and number of problem resolved when considering
various state-of-the-art QBF solvers.

This paper is organised as follows. First we review the basics of QBF
satisfiability. Then we discuss the algorithm of sQueezeBF. We end the
paper with the experimental analysis and the conclusions.

2 Basic Definitions

Consider a set P of propositional letters. A variable is an element of P. A
literal is a variable or the negation of a variable. In the following, for any
literal l,

• |l| is the variable occurring in l; and

• l is l if l is a variable, and is |l| otherwise.

A clause C is an n-ary (n ≥ 0) disjunction of literals such that, for
any two distinct disjuncts l, l′ in C, it is not the case that |l| = |l′|. A
propositional formula is a k-ary (k ≥ 0) conjunction of clauses.

A QBF is an expression of the form

Q1z1 . . . QnznΦ (n ≥ 0) (1)

where

• every Qi (1 ≤ i ≤ n) is a quantifier, either existential ∃ or universal ∀,

2

• z1, . . . , zn are distinct variables in P, and

• Φ is a propositional formula in the variables z1, . . . , zn.

In (1), Q1z1 . . . Qnzn is the prefix, Φ is the matrix, and Qi is the bounding
quantifier of zi. Further, we say that a literal l is existential if ∃|l| belongs
to the prefix, and is universal otherwise. In the following, we use true and
false as abbreviations for the empty conjunction and the empty disjunction
respectively.

We define

• the level of a variable zi, to be 1 + the number of expressionsQjzjQj+1zj+1

in the prefix with j ≥ i and Qj 6= Qj+1;

• the level of a literal l, to be the level of |l|;

• the level of the formula (1), to be the level of z1.

If ϕ is a QBF and l is a literal, ϕl is the QBF

1. whose matrix Φ is obtained from the matrix of ϕ by deleting the clauses
C such that l ∈ C, and removing l from the others, and

2. whose prefix is obtained from the prefix of ϕ by deleting each variable
and corresponding bounding quantifier not occurring in Φ.

The semantics of a QBF ϕ can be defined recursively as follows. If the
prefix is empty, then ϕ’s satisfiability is defined according to the truth tables
of propositional logic. If ϕ is ∃xψ (respectively ∀xψ), ϕ is satisfiable if and
only if ϕx or (respectively and) ϕx are satisfiable. If ϕ = Qxψ is a QBF and
l is a literal, ϕl is the QBF obtained from ψ by substituting l with true
and l with false . It is easy to see that if ϕ is a QBF without universal
quantifiers, the problem of deciding the satisfiability of ϕ reduces to SAT.

In (1), a literal l is

• Unit if l is existential, and, for some m ≥ 0,

– a clause (l ∨ l1 ∨ . . . ∨ lm) belongs to Φ, and

– each literal li (1 ≤ i ≤ m) is universal and has a lower level than
l.

• Monotone or pure if

– either l is existential, l does not belong to any clause in Φ, and l
occurs in Φ;

– or l is universal, l does not belong to any clause in Φ, and l occurs
in Φ.

3

0 function sQueezeBF(ϕ)
1 do
2 ϕ’ = ϕ
3 ϕ = Simplify(ϕ)
4 ϕ = EquivalenceCheck(ϕ)
5 ϕ = Q-resolution(ϕ)
6 if ϕ ≡ true return ϕ
7 if ϕ ≡ false return ϕ
8 while ϕ’ 6= ϕ
9 return ϕ

Figure 1: The algorithm of sQueezeBF.

Given a set of clauses S we define |S| (size of S) as the number of literals
contained in S. Finally given a QBF ϕ, a literal l and a set of clauses α,
ϕ(l/α) is the QBF obtained from ϕ by substituting each occurrence of l with
alpha 1.

3 sQueezeBF

In Figure 1 is presented the main algorithm of sQueezeBF. The algorithm
takes in input a QBF, and it returns a simplified QBF, that can either be
empty (true) or contain an empty clause (false formula). It starts saving the
current state of the formula at line 2, and then it applies three operations
sequentially:

• Simplify(line 3) gets in input the formula and simplifies the formula
propagating all the unit and pure literals. Given a formula ϕ and a
literal l unit or pure in ϕ, ϕ is equivalent to ϕl.

• EquivalenceCheck (line 4) first discovers all the equivalences of the
type

l⇔ l1 ◦ l2 ... ln−1 ◦ ln
where ◦ ∈ {∨,∧} and n ≥ 1, or ◦ ∈ {⇔} and n = 2. Notice that if
n = 1 we obtain a binary equivalence. Once the equivalence is found,
then it substitutes every occurrences of l with its definition, if and only
if the substitution does not increase the size of the formula in terms
of literals.

• Q-resolution(line 5) can eliminate the variable by Q-resolution. The
algorithm for each variable z checks if it is possible to eliminate z

1strictly speaking the result is not a QBF. We assume that the resulting expression is
suitably converted to a QBF without introducing additional variables. For instance, each
clause C ∨ l gets substituted by the clauses in {C ∨ C′ : C′ ∈ α}

4

Figure 2: Dependency graph

by Q-resolving all the clauses where z occurs positively with all the
clauses where z occurs negatively. If the formula does not increase in
size then the variable is eliminated.

If the formula is neither satisfiable (line 7) nor unsatisfiable (line 6) then the
algorithm iterates the operations until no further simplification is possible
(line 8).

3.1 Variable Elimination via equivalence checking

The variable elimination via equivalence checking was introduced for SAT
in [12]. It is an algorithm that works in two steps: (i) identification of
definitions and (ii) variable substitution. In the first step EquivalenceCheck
looks for the following set of clauses in the formula:

(l ∨ l2... ∨ ln−1 ∨ ln) ∧ (l ∨ l1) ∧ ... ∧ (l ∨ ln) (2)

(l ∨ l1 ∨ l2) ∧ (l ∨ l1 ∨ l2) ∧ (l ∨ l1 ∨ l2) ∧ (l ∨ l1 ∨ l2) (3)

where in both the formulas (4) and (5) the level of |l| is the lowest among
the level of each |li| occurring in the equivalence. Notice that the set (2)
corresponds to the definition:

l⇔ l1 ◦ l2... ◦ ln−1 ◦ ln where ◦ ∈ {∨,∧} and n ≥ 1 (4)

and the set (3) corresponds to the definition:

l⇔ l1 ⇔ l2 (5)

Once that EquivalenceCheck finds the equivalences, then it substitutes
each variable with its definition in the formula. Notice that after a substi-
tution of a variable z with its definition α in a formula ϕ, the new formula
ϕ(z/α) is not guaranteed to be in CNF, so a conversion step may be neces-
sary. In order to avoid the introduction of new variables with the commonly
used translation techniques, we apply DeMorgan rules. It is well known

5

that DeMorgan rules can increase the size of the resulting QBF. However,
by eliminating redundant literals or clauses in the produced set of clauses,
such increase often does not happen. In the cases in which it does, we dis-
card the changes and substitution does not take place. This ensures that
the formula never increases in size.

Finally, notice that not all the defined variables can be substituted. Take
for example:

ϕ = α ∧ (l1 ⇔ l2 ∨ l4) ∧ (l2 ⇔ l3 ∨ l4) ∧ (l3 ⇔ l1 ∨ l5)
if l1 is eliminated first, then when l3 is substituted in the formula, l1 is rein-
troduced, and this is true no matter which variable is substituted first. This
problem arises since at least a variable occurs in the definitions of the others.
In order to solve the problem of circularity, EquivalenceCheck constructs a
dependency graph where each node represents a defined variable, and each
edge, connecting the defined variables, represents the dependency between
the definitions. So for example, the Figure 2:A represents the dependencies
graph of the example above, where the edge from the node l3 and the node
l1 represents the fact that l1 occurs in the definition of l3. Notice that the
edges have a direction, representing the fact that the pointed node is in the
definition of the non pointed one. In Figure 2:A, l1 occurs in the definition of
l3. After the graph is created then the algorithm looks for circular path and
if any is found then the path is cut eliminating one of the definition. Looking
at Figure 2:A in order to eliminate the circular path the algorithm deletes
one of the three definitions, for example l2 (Figure 2:B). At this point we
can substitute first l3 and then l1 and the formula is simplified eliminating 2
variables. Notice that the order matters, since if we substitute l1 first, then
once l3 is substituted l1 is reintroduced.

3.2 Variable Elimination via Q-resolution

Variable elimination via resolution is a technique used in many state-of-the-
art SAT solvers, first introduced in [13] during the search and also used
in [14] as preprocessor. In QBF variable elimination via Q-resolution has
been first introduced by Quantor [9]: during the search it eliminates the
existential variables with the higher prefix level by Q-resolution.

Given two clauses C1 = {z, l1, ..., ln} and C2 = {z, l′1, ..., l′m} the implied
clause C = {l1, ..., ln, l′1, ..., l′m} is called the resolvent of the two original
clauses by performing resolution on the variable z. We write C = C1 ⊗C2.
We can also define the Q-resolution on set of clauses: given a set of clauses
Sz, meaning that all contain z and a set of clauses Sz (all containing z) we
define the resolvent between set of clauses as:

Sz ⊗ Sz : {Cz ⊗ Cz|Cz ∈ Sz, Cz ∈ Sz} (6)

The elimination of a variable z from a QBF can be computed by pairwise
resolving each clause in Sz with every clause in Sz. The produced resolvent

6

S′ = Sz ⊗Sz replaces the original clauses containing z and z resulting in an
equivalent problem.

As an example of how the algorithm works, take the formula ϕ contain-
ing a variable x and two set of clauses

Sx = {{x ∨ a}, {x ∨ a ∨ c}, {x ∨ d}} and Sx = {{x ∨ a}, {x ∨ b ∨ d}}.

then the resolvent between the two set of clauses is

Sx ⊗ Sx = {{a ∨ b}, {a ∨ b ∨ d}, {a ∨ c ∨ b}, {a ∨ c ∨ b ∨ d}, {b ∨ d}}.

In order to eliminate the variable x from ϕ, all the clauses in Sx ∪ Sx have
to be deleted from ϕ, adding all the clauses in Sx ⊗ Sx and obtaining the
formula ϕ′. Notice that in the example, the size of ϕ′ is greater then the size
of ϕ, since |Sx ∪Sx| = 12, and |Sx⊗Sx| = 14. In order to avoid an increase
in the size of the formula, Q-resolution does not eliminate all the variables,
but only the ones that don’t increase the size. In particular a variable z is
eliminated from a formula ϕ if and only if

|Sz ∪ Sz| ≥ |Sz ⊗ Sz| (7)

Notice that the dimension of the resolvent can not be calculated in advance
since many trivial clauses, that have to be discarded, can be generated during
the Q-resolution process. For this reason the algorithm first calculates the
dimension of the original set of clauses, and then it computes the resolvent,
discarding it if (7) is not satisfied, and the variable is not deleted.

3.3 Clause Elimination via Self/Backward/Forward Subsump-
tion

A clause C1 is said to subsume a clause C2 if the literals contained in C1

are a subset of the literals contained in C2, and abusing with notation we
write that C1 ⊆ C2. A subsumed clause is redundant and can be discarded
without changing the QBF it represents. Since redundant clauses are mem-
ory consuming, and slow down the search process, it is desirable to make a
QBF subsumption free, by detecting and removing the subsumed clauses.

Whenever a new clause is added to the formula, for example as conse-
quence of a variable elimination, sQueezeBF checks all the existing clauses
in the database to see whether they are subsumed. This check is usually
called as backward subsumption [15]. The newly added clause is also checked
against all the existing clauses to see if it is subsumed by any existing clauses.
This check is usually called as forward subsumption [15].

Moreover the subsumption algorithm can be expanded: suppose to have
a clause C1 = α ∨ l and a clause C2 = β ∨ l, where the sub-clause α ⊆ β.
We could say that C2 almost subsumes C1 except for the literal l. Applying

7

resolution on the two clauses we obtain a new clause C = α ∨ β, but since
α subsume β the derived clause becomes C = β, that subsume C2. Thus
after adding C to the database we can delete C2, in essence eliminating one
literal. In this case we say that C2 is self subsumed by C and we call this
technique self-subsuming resolution (see for more details [12]).

Even if eliminating clauses may reduce the size of the formula, the com-
mon perception seems to be that subsumption and removal are expensive,
especially for solvers based on search. However, subsumption removal is
important for solvers or preprocessors based on resolution like for exam-
ple the solver Quantor [9] and the preprocessor NiVER [14]. Resolution
based solvers are usually memory limited, and the resolution operation of-
ten generates large number of clauses that are subsumed by existing ones.
Given a clause C, the naive algorithm for discovering subsumption consists
in comparing C with each clause containing at least one literal occurring
in C. This algorithm can be very expensive especially if the literals in the
clauses are not ordered and/or if the clause database is large. In [9], the
author proposed a signature based algorithm for backward subsumption de-
tection, that significantly reduces the number of checks. For each clause is
attached a signature, which in practice is a number computed with an hash
function based on the literals in the clause. If the clause C1 subsumes the
clause C2, they have the same hash number, i.e. the same signature. It is
not always true that if C1 has the same signature of C2 then C1 subsume
C2 or vice-versa. The efficiency of this algorithm depends from the hashed
function used to compute the signature, i.e. if many clauses have the same
signature then the algorithm converges to the naive one, on the other side,
if we have a unique signature for each clause, then it may blow up in space.
Implementing a good hash function has to be a trade off between efficiency
in time and efficiency in space.

sQueezeBF implements subsumption removal based on the occurrences
of the literals. For each clause we define a counter indicating how many
times the clause is visited, always initialised to zero. When a new clause C
is introduced, then all the occurrences of each literal of C are visited and
the corresponding counter is incremented. If in any time a counter reach
the size of the clause visited, then it subsumes C, and C is not learned
(forward subsumption). On the other hand, if a clause counter reach the
size of C, then C subsumes the one checked. The new clause is learned and
the one subsumed is eliminated (backward subsumption). The following
example explains better the algorithm: suppose that we want to introduce
the following clause C = l1 ∨ l2 ∨ l3, into a database containing 3 clauses :
C1 = l1 ∨ l2, C2 = l3 ∨ l4, C1 = l2 ∨ l3. Starting from l1 we visit C1 and we
increment its counter from 0 to 1, then we check l2 visiting again C1 and
incrementing its counter from 1 to 2. Since the counter associated to C1 is
equal to its size, this means that C1 subsumes C, and thus sQueezeBF does
not learn C.

8

4 Experimental Analysis

To evaluate the effectiveness of our preprocessor, we compare sQueezeBF
with preQuel and proverbox on a selected pool of fixed-structure QBF in-
stances taken from QBFLIB [16]. We first compare their effectiveness com-
puting the size of each formula before and after the preprocessing. The re-
sults showing this comparison are reported in Table 1, where for each family
(listed in the first column) we report (i) the average number of clauses (C),
(ii) variables (V), and (iii) literals per clause (L/C) of the original formula
(column “original”). Then, for each family we show (i) the average variation
in the number of clauses (C%) and (ii) variables (V%), with respect to the
column “original”, and (iii) the average literals per clause (L/C) obtained
using each preprocessor (in the columns proverbox, preQuel, sQueezeBF).
For example taking the first row, Blocks, and the first column, the three
values (C,V,L/C) = (6810,485,2.96) represent respectively the number of
clauses in average (6810), the number of variables in average (485) and the
literal per clause in average (2.96). The other columns state the variation
with respect to the first one, i.e. for example the column proverbox shows
the values (C%,V%,L/C) =(-39,-24,3.06) representing the fact that running
proverbox makes the formula smaller, having 39% less clauses and 21% less
variables with respect to the original problem. In the limit cases in which:
(i) a preprocessor has failed while working out a formula (i.e. due to Time-
outs or Memory outs), the features of the output formula are considered to
be the same of the input one 2; (ii) a preprocessor has solved a formula, we
consider the output formula to have: 0 variables and 1 clause in case the
preprocessor has returned false; or 0 variables and 0 clauses in case the pre-
processor has returned true. All the experiments have been run on a farm of
PCs, each one equipped with a PIV 3.2 GHz processor, 1GB of RAM, and
running Linux Ubuntu 6.10; the time limit has been set to 600s. Counting
the number of families in which each preprocessor has performed best:

• sQueezeBF is the most effective preprocessor always reducing the num-
ber of clauses and variables: the reduction ratio is the highest with
the exception of the families Blocks and comp; excluding the FPGA
families, the average reduction ratio is more than 50%;

• preQuel and proverbox are the most effective in shortening the clauses,
but usually the latter is the least effective in reducing clauses and
variables;

• all the preprocessors are effective reducing the size of the problem
preprocessed. However, two families do not follow this trend: the
FPFF and FPFS, where preQuel and sQueezeBF do not change the
size of the QBFs, whereas proverbox double the size of each formula

2proverbox is the only preprocessor that has failed on some formulas.

9

in average. This is probably due to the fact that the problems are
already written in a compact CNF, and applying preprocessor without
size bound can only increase the size.

It can also be observed how some families have an average reduction, in
terms of number of clauses and variables, equal to 100%: all the instances
of these families have been solved by the preprocessor.

Overall,

• proverbox has solved 20 instances (10 DFlipFlop, 1 wmiforward, 3
SzymanskiP, and 6 VonNeumann),

• preQuel has solved 20 instances (10 DFlipFlop and 10 VonNeumann),
and

• sQueezeBF has solved 29 instances (10 DFlipFlop, 9 wmiforward and
10 VonNeumann).

Family original proverbox preQuel sQueezeBF

C V L/C C% V% L/C C% V% L/C C% V% L/C
Blocks (13) 6810 485 2.96 -39 -24 3.06 -56 -41 2.93 -53 -41 3.01
comp (8) 815 300 2.36 -13 -17 2.41 -45 -70 2.39 -48 -58 2.76
DFlipFlop (10) 82655 62096 2.32 -100 -100 0.00 -100 -100 0.00 -100 -100 0.00
EvPr4x4lg (7) 12973 1961 3.72 -13 -14 3.87 -12 -14 3.87 -23 -26 3.83
EvPr4x4s (7) 67639 7454 3.25 -23 -10 3.61 -11 -4 3.35 -38 -24 3.53
FPFF (5) 658 69 6.38 +109 +57 5.34 0 -1 6.39 -2 -1 5.83
FPFS (3) 522 72 6.50 +129 +57 5.49 0 -1 6.52 -1 -1 6.06
s499 (6) 24534 9053 2.62 -20 -18 2.64 -19 -17 2.70 -61 -61 2.76
SN (84) 5935 2902 2.57 -4 -19 2.88 -2 -7 2.58 -15 -24 2.72
SzymanskiP (12) 90271 74313 2.60 -1 -1 2.29 0 0 2.60 -49 -60 3.17
VN (10) 559528 381580 2.34 -20 -20 0.93 -100 -100 0.00 -100 -100 0.00
wmiforward (72) 3204 983 2.48 0 0 2.45 -15 -38 2.48 -57 -66 2.82

Table 1: Size-reduction comparison between different preprocessors. “C”,
“V” and “L/C” denote the average number of clauses, variables, and literals
per clause. Best values are written in bold. sQueezeBF is the preprocessor
with all the techniques enabled. In the column “Family” , EvPr4x4lg =
evader-pursuer-4x4-logarithmic, EvPr4x4s = evader-pursuer-4x4-standard,
FPFF = FPGA PLB FIT FAST, FPFS = FPGA PLB FIT SLOW, SN =
Sorting networks, VN = VonNeumann; the number written in parentheses
represents the number of instances in the family.

The Table 1 clearly states that sQueezeBF is the preprocessor with the
biggest impact on the formulas, almost halving the size of each formula, on
average.

10

However, sQueezeBF is a mix of different techniques and, in order to
evaluate the impact that each one has on the preprocessor, sQueezeBF has
been run disabling each technique one at a time. In Table 2 we show the
results, organised as the Table 1, where in each column, instead of a pre-
processor, is presented sQueezeBF with a technique disabled. In particu-
lar, the first column (sQueezeBF) represents the full-featured preprocessor
(i.e. no technique disabled); the suffixes “– Eq”, “– Qr” and “– Ss” repre-
sent a version of sQueezeBF featuring all the techniques but variable elim-
ination via Equivalence Checking, variable elimination by Q-Resolution or
clause simplification via Self-Subsumption respectively. For example tak-
ing the row Blocks and the column sQueezeBF, the three values (C,V,L/C)
= (3211,287,3.01) represent respectively the number of clauses in average
(3211), the number of variables in average (287), and the literal per clause
in average (3.01). The other columns state the variation with the first
one, i.e. looking to the first row (Blocks), the column Eq shows the val-
ues (C%,V%,L/C) =(+28,+21,3.01) representing the fact that running the
preprocessor without variable elimination via equivalence checking makes
the formula larger, having 28% more clauses (i.e. almost 4110 clauses on
average) and 21% more variables (i.e. almost 347 variables on average).

Table 2 shows that disabling a technique always leads to a bigger formula,
i.e. that all the techniques are necessary to obtain the formula with the
lowest size. In the table this is highlighted from the absence of negative
numbers. Then, we see that the reduction of clauses is mostly affected by
disabling Equivalence Checking, the reduction of variables is mostly affected
by Equivalence Checking and Q-Resolution, and the reduction of literals per
clause is mostly affected by Self-Subsumption.

In the table, the limit case, in which sQueezeBF solves an instance and
another preprocessor doesn’t, is indicated with the symbol “- -”: the family
DFlipFlop hasn’t been solved by sQueezeBF disabling the Q-Resolution
technique. On average, the number of clauses and variables of the instances
of this family has been reduced to 77135 and 57940 respectively.

It can be noticed that, even disabling Equivalence Checking, some of the
variables that were eliminated because of a definition of equivalence are still
eliminated by Q-Resolution, as witnessed from the numbers in the table.

In order to evaluate the behaviour of the different preprocessors cou-
pled with a QBF solver, we have run QuBE 3[17], yQuaffle 4[18, 19], and
sSolve 5[20] as search-based solvers; Quantor 6[9] as a resolution based
solver; and sKizzo 7[21] as a symbolic skolemization based solver. Table 3
reports the results where on each box there is number of problems solved,

3Release QuBE6.4: its own preprocessor has been disabled.
4Version 021006.
5Version sSolveC from QBFEVAL 08.
6Version 3.0.
7Version sKizzo-0.10-qck from QBFEVAL 07.

11

Family sQueezeBF – Eq – Qr – Ss

C V L/C C% V% L/C C% V% L/C C% V% L/C
Blocks (13) 3211 287 3.01 +28 +21 3.01 +15 +10 2.88 +27 +18 3.08
comp (8) 428 124 2.76 +34 +51 2.57 +5 +3 2.80 +7 +8 2.85
DFlipFlop (10) 1 0 0.00 0 0 0.00 - - - - 2.32 0 0 0.00
EvPr4x4lg (7) 9984 1452 3.83 0 +1 3.83 +5 +16 3.86 +7 0 3.83
EvPr4x4s (7) 42121 5676 3.53 0 0 3.53 +27 +26 3.40 +14 0 3.52
FPFF (5) 645 68 5.83 0 0 5.95 0 0 5.83 +2 0 6.39
FPFS (3) 518 71 6.06 0 0 6.06 0 0 6.06 +1 0 6.52
s499 (6) 9451 3567 2.76 +112 +114 2.79 0 0 2.76 +39 +44 2.87
SN (84) 5070 2212 2.72 +1 +1 2.69 +12 +24 2.62 0 0 2.74
SzymanskiP (12) 45738 29781 3.17 0 0 3.17 +97 +150 2.60 0 0 3.17
VN (10) 1 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00
wmiforward (72) 1364 339 2.82 +78 +101 2.60 +21 +25 2.77 +46 +55 2.89

Table 2: Size-reduction comparison between different versions of
sQueezeBF. The header has the same meaning of the one in Table 1, but
the reference values are those of sQueezeBF. The highest values are written
in bold, meaning that disabling the corresponding technique leads to the
highest degradation.

and the cumulative solving time, for each solver (on the rows) when coupled
with a particular preprocessor (on the columns). Notice that in the column
original are presented the results for each solver without any preprocess-
ing applied, while the last three columns represent the different versions
of sQueezeBF. Table 3 witnesses that sQueezeBF is the only one able to
constantly improve the efficiency of a range of state-of-the-art QBF Solvers.
In particular the column “–” shows that the use of sQueezeBF improves
of a factor two the number of problems solved by a given solver. Using
sQueezeBF as preprocessor affects also the solving time of each solver, de-
creasing it substantially. Moreover, the Table 3 also shows which technique
has more impact on which solver. For example, it looks like that disabling
the variable elimination via equivalence checking, QuBE can not longer solve
many problems, while the self subsumption is the least effective. Instead,
looking at the other solvers, disabling both equivalence checking and clause
elimination via self subsumption decrease the performance of the solver. For
all the solvers the least effective technique seems to be variable elimination
via Q-resolution. This is not so surprising since the bound limitation for
the Q-resolution is very tight, and sQueezeBF spends a lot of time because
there are many variables which are not eliminated because the size of the
formula would increase. Notice that the combination of the three techniques
always leads to the best performances for some solvers (QuBE, sKizzo and
Quantor), but this is not true for others (sSolve and yQuaffle) that are able
to solve more problems when Q-resolution is disabled. Finally it is interest-

12

sQueezeBF

Solver original proverbox preQuel –Eq –Qr –Ss –
QuBE 98 (87k) 87 (111k) 111 (78k) 118 (79k) 138 (72k) 148 (70k) 156 (55k)

sSolve 95 (88k) 80 (112k) 114 (77k) 115 (77k) 135 (64k) 120 (77k) 133 (66k)

yQuaffle 82 (95k) 85 (109k) 88 (92k) 88 (86k) 104 (75k) 96 (81k) 101 (79k)

sKizzo 111 (78k) 110 (93k) 120 (73k) 116 (70k) 143 (56k) 120 (69k) 147 (53k)

Quantor 104 (80k) 106 (95k) 128 (67k) 106 (74k) 123 (64k) 106 (76k) 136 (58k)

Table 3: Number of instances solved and cumulative time (in parentheses) by
using different preprocessors. Times include both preprocessing and solving,
and is expressed in thousands. The first column refers to the solving without
the help of any preprocessing. sQueezeBF names mean: sQueezeBF is the
preprocessor with all its techniques enabled, “– Eq”, “– Qr” and “– Ss”
stand for sQueezeBF without equivalence checking, variable elimination by
Q-Resolution or self-subsumption respectively.

ing to see in table 3 that the preprocessor, on this set of benchmarks, makes
QuBE a better solver than sKizzo.

About the time needed by the different preprocessors, these are cumula-
tively presented in Table 3, where it is shown also the effect of the different
preprocessors (sQueezeBF, proverbox, preQuel) when coupled with different
solvers (QuBE, sSolve, yQuaffle, sKizzo and Quantor). In general, the pre-
processing time is negligible wrt the whole task of preprocess and solve, but
for some large instances it can be more onerous trying to simplify it rather
than solving it by a solver. The cumulative preprocessing times are approx-
imately 410s for preQuel, 1470s for sQueezeBF, and 15500s for proverbox.

5 Conclusions

In this paper we present sQueezeBF, a very effective preprocessor for QBF
reasoning. We took into account many benchmarks from different families
and two other different preprocessing tools, preQuel and proverbox. We
have shown that sQueezeBF is much more effective in terms of formula
reduction, since most of the times decreases the size of the formula prepro-
cessed, and never increases the size of the formula, and this is not always
true for preQuel and proverbox. We also compare five different state-of-the-
art solvers: the proposed techniques offer robust improvements across the
different solvers among all the tested benchmark families. To the best of our
knowledge thanks to sQueezeBF the solvers are able to solve 34 problems
that have never been resolved before. Finally, as future work, we would like
to implement new techniques such as, for example, variable expansion and
binary clause resolution.

13

References

[1] Scholl, C., Becker, B.: Checking equivalence for partial implemen-
tations. In: Proceedings of the 38th Design Automation Conference
(DAC’01). (2001) 238–243

[2] Ayari, A., Basin, D.A.: Bounded model construction for monadic
second-order logics. In: CAV ’00: Proceedings of the 12th International
Conference on Computer Aided Verification, London, UK, Springer-
Verlag (2000) 99–112

[3] Rintanen, J.: Constructing conditional plans by a theorem prover.
Journal of Artificial Intelligence Research 10 (1999) 323–352

[4] Castellini, C., Giunchiglia, E., Tacchella, A.: Improvements to SAT-
based conformant planning. In: Proc. ECP. (2001)

[5] Baader, F., ed.: Automated Deduction - CADE-19, 19th International
Conference on Automated Deduction Miami Beach, FL, USA, July 28 -
August 2, 2003, Proceedings. In Baader, F., ed.: CADE. Volume 2741
of Lecture Notes in Computer Science., Springer (2003)

[6] Samulowitz, H., Davies, J., Bacchus, F.: QBF Preprocessor Prequel
(2006) available at http://www.cs.toronto.edu/˜fbacchus/sat.html.

[7] Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In:
Principles and Practice of Constraint Programming, Springer-Verlag
(2006)

[8] Bubeck, U., Büning, H.K.: Bounded universal expansion for prepro-
cessing qbf. In Marques-Silva, J., Sakallah, K.A., eds.: SAT. Volume
4501 of Lecture Notes in Computer Science., Springer (2007) 244–257

[9] Biere, A.: Resolve and expand. In: Proc. SAT. (2004) 59–70

[10] Lonsing, F., Biere, A.: Nenofex: Expanding nnf for qbf solving. In
Büning, H.K., Zhao, X., eds.: SAT. Volume 4996 of Lecture Notes in
Computer Science., Springer (2008) 196–210

[11] Kleine-Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified
Boolean formulas. Information and Computation 117(1) (1995) 12–18

[12] Eén, N., Biere, A.: Effective preprocessing in sat through variable and
clause elimination. [22] 61–75

[13] Davis, M., Putnam, H.: A computing procedure for quantification
theory. Journal of the ACM 7 (1960) 201–215

14

[14] Subbarayan, S., Pradhan, D.K.: Niver: Non increasing variable elimi-
nation resolution for preprocessing sat instances. In: SAT. (2004)

[15] Zhang, L.: On subsumption removal and on-the-fly cnf simplification.
[22] 482–489

[16] Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean For-
mulas satisfiability library (QBFLIB) (2001) www.qbflib.org

[17] Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution
and learning in the evaluation of quantified Boolean formulas. Journal
of Artificial Intelligence Research (JAIR) 26 (2006) 371–416

[18] Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction
and conflicts in quantified Boolean formula evaluation. In: Proceedings
of the Eighth International Conference on Principles and Practice of
Constraint Programming. (2002) 200–215

[19] Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean
satisfiability solver. In: Proceedings of International Conference on
Computer Aided Design (ICCAD’02). (2002)

[20] Feldmann, R., Monien, B., Schamberger, S.: A distributed algorithm
to evaluate Quantified Boolean Formulae. In: Proceedings of the 7th
Conference on Artificial Intelligence (AAAI-00) and of the 12th Con-
ference on Innovative Applications of Artificial Intelligence (IAAI-00),
Menlo Park, CA, AAAI Press (July 30– 3 2000) 285–290

[21] Benedetti, M.: skizzo: A suite to evaluate and certify qbfs. In: Proc.
CADE. (2005) 369–376

[22] Bacchus, F., Walsh, T., eds.: Theory and Applications of Satisfiability
Testing, 8th International Conference, SAT 2005, St. Andrews, UK,
June 19-23, 2005, Proceedings. In Bacchus, F., Walsh, T., eds.: SAT.
Volume 3569 of Lecture Notes in Computer Science., Springer (2005)

15

