Generative Composition of Web Services*

Rajesh Thiagarajan, Wolfgang Mayer, and Markus Stumptner

Advanced Computing Research Centre, University of South Australia
{cisrkt,mayer,mst}@cs.unisa.edu.au

Abstract. We present a consistency-based service composition approach,
where composition problems are modelled in a generic manner using a
generative constraint-based formalism. We show that in our framework
concise formal specification of service configuration problems is possible.
Preliminary results indicate that our approach is scalable and competitive
with other state-of-the-art composition systems.

1 Introduction

Although service-oriented architectures facilitate dynamic adaptation and reuse
of software, manual selection and composition of services still require considerable
effort for complex scenarios. Several composition approaches [IH7] have been
proposed, but many are based on ad-hoc algorithms, lack a precise representation
of a service’s capabilities or require prediction of the number of required services.
Dynamic composition scenarios, however, require a formalism that can flexibly
choose the structure of a composition and that incorporates a variety of search
heuristics to compute solutions efficiently based on conceptual information as
well as attributes of concrete service instances.

Constraint-based systems have been shown to provide expressive formalisms
and efficient inference procedures to efficiently assemble large-scale component-
oriented systems [8]. Here, Generative Constraint Satisfaction Problems (GCSPs)
overcome the limitations of classic CSPs with fixed structure by incrementally
introducing additional variables and constraints when components are added to
satisfy a constraint. The fundamental building block of the generative model are
the so-called generic constraints that specify constraints between variables on a
meta level. To adapt GCSPs for service configuration, it is necessary to extend
the formalism to capture aspects such as data flow and complex data structures:

— We introduce connection components that act as connectors between services.
The explicit representation of connectors provides a uniform interface contract
between services and also serves as a means to explicitly model the provider-
consumer relationship between services. A connection component also holds
a representation of the data values that is passed along the connection.

— We introduce explicit components to capture the semantics of complex data
objects. This facilitates the uniform handling of service and data components

* This work was partially supported by the Australian Research Council (ARC) under
grant DP0988961.

Proceedings of CAiSE Forum 2009 49

WsC Domain
Problem Knowledge|

v Y

‘ Configuration Problem ‘
| GCSP Formalism |

Specification
Phase

A 4
Configurator

Lo AT,

CSP-Solver

Composing
Phase

’ Composition ‘ o on_

(a) Composition Process (b) Partial Solution

Fig. 1: Generative Composition of Web Services

in the configuration, and has the additional benefit that generic constraints
can be used to impose global invariants on data structures.

In our extended framework, the service composition problem is posed as a
configuration task, where a set of service components and their interconnections
are sought in order to satisfy a given goal. The compositions computed in our
framework can be synthesised into a form suitable to execute the composed
service such as BPEL and OWL-S. We show that concise formal specification
of service configuration problems is possible. In our framework, GCSPs are
synthesised into classic CSPs allowing efficient CSP algorithms to potentially
help tune implementations of reasoning tasks. Our formalism is particularly useful
in scenarios where the problem size is unknown. Preliminary evaluation shows
that GCSPs can quickly find solutions for large non-trivial problems.

2 Service Composition by Configuration

Configuration is the process of assembling larger systems from individual com-
ponents by extending an initial partial solution representing a goal until all the
requirements are satisfied. A configuration problem is defined over a so-called
configuration domain [9] which represents the types of components to be config-
ured, their properties and a set of generic constraints that have to be satisfied.

Definition 1 (Configuration Domain) A configuration domain is a tuple
(T,C,C,P,D, Iy, where

— T is a finite set of service types and data object types.

— The partial order = denotes the subtype relationship between the types in
T. We write T'C1 to imply that ' is a subtype of type 7; T’ inherits all
properties and constraints of T.

— C is an infinite set of component variables representing instances of services
and data objects.

Proceedings of CAiSE Forum 2009 50

N request:FlightRequest N N N
Flightinfo - BookingConfirmation

+flightNo: String +confirmationNo: String
+from: City FlightQuery +pName: PName
+to: City +flight: FlightInfo

+dateTime: DateTime
info:Flightinfo

+class: {Fconomy,Business} | .
info:Flightinfo cc:CcDetails passengerName:PName

FlightRequest . . .

+from: City

+to: City
+dateTime: DateTime
+price: Real . [tcheckinTine: pateTime]
+class: {Fconomy,Business}

AirlineTi

|FuIIB king' onﬁrmatinnl

confirmation:BookingConfirmation

Fig. 2: Partial Model of Service and Data Types in the Travel Domain

— P is the set of property variables. We use the notation c.p to denote the CSP
variable representing property p of the service instance represented by the
component variable c.

— D is the set of domains of the component and property variables. This set
includes the sets C, numbers, strings, and may include other domain-specific
sets if required.

— I' is a finite set of generic constraints including activation and resource
constraints.

Variables in C are initially considered inactive, but may be activated by a generic
constraint. This can be seen as “expansion” operation, where the CSP is extended
with additional variables (and possibly constraints). Only the active variables
participate in the solution process, while the inactive variables remain hidden
until activated. Hence, a valid configuration is an assignment of values to all
active variables in C such that all constraints are satisfied.

We use the following scenario to illustrate our approach, where flights between

two specific cities on a given date are to be purchased. A partial model of service
types in our travel domain is shown in Figure [2| including the available service
and data types, service interfaces and relationships (modelled as inheritance),
and available service instances. In our example 7 includes, among others, the
service types FlightQuery and Airline TicketBooking, component type BinConn
representing connections, and data type BookingConfirmation.
Generic constraints are the primary constructs for expressing the semantics
of components and data types in the GCSP formalism. In generic constraints,
meta-variables act as placeholders for component variables. Generic constraints
can be seen as prototypical constraints on a meta-level that are instantiated into
“ordinary” constraints over variables in the CSP.

A generic constraint is a clause of the form Ay A...ANA,, = By V...VB,
where the A’s and B’s are predicates over meta-variables. A generic constraint is
consistent if and only if the constraint is satisfied for all bindings of meta-variables
to active CSP variables.

Activation constraints are a form of generic constraints that are used to
activate additional CSP variables once new components are introduced into a
configuration. Conceptually, activation constraints govern the “growing” of the
constraint network. Activation constraints are of the form CCr — C.pér’

Proceedings of CAiSE Forum 2009 51

and denote that each component of type 7 (or a sub type) has a property p of
type 7'. The properties that have C as their domain are referred to as ports,
while the remaining properties of primitive data type are called attributes. For
example, the activation constraint X C FlightQuery —> X .requestéC, X .info€C.
ensures that for each constraint variable representing a service component of
type FlightQuery (see Figure , the port variables X.request and X.info are
activated with domain C allowing them to be connected with other components.
Data Flow is captured by distinguished BinConn components that act as con-
nectors between service components in the configuration. A BinConn component
acts as an interface contract between service components by providing a uniform
interface for the components connected to each port. Here, varying matching
strategies, such as the well-known subsumption match [7], can be employed.
Directionality is modelled by constraints that enforce a connection to connect a
data consumer to a data provider where the supplied object is compatible with
the requested data type.

Service Semantics are captured by specifying attributes, IO parameters, their
types, and relationships between IO parameters in form of generic constraints.
For example, “A FlightRequest object is expected through the request port” is
modelled as SCFlightQuery A S.request=BC=—-BCLC BinaryConn A

BC .toutC FlightRequest N BC'.out=S.

Structural Constraints ensure service compositions are sound. In particular,
constraints to prohibit the direct connection of two connection components and
cyclic data flow paths are required. We define a component u to depend on
outputs of v, denoted as u ~~ v, if a path from an input port of u to a port of v
exists in the CSP graph. The integrity constraint used to ensure that all CSP
instances are acyclic can then be expressed as the generic constraint C' + C.
Resource constraints are used to express aggregate operations over attributes
of multiple components and to impose limits on the number of components in
a configuration. For example, the cost constraint in our example is modelled
as X{S.flight.price| ST BookingConfirmation} < 400. Resource constraints may
also trigger the addition of new components in the configuration.

Goal Requirements and User Inputs are modelled using distinguished com-
ponents: available inputs are modelled as components that supply one available
user input; these components are not instantiated by default, but are created by
the GCSP solver on demand. Required outputs are also modelled as components;
from these components, a partial configuration that represents the goal is created,
which must subsequently be completed by the GCSP solver.

3 Computing Service Compositions

A Configuration problem for a given configuration domain D = (7,C,C, P, D, I')
is defined as a tuple (V!, ', D), where VI C C U P is the set of initial variables,
where P is the set of property variables activated by components in C, and I'! is
a set of constraint instances on V7.

The solution process is illustrated in Figure Initially, the constraint
network R consists of a partial composition (V/, I'") that represents the goal

Proceedings of CAiSE Forum 2009 52

requirements. During the composition process, R is dynamically extended by
adding new variables and constraints. After each extension, R represents a
standard CSP (without generic constraints); therefore, standard algorithms can
be applied to solve the CSP. The CSP R will grow

1. if a type 7 is assigned to a component variable ¢, fresh variables representing
the ports and properties of 7 are introduced to satisfy activation constraints,

2. if a port variable has been chosen for assignment and no existing component
is eligible, a new component is added to R, or

3. if a resource constraint cannot be satisfied using the current set of components.

The constraint network R continues to grow until all generic constraints are
satisfied. Once all variables have been assigned the solving process terminates and
the variable assignments are returned; the components assigned to the variables
in the completed network represents a valid configuration. Otherwise, a variable
is chosen for assignment and constraints are propagated. If no alternative value
assignment remains for a variable, the (G)CSP is inconsistent and a different
choice for a preceding variable assignment is explored.

To ensure termination of our composition process, we employ an iterative
strategy that limits the number of components, where the threshold is iteratively
increased until a solution is found.Solving iteratively allows us to limit the effects
of wrong component choice that would otherwise have resulted in indefinite
expansion of the CSP.

A partial solution to the example problem is shown in Figure [Ib] where the
configuration grows beginning with the goal specification (OutConfirmation).
Since the example only involves a few components, it can be solved almost instan-
taneously in our framework. To characterise the performance of our framework,
we conducted experiments on a generalised version well-known Producer-Shipper
problem [I]. In the adapted scenario, multiple instances of producer and shipper
process exists with restrictions on their combination. For example, a product
can only be shipped by certain vendors. Our largest problem with 28 parallel
producer-shipper processes (1400 services) can be solved in roughly 3 minutes —
a result quite competitive with other approaches.

4 Discussion and Future Work

We presented a consistency-based service composition approach in which a
service composition problem is treated as a configuration task. We showed that
composition problems can be concisely represented by adopting a declarative,
constraint-based meta model. By translating the service composition problem as
a dynamic configuration task, we overcome the limitations of earlier work where
the structure of a composition must be known a priori [10, II]. Such a fixed
scenario can be implemented by imposing constraints on the number of services
and their interconnections, while cost-based optimisation and preferences [10]
can be integrated through variable and value selection heuristics.

Since the GCSPs formalism can simultaneously handle constraints on different
levels of abstraction, conceptual and instance specific information can be exploited

Proceedings of CAiSE Forum 2009 53

for problem specification and also in the solving process. Specific information
derived from service instances has already been applied to synthesise concrete
executable work flows in domains where conceptual information alone is insuffi-
cient to generate precise compositions [12]. Our framework adopts similar ideas,
but provides a uniform formalism in which flexible CSP solving strategies based
on the concrete and conceptual information present in a partial solution can be
exploited. The GCSP framework also permits hierarchical refinement of abstract
solutions, where CSP solving strategies are selected dynamically driven by the
specific information and structure of a partial solution rather than adopting a
fixed solving strategy throughout the entire solving process, as in [3, 13, [14].

Preliminary evaluation shows that our framework is scalable to non-trivial
problems and can solve compositions with hundreds of service instances efficiently.
We are currently extending our framework to exploit workflow patterns to ensure
interactions with complex flow, for example, synchronisation and exception
handling, can be synthesised effectively. We also plan to leverage earlier work on
consistency-based matchmaking into our framework to improve service selection
in scenarios where only partial information is available.

References

1. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of web
services by planning at the knowledge level. In: Proc. IJCAIL (2005)

2. Trainotti, M., et al..: ASTRO: Supporting Composition and Execution of Web
Services. In: Proc. ICSOC. (2005)

3. Sirin, E., Parsia, B., Wu, D., Hendler, J.A., Nau, D.S.: HTN planning for Web
Service composition using SHOP2. Journal of Web Semantics 1(4) (2004) 377-396

4. Lécué, F., Léger, A.: Semantic Web Service Composition Based on a Closed World
Assumption. In: Proc. ECOWS. (2006)

5. Mecllraith, S.A., Son, T.C.: Adapting Golog for composition of Semantic Web
services. In: Proc. KR. (2002)

6. Goémez-Pérez, A., Gonzdlez-Cabero, R., Lama, M.: ODE SWS: A Framework for
Designing and Composing Semantic Web Services. IEEE Intelligent Systems 19(4)
(2004) 24-31

7. Li, L., Horrocks, I.: A software framework for matchmaking based on Semantic
Web technology. In: Proc. of WWW, Budapest (2003) 331-339

8. Fleischanderl, G., et al.: Configuring large-scale systems with generative constraint
satisfaction. IEEE Intelligent Systems 13(4) (1998)

9. Haselbock, A., Stumptner, M.: An integrated approach for modelling complex
configuration domains. In: Proc. of the 13th Int. Conf. on Expert Systems, Al, and
Natural Language. (1993)

10. Hassine, A.B., Matsubara, S., Ishida, T.: A Constraint-Based Approach to Hori-
zontal Web Service Composition. In: Proc. ISWC. (2006)

11. Thiagarajan, R., Stumptner, M.: Service Composition With Consistency-based
Matchmaking: A CSP-based Approach. In: Proc. ECOWS. (2007)

12. Carman, M., Serafini, L.: Planning For Web Services the Hard Way. In: SAINT
Workshops. (2003)

13. Albert, P., Henocque, L., Kleiner, M.: Configuration Based Workflow Composition.
In: Proc. of ICWS 2005. (2005)

14. Carman, M., Serafini, L., Traverso, P.. Web Service Composition as Planning. In:
ICAPS Workshop on Planning for Web Services, Trento, Italy (June 2003)

Proceedings of CAiSE Forum 2009 54

	Generative Composition of Web Services
	Rajesh Thiagarajan and Wolfgang Mayer and Markus Stumptner

