
An SQL-based Approach to Semantic Web Reasoning and
Query Answering

c© Dmitry V. Levshin

NICEVT (Science and Research Center on Computer Technology)
levshin@nicevt.ru

Abstract

The Semantic Web is the extension of WWW
whose purpose is to allow software agents to
process documents more intelligently. Access
to RDF data is one of the key moments for se-
mantic applications and requires implementing
both retrieval and reasoning. Reasoning with
large ontologies and data sets becomes increas-
ingly important. It is a serious challenge for the
most advanced in-memory reasoners, and they
begin to exploit databases. Most of the propos-
als apply a hybrid database/reasoner architec-
ture which has several shortcomings. The paper
presents an approach to query Semantic Web
data in databases. Both TBox and ABox rea-
sonings are performed using RDBMS features.
It can be performed during querying or pre-
computed; caching of previous queries results
is also supported. Integration of data stored in a
relational database with Semantic Web data and
support of most SPARQL features are obtained
using SQL power.

1 Introduction
The Semantic Web is a notion proposed by Tim Berners-
Lee [8] in the 90th as an extension of the nowadays
Web with a possibility of adding semantics to documents,
which computer agents could use to intelligent data pro-
cessing. Particularly, there are believes that it will signif-
icantly improve quality of search in the Internet.

Development of the basic Semantic Web formats fol-
lows to the stack architecture proposed by Tim Berners-
Lee [7]. It assumes that every new layer (format) extends
preceding ones adding new features. Firstly, RDF [19]
describing the Semantic Web data model was devel-
oped. Then RDFS and OWL [23] were developed on
top of it allowing formulation of logical statements.
OWL species are based on Description Logics (DLs) [5];
SWRL [15] excels from other proposals for uniting OWL
with Datalog rules (e.g. [12, 20]) as W3C member
submission. SPARQL language [24] was proposed for
querying RDF data. As since the Semantic Web formats
have logical foundation, querying in the Semantic Web

Proceedings of the Spring Young Researcher’s Colloquium
on Database and Information Systems, Saint-Petersburg, Rus-
sia, 2009

assumes not only selection of explicit data, but also in-
ference of implicit data on base of statements in DLs and
Datalog.

Highly-optimized DL reasoners implementing
tableaux algorithm [16] are in general used to support
OWL. They perform reasoning in memory. At the same
time, as it is marked in [4], there are appearing large-size
ontologies and RDF datasets (with thousands of named
concepts and millions of triples), which are serious chal-
lenge for the most advanced and optimized reasoners. In
[14], it is marked that possibility of reasoning with such
ontologies will be a requirement for future applications.

Moreover, as [17] notes, tableaux algorithm itself of-
ten does not well suit for query answering. The main
reason is that tableaux algorithm provides refutation pro-
cedure, not query answering algorithm. As a conse-
quence, new ways of reasoning including ones based on
translating of DL knowledge bases (KBs) into Datalog
(e.g. [12]) are investigated. Further, as it is noted in [29],
strict adherence to the completeness properties of rea-
soning procedure and strong focus on theoretical proper-
ties of the most researches does not allow them to obtain
required scalability. Potential ways to rectify the situa-
tion including approximate reasoning (trade of scalabil-
ity to reasoning completeness) and incremental reason-
ing (leverage caching of prior results) are presented in
[29]. The proposal is justified by the fact that practical
applications often use very poor ontologies.

Increasing importance of reasoning with large
amounts of data for query answering in the Seman-
tic Web leads to use DBMSs for it. Several propos-
als have appeared based on hybrid reasoner/database ar-
chitecture. However, they support limited query and
reasoning possibilities meanwhile. Also these loosely-
coupled approaches have several shortcomings includ-
ing that DBMS users cannot reference ontology data di-
rectly. Only a few approaches [11, 18] for direct sup-
port of RDF queries in a DBMS appear. However, [18]
leverages XML possibilities of hybrid relational-XML
DBMSs, and [11] supports limited reasoning (e.g. TBox
reasoning is performed using external reasoners, prop-
erty restrictions are not supported).

This paper presents an approach of query answering
and reasoning for Semantic Web data. It allows both
TBox and ABox reasoning to be performed using only
database features. For ABox reasoning, a two-stage al-
gorithm flexible enough to any changes in logics used
in the Semantic Web is presented. ABox reasoning can

be performed during querying, or pre-computation or
caching prior results can be used for it. It is hard to
implement complete and efficient inference engine us-
ing only DBMS features. Moreover, approximate rea-
soning is proposed in [29] as a way for achieving scala-
bility of reasoning. So our approach does not adhere to
completeness property. This decision allows to support
more expressive ontologies and entail more facts than in
approaches which restrict supported constructs to adhere
completeness property. Our approach also allows query-
ing data from both database and the Semantic Web si-
multaneously. The most of the DBMS features (triggers,
stored procedures, table functions) used for implemen-
tation of reasoning and querying are supported by the
majority of RDBMSs. The rule system [28] is the only
specific feature of PostgreSQL [1] used for implementa-
tions. However, usage of rules is not mandatory, and they
can be substituted by triggers. Therefore, our approach
can be implemented in other RDBMSs.

The rest of the paper is organized as follows. Sec-
tion 2 overviews basic notions of DLs and the Semantic
Web, and specific PostgreSQL features mentioned in the
paper. Section 3 surveys the main results in researches
on effective storage of RDF data, and then presents the
database schema used in our work. Section 4 presents al-
gorithms for reasoning, and Section 5 demonstrates how
RDF data can be queried in a database using these algo-
rithms. Section 6 surveys related work before Section 7
concludes and presents future work.

2 Preliminaries
This Section surveys essentials of the Semantic Web and
several database features used for implementations in
this work.

2.1 Semantic Web Essentials

The Semantic Web data model defined in RDF represents
all statements as oriented marked graphs, in which nodes
are marked as resources (URIs) or literals and edges – as
properties. Such graph can be also represented in XML
notation or as a set of 〈subject, property, object〉 triples.

OWL [23] allows defining terms and relations be-
tween them. OWL species OWL Lite and OWL DL
are based on DLs SHIF(D) and SHOIN (D), resp. A
DL knowledge base (KB) usually consists of two com-
ponents: terminological component called TBox and as-
sertional one called ABox. TBox consists of subsump-
tion axioms, and ABox contains assertions about indi-
viduals named role and concept assertions1. DLs differ
from each other in that which concept descriptions are
supported and how they can be used.

Female u ∃hasChild.Person @ Mother (1)
Male t Female @ Person (2)

hasSon @ hasChild (3)
hasPar(Peter,Anna) (4)

Female(Anna) (5)

For instance, the subsumption axiom (1) states that any-
one who is female and has child is mother, (2) treats both

1Concept and role assertions are obviously represented as RDF
triples

PREFIX p: <http://a.com/ontology#>
SELECT ?n1 ?n2
WHERE {

{?s p:hasAunt ?m.
?s p:name ?n1.
?m p:name ?n2}

UNION
{?s p:hasUncle ?m.
?s p:name ?n1.
?m p:name ?n2} }

Figure 1: Example of SPARQL query

male and female to be persons, (3) describes hasSon as
subproperty of hasChild; the role assertion (4) states
that individual Peter has a parent Anna, and the con-
cept assertion (5) also states that Anna is female.

hasSon(?x,?y):-hasPar(?y,?x),Male(?y) (6)

SWRL extends OWL with Horn-like Datalog rules. Con-
cepts (roles) can be used in SWRL rules as unary (resp.,
binary) atoms. For instance, property hasSon is as-
serted implicitly in the SWRL rule (6) on base of prop-
erty hasPar and concept Male, and this concept in turn
can be defined in some subsumption axioms. Note that
uniting DLs with Datalog rules is an actual area for re-
searches. Therefore, changes in SWRL are possible.

Although different reasoning services are supported
in DLs, Semantic Web data should be accessed via
SPARQL query language. In SPARQL, unions of con-
junctive queries can be formulated. For instance, query
in Fig. 1 is used to find persons who have uncle
or aunt. For more information about DLs, the for-
mats of the Semantic Web and SPARQL please refer to
[5, 15, 19, 23, 24].

2.2 Database Features

The reader is assumed to be familiar with stored pro-
cedures and triggers. Table function is a stored proce-
dure returning sets of rows and allowing specification of
columns at the time of its invocation. Rules in Post-
greSQL are similar to triggers in that what we expect
from them: to perform automatically some specified ac-
tion, when some event on the specified table occurs.
Only update rules are considered in the paper, and the
following simplified syntax for rules is used:

CREATE [OR REPLACE] RULE name AS ON event
TO table [WHERE condition]
DO [ALSO | INSTEAD]
{ NOTHING | command }

However, two significant differences should be marked.
First, additional qualifications can be specified in rules
to restrict firing conditions, and redundant computations
can be reduced. Second, in contrast to triggers, the rule
system rewrites a query before scheduler optimizes it.
Consequently, a query is optimized in this case taking
into account rules, and it might be more effective to use
rules than triggers. The interested reader may refer to
[1, 28] for more in-depth information about the rule sys-
tem and the other features.

3 Database Schema
Choice of a database schema has a great impact on effi-
ciency of storing and querying data. Much attention was
paid to schemas for storing Semantic Web data in rela-
tional databases. This Section views results achieved in
the area and then presents the schema used in our system.

3.1 Overview of Existing Approaches

As since RDF data can be viewed as a set of triples, it
seems trivial to persist it in a single three-column table.
Further, for reducing of used disk space, URIs and liter-
als can be stored in this table not directly, but as unique
integer values (further, identifiers) referring to their val-
ues. Mappings between these identifiers and actual val-
ues can be stored in one or more special tables (which
further is called dictionary). This normalisation is prac-
tical, because URIs and literals can have arbitrary length,
and can occur frequently. This approach can be called
single store. Particularly, it is applied by Oracle [11].

In Jena1 [30], single store approach was used too,
but triple store has two object columns to distinguish
literals from URIs. Unlike [11], dictionary consists of
two tables: one is for literals and one - for URIs. In
Jena2 un-normalized schema is used: all literals and
URIs, whose text representation length does not over-
come some threshold, are stored directly in a triple
store. Dictionary is used only for values overcame the
threshold. To distinguish actual values from identifiers
columns are coded with a special prefix. To reduce used
disk space it is proposed to use special table for names-
pace prefixes, which should be small and lie in memory.

Another important proposal of Jena2 is the usage of
property tables. This approach assumes determination
of properties often accessed together and storing them
in a separate table. This property table stores all occur-
rences of these properties. It means that these proper-
ties can’t be met in other tables used for this RDF graph.
Such tables are declared to be very useful for properties
with maximal cardinality equal to 1. In this case, each ta-
ble row contains property values (or NULLs for unknown
values) for some subject. As marked in [3], properties
also may be clustered into separate tables with regard to
certain classes. In this case, one property can occur in
different tables. Regardless of a particular clusterization
algorithm, triples with properties not clustered in sepa-
rate tables are stored in a three-column triple store.

As it is mentioned in [3], the property table approach
is not widely used. In particular, in Jena2 property tables
are used only for reification statements. More widely
they are used in Sesame [10]. Main disadvantages of this
approach can be summarized as the following: it is diffi-
cult to define a property clusterization algorithm, which
is very important for effective querying; storage of multi-
valued properties in separate tables might be ineffective,
and property tables might be sparse.

Vertical partitioning approach is presented in [3] as
a solution of these problems. It can be viewed as a spe-
cial case of the property table approach with a simple
clusterization algorithm: a separate two-column table is
created for every met property. This approach is shown
to be comparable with general property table approach
and better than the single store approach in terms of scal-

ability and efficiency of querying, when number of prop-
erties is restricted. However, [25] shows that vertical par-
titioning has a weakness when predicates in queries are
not fixed: when number of property tables becomes sig-
nificant, query may require a large number of unions.

3.2 The Schema Used in Our Work

In our work, normalised schema with one values2 table
as a dictionary is used. As since both URIs and literals
are stored together, field value type is added to distin-
guish them. Field literal type is used for typed liter-
als as a reference to the table of supported literal types,
which stores information how to convert text representa-
tion of a literal into corresponding type and conversely.
For each typed literal, text value stored in the dictionary
is obtained by sequential conversion of it to its datatype
and conversely (e.g. integer-valued literals ‘6’ and ‘+6’
will be both converted to 6 and stored as ‘6’ in one row of
the dictionary). As consequence, the dictionary does not
contain duplicate URIs and literals. Therefore, equality
comparison of RDF triples can be performed as compar-
ison of corresponding triples of identifiers. Such com-
parisons are performed frequently during reasoning, and
it avoids look ups into the dictionary during reasoning.
Actual values of resources and literals are selected only
to return answer on the query.

As the overview shows, property tables (and vertical
partitioning) allows better performance comparing to
the single store approach, when properties in queries are
fixed or number of tables is not large. Therefore, sepa-
rate tables were created for the properties from RDFS
(domain, range, subClassOf, and subPropertyOf)
and OWL (inverseOf, equivalentClass,
equivalentProperty, differentFrom, and sameAs)
vocabularies which has great impact on reasoning.
For the symmetric RDFS and OWL properties (e.g.
differentFrom and sameAs), having any of triples
〈s,p,o〉 or 〈o,p,s〉, the pair 〈id(s),id(p)〉 (where id(s)
is less than id(p)3) is stored in the corresponding table;
and a view is defined on it to show all the triples.
Properties for OWL constructs (unions, intersections
and property restrictions), SWRL rules, and oneOf and
AllDifferent entities are also clustered in separate
tables. Further all the tables mentioned above in the
paragraph are called the statements tables.

Two tables are used for the rest properties: property
table typetrip for rdf:type and table triples for ar-
bitrary properties. This partition has two reasons: data
set is divided on two nearly equal parts for many on-
tologies; concept assertions very often participate in in-
ference. Thus, usage of typetrip and the statements
tables allows both limiting the searching space of can-
didate triples during reasoning and reducing disk space.
Partition for arbitrary properties is not applied, since it
complicates the reasoning process and may have worse
performance for large number of properties. Column
isinf is used in the property tables and the triples
table to distinguish explicit triples from implicit ones.
The view tr uniting all triples using UNION ALL oper-
ator was created to provide ability to access easily all

2All the tables mentioned in the paper are depicted in Fig. 2.
3id(r) is used to denote identifier asserted for r in the dictionary

(d) tables for unionOf and intersectionOf

(a) values

value_id text_value value_type literal_type

(b) triples

subj_id prop_id obj_id isinf

(c) property tables

subj_id obj_id isinf

head table

key_id class_id

body table

key_id mem_id

(e) hasValue restrictions table

class_id onprop_id hasval_id

(f) table for allValuesFrom and someValuesFrom restrictions

class_id onprop_id objcl_id isall

(g) table for cardinality restrictions

class_id onprop_id card kind

(h) head and body tables for SWRL rules

rule_id prop_id arg1_id arg2_id

(k) tmplist table

node_id first_id rest_id

(l) tmp_class table

class_id q_num

(m) new_tgt table

prop_id arg1_id arg2_id

(n) old_tgt and tasks tables (some flags are not shown)

prop_id arg1_id arg2_id has_anc new_anc

(o) taskdep table

con_id anc_id

Figure 2: Tables used for storing ontologies and SWRL rules

stored triples in queries or inference rules.
The C program module (parser) was tailored to load

Semantic Web documents into a database. It parses an
input document in XML notation, builds set of triples
on base of it, and stores the set into tmptr table. Then
the tailored stored procedure is invoked in the database
to create inference rules4 and perform bulk load of the
triples into the appropriate tables.

Several other tables are created for purposes of rea-
soning, and they are described in Section 4.2.

4 Reasoning
4.1 Reasoning Schema

According to partitioning of DL KBs into TBoxes and
ABoxes, process of reasoning consists of two phases:

• Relations between concepts are determined on base
of extensional relations and descriptions. We as-
sume this phase to be performed each time, when
the stored ontology is modified (by SQL command
or by the parser). Inferred relations are stored in a
database steadily. Assuming that size of TBox is
significantly less than size of ABox, this permanent
storage is not considerable in terms of disk space.

• New facts about individuals are entailed. It can be
performed, when the ontology or dataset is modi-
fied (static approach) or at the time of query execu-
tion (dynamic approach). Choice of the appropriate
approach can be viewed as a choice between disk
space and query execution time. Note that the static
approach can be reduced to the dynamic approach,
if it supports caching of prior query results.

This schema of reasoning is determined not only by cor-
respondence to the structure of DL KBs and the possi-
bility to use numerous results in TBox reasoning. It also
allows obtaining of more complete results in ABox rea-
soning. The paper presents the phases in the contrary
order to show this influence.

4Thus, semantics of all statements are supported only by database
features.

4.1.1 Concept Descriptions Representation

The representation of OWL concept descriptions should
be introduced to gain a better insight of the algorithms
of reasoning. OWL allows nested concept descriptions,
and the parser divides them into sets of plain descrip-
tions assigning names (blank nodes in terms of RDF) to
auxiliary descriptions. For instance, the subsumption ax-
iom (1) will be represented as follows:

D @ Mother (7)
D is Female u E (8)

E is ∃hasChild.Person (9)

Note that relation is denotes names assigned for descrip-
tions (e.g. E and D) and is not the same as ≡ re-
lation. The representation allows the database schema
to store concept descriptions in separate tables (see
Sect. 3.2). For instance, the axiom (1) is stored as tu-
ples in the sublasses, intersections and restrictions tables
(see Fig. 2(c,d,f)). It also simplifies both TBox and ABox
reasoning: inference rules are created only for fixed set
of plain descriptions; there is no need in recursive query
creation for nested descriptions, because they are sup-
ported by a sequence of more simple rules; auxiliary
descriptions can be used to avoid duplicate evaluations
(e.g., E can be used for description of Parent concept).

However, the representation makes descriptions more
sensitive to notation. For instance, two following de-
scriptions

D1 isC1 t (C2 t C3) (10)
D2 is (C1 t C2) t C3 (11)

are partitioned into the following 4 descriptions:

F is C2 t C3 (12)
D1 isC1 t F (13)
Gis C1 t C2 (14)
D2 isG t C3 (15)

In this case, it may be harder to determine that G is
sub-class of D1 using (13) and (15) than (10) and (11),
but thorough determination of TBox inference rules (see
Sect. 4.3) can overcome this problem.

4.2 ABox Reasoning

Development of the algorithm for ABox reasoning was
directed by the following conditions:

• As TBox reasoning, ABox reasoning is performed
by translation of OWL and SWRL statements into
SQL commands.

• A set of OWL concept descriptions and relations,
and SWRL rules used in reasoning is not static.
Moreover, there can be changes in SWRL. There-
fore, the algorithm should be flexible enough to sup-
port dynamic rule sets or format changes.

• ABox reasoning is performed during query execu-
tion. So it is important to compute only conse-
quences relevant to the query. Therefore, the al-
gorithm consists of two stages: firstly, it deter-
mines goals relevant to the given query (Sect. 4.2.1)
and then executes SQL commands (entailment com-
mands) obtaining these goals (Sect. 4.2.2).

4.2.1 Goals Collecting

The first stage is used to determine triples that should be
entailed to answer the given query and to avoid redundant
computations. The following notions are introduced for
this task:

Definition 1. We call g a goal, if g = C(s) or g =
R(s, o), where C is a concept name, R is a role name,
s is either a variable or URI, and o is either a variable,
URI or a literal. We denote s as g.subj, and o as g.obj.

A goal can be constructed for every concept descrip-
tion, because it has an asserted name in the representa-
tion (see Sect. 4.1.1). Variables in different goals may
have the same names. However, such variables are not
the same. For instance, if we have goals g1 = P (?x, ?y)
and g2 = P (?y, ?x), they can be rewritten as g1 =
P (?x1, ?y1) and g2 = P (?x2, ?y2), respectively.

Definition 2. We say that a triple t with property
rdf:type corresponds to a goal g = C(s), if t.obj =
C, and exists substitution θ : t.subj = sθ. We say that a
triple t with a property R different from rdf:type cor-
responds to a goal g = R(s, o), if exists θ : t.subj = sθ
and t.obj = oθ. We say that an entailment command (in-
ference rule) corresponds to a goal g, if it entails triples
corresponding to g.

Thus, the task of the first phase is to collect goals cor-
responding to consequences related to the query. Entail-
ment commands corresponding to the collected goals are
executed during the second phase.

SPARQL-like notation (see Fig. 1) is used for RDF
queries with the following restrictions: graph pattern
is non-empty conjunction of triple patterns; no variable
is used in predicate position; if pattern’s property is
rdf:type, constant URI is set in object position. The
restrictions are similar to ones used in Pellet [26] and
allows goals-collecting. It starts from parsing of the
RDF graph pattern in the query. For each triple pattern
{s p o}, the goal pattern is constructed in the following
way: its first element (prop id) is set to id(p);the sec-
ond element (subj id) is set to NULL, if s is a variable,

Mother(?x)hasWife(?x,?y)

Male(?x)

U(?x)

E(?x) Female(?x)

hasSon(?x,?y)

hasChild(?x,?y)

D(?x)

hasPar(?x,?y)

Person(?x)

Figure 3: Goals collecting

and to id(s) else; the third element (obj id) is com-
puted by o in the same way as subj id. Usage of iden-
tifiers (id(·)) allows to avoid access to the dictionary
during all reasoning stages till the answer is returned to
the user. Exactly one goal pattern corresponds to a goal.
Thus, goals with the same patterns are called equal, and
goals are used further in the paper instead of goal pat-
terns for better understanding.

Let the ontology (1)-(6) extended with the assertions

Male(Peter) (16)
hasWife(Alex, Anna) (17)

is loaded into the database, and the following query is
given to find anyone whose wife is somebody’s mother:

{?m hasWife ?w}.{?w rdf:type Mother} (18)

Goals in the rectangles filled with light-grey on Fig. 3 are
created by the query. Having these two goals, only en-
tailment rules on base of (7) can be used to find instances
of Mother, but D is auxiliary concept without explicitly
asserted instances. Therefore, new goal is added to the
goals set. Again, these goals are not enough to answer
the query, and (8) allows new goals to be added. Goals-
collecting process for the example is depicted on Fig. 3,
where dark-grey fill is used to outline goals for auxiliary
concepts.

Goals collecting stops, when the goals set, containing
some goal g, also contains all goals on which g depends,
where the notion depends is defined as follows:

Definition 3. We say that a goal g1 depends on a goal
g2, if there exists some statement which can be used to
entail triples corresponding to g1 on base of triples cor-
responding to g2.

Dependencies are determined on base of SWRL rules
and OWL constructs. Therefore, it can be said that we
have a set of dependencies built as result of parsing and
extended during TBox reasoning (see Sect. 4.3.2). Ar-
rows on Fig. 3 illustrates dependencies determined for
the example ontology.

Algorithm 1 describes the goals-collecting process
more precisely. Addition of a goal g to the set G in
line 4 of the algorithm can be implemented as G ∪ {g}.
Note that if goals g and g′ are equal as defined above
(e.g. g = R(?x1, ?y1) and g′ = R(?y1, ?x1)), then
{g} ∪ {g′} = {g}. Algorithm 2 of adding goals to a set
can be used in line 4 of Algorithm 1 to reduce size of
obtained set of goals.

A notion of more general goal is used in Algorithm 2,
and we define it in the following way:

Algorithm 1 Collect goals using dependencies
Input: A set G of goals and a set D of dependecies

1: G′ := G
2: for all g ∈ G : g = p(s, o) do
3: for all d ∈ D : (d =< con, anc > ∧∃θ −

substitution : (con)θ = g) do
4: add (anc)θ to G′

5: if G 6= G′ then
6: G := G′

7: goto step 2

Definition 4. We say that goal pattern p1 is more gen-
eral than goal pattern p2, if p1 can be obtained from p2

by substitution of subj id or(and) obj id with NULL
value(s). We say that goal g1 is more general than goal
g2, if g1(g2) has pattern p1(p2, resp.), and p1 is more
general than p2.

This relation defines partial order on the set of all
goals. For instance, goal P (?x, ?y) is more general than
P (s1, o) and P (s2, ?x), goal R(s1, ?x) is more general
than R(s1, o), but goal P (s1, ?z) is not comparable by
this relation with P (?x, o) or P (s2, ?z) or R(s1, ?z),
where s1 6= s2. Obviously, if a set of goals contains
a goal g′ more general than a goal g, then the goal g
will be redundant in this set. The goal g does not corre-
spond to any entailment command which does not cor-
respond to g′. Moreover, if both goals, g and g′, are in
the set, some commands will be executed twice to entail
the same triples, and it degrades reasoning performance.
Note also that addition of a goal to the set in line 15 of
Algorithm 2 means recurrent call of the algorithm, unlike
lines 7,9,20 and 22.

Algorithm 2 Add a goal to set of goals
Input: A set G of goals, a goal g, a number L > 0

1: if not (g ∈ G ∨∃g′ ∈G: g′ is more general than g)
then

2: G := G\{g′ | g is more general than g′}
3: if g.prop = rdf:type then
4: Dubg := {g′ | g′.prop = rdf:type ∧ g′.obj =

g.obj}
5: if |Dubg| = L then
6: g.subj := NULL
7: G := G \ Dubg ∪ {g}
8: else
9: G := G ∪{g}

10: else
11: DubO

g := {g′ | g′.prop = g.prop ∧ g′.obj = g.obj}
12: if |DubO

g | = L then
13: g.subj := NULL
14: G := G \ DubO

g

15: add g to G
16: else
17: DubS

g := {g′ | g′.prop = g.prop ∧ g′.subj =
g.subj}

18: if |DubS
g | = L then

19: g.obj := NULL
20: G := G \ DubS

g ∪ {g}
21: else
22: G := G ∪{g}

Algorithm 1 terminates, even if infinite recursion in

dependencies occurs. Let NP is a number of all prop-
erties (except rdf:type) used in concept descriptions,
SWRL rules or subProperty axioms, NC is number
of concepts used in some OWL statements (axioms, de-
scriptions) or SWRL rules. Let also I is number of all
resources and literals in the dictionary. Then size of a
set of goals obtained by the Algorithm 1 is limited by
I2 · NP + I · NC if Algorithm 2 is not used, and by
L ·(I ·NP +NC) else. In the former case the set of goals
enlarges on all iterations (except the last one), and finite-
ness of Algorithm 1 is obvious. For the latter case finite-
ness can be shown, taking into account that the set can
be reduced on some iterations only in controlled manner.

Let us consider now implementation aspects of this
stage. Set of dependencies used for goals collecting
can be implemented as additional table. However, it is
enough to create the view depends defined as union of
selects from the statements tables for this aim. Command
UNION ALL is used for better performance, and conse-
quently the view can be not a set. Such implementation
does not violate algorithms requirements, but goals table
implementing set of goals must have no duplicates.

The algorithms can be implemented as a stored pro-
cedure which by the input RDF graph pattern constructs
goal patterns and inserts it into a goals table, and then
searches in depends view and the goals table to con-
struct new goals and insert them into the goals table too.
Absence of duplicates in the goals table can be guaran-
teed by the procedure or a trigger avoiding insertion of
duplicates into it.

However, we propose to use rules and triggers for
the algorithms implementation. Two tables were cre-
ated: old tgt implements a set of goals and new tgt
is used to solve problems with recursion in rules. For all
stored statements rules are created in the database; they
are fired, when certain goals are inserted into old tgt,
and insert new goals into new tgt. For instance, for
subProperty assertions rule R1 is created, and for the
rule (6) rules R2 and R3 will be created.

R1: CREATE RULE sp dep
AS ON INSERT TO old tgt
DO INSERT INTO new tgt
sp.subj id, NEW.arg1 id, NEW.arg2 id
FROM subprop sp
WHERE sp.obj id = NEW.prop id;

R2: CREATE RULE rule hs1
AS ON INSERT TO old tgt
WHERE NEW.prop id = id(hasSon)
DO INSERT INTO new tgt
id(hasPar), NEW.arg2 id, NEW.arg1 id;

R3: CREATE RULE rule hs2
AS ON INSERT TO old tgt
WHERE NEW.prop id = id(hasSon)
DO INSERT INTO new tgt
id(rdf:type), NEW.arg2 id, id(Male);

Trigger is created on new tgt to implement Algorithm 2
instead of insertion of goals into this table.

Thus, the stored procedure needs only to construct
goals by the input RDF graph pattern and insert them
into new tgt. All other goals will be collected automat-

ically by fired rules and triggers. This approach makes
code of the stored procedure simpler and reduces num-
ber of searches in the goals tables. Moreover, it is more
flexible: addition of new kinds of dependencies does not
require modifying a code of the stored procedure – it is
enough to add new rules on old tgt.

4.2.2 Obtaining Answer

When goals are determined, triples corresponding to
them should be entailed to answer the query. One pos-
sible way to do it is to create a stored procedure which
should look at the goals table and for each goal in this
table search in the statements tables which statements
correspond to the goal and then execute SQL commands
built by found statements.

Another way is to create a simpler stored procedure
which uses collected goals to invoke tailored rules and
triggers. Comparing to the first one, it avoids look ups
on the statements tables and it is more flexible: adding
or changing of logic constructs demand writing of new
triggers and rules5, not rewriting the whole procedure.

The second way was chosen, and the auxiliary table
tasks (Fig. 2 (n)) was tailored for creating rules. When
some goal is inserted into the table, rules which can en-
tail triples corresponding to the goal are fired. All these
rules are created with INSTEAD modifier to prevent ac-
tual insertion of triples into tasks table. There are two
ways to create these rules: one rule can be created in ad-
vance for all logic statements of some kind (e.g., rule R4
supports entailment for all subPropertyOf statements)
or one rule can be created for every particular statement
(e.g., rule R5 is created on base of (6)).

R4: CREATE RULE subpropof rule
AS ON INSERT TO tasks
WHERE sp flag IS TRUE

DO INSTEAD INSERT INTO tr
SELECT tr.subj id, NEW.prop id,

tr.obj id, i.num+1
FROM tr, subprop sp, iternum i
WHERE tr.prop id = sp.subj id
AND sp.obj id = NEW.prop id
AND tr.isinf >= i.num ;

R5: CREATE RULE hasson rule
AS ON INSERT TO tasks
WHERE prop id = id(hasSon)

DO INSTEAD INSERT INTO tr
SELECT t1.obj id, NEW.prop id,

t1.subj id, i.num+1
FROM tr t1, typetrip t2, iternum i
WHERE t1.prop id = id(hasPar)
AND t2.subj id = t1.subj id
AND t2.obj id = id(Male)
AND (t1.isinf >= i.num
OR t2.isinf >= i.num) ;

When there are too much rules created in the database,
it is hard to understand, how conclusions were computed,
or to find possible errors. On the other hand, usage of
rules created for particular statements can be more effec-
tive. Firstly, such rules have more serve firing conditions.

5Here an anology with modular programming can be drawn

Secondly, they do not need to look in the statements ta-
bles (e.g., subprop table is selected in rule R4, and the
SWRL rules tables are not selected in rule R5). More-
over, if trigger or rule is created to support all SWRL
rules, it will generate SQL commands for every appro-
priate SWRL rule every time it is fired.

Therefore, both kinds of rules are used: new rules are
created for every stored concept descriptions and SWRL
rules, and other rules are created for other kinds of logic
statements. Special columns in tasks and old tgt ta-
bles are used to avoid firing of the latter rules for goals
not requiring it. For instance, flag sp flag is set to
TRUE for some goal, if its property has subproperty, and
only such goals can fire rule R4.

Algorithm 3 Entailment of triples driven by collected
goals
Input: A set G of goals, a set D of dependencies, a set

R of entailment commands, and a set T of triples.
Let also two boolean flags has anc and inf new are
assotiated with every goal g∈G.

Output: The set T enriched with implicit triples, corre-
sponding to goals from the set G

1: for all goal g∈G do
2: g.has anc := TRUE
3: g.inf new := FALSE
4: while ∃g∈G:has anc IS TRUE do
5: Tnew := T
6: for all g∈G:has anc IS TRUE do
7: Tnew := Tnew ∪ { t | ∃r∈R: r corresponds to g

and it’s evaluation on Tnew entails t }
8: for all g∈G do
9: if exist t∈ (Tnew \ T): t corresponds to g then

10: g.inf new := TRUE
11: else
12: g.inf new := FALSE
13: for all each g∈G do
14: if exists g′ ∈G,d∈D: g′.inf new IS TRUE ∧ d

= (g,g′) then
15: g.has anc := TRUE
16: else
17: g.has anc := FALSE
18: T := Tnew

We propose Algorithm 3 for entailment of implicit
triples related to the query. Flags has anc and new anc
correspond to fields of the same names in old tgt and
tasks tables. These flags allow execution of com-
mands, which knowingly can not entail new triples, to be
avoided. Indeed, has anc flag is set to TRUE for some
goal only if at least one triple is entailed on the last itera-
tion of the algorithm, which can be used in entailment of
triples corresponding to this goal.

Probability of entailment of duplicate triples is re-
duced using isinf field: it is set to number of iteration
on which triple was entailed (and to 0 for asserted ones);
and additional conditions on this field are used in rules to
prevent entailment on base of only triples already taken
into account at the previous iterations. Usage of isinf
(as sp flag) is outlined with italics in rules R4 and R5.

In the example rules (R4-R5) insertion is performed
into tr view for simplicity. Actually, rules can be created
to insert into appropriate property tables. Rules corre-

Mother(Anna)

Male(Peter)

U(Peter)

E(Anna) Female(Anna)

Person(Peter)

hasSon(Anna,Peter)

hasChild(Anna,Peter)

D(Anna)

hasPar(Peter,Anna)

hasWife(Alex,Anna)

Figure 4: Entailment to answer the query

sponding to rdf:type and properties not clustered into
separate tables insert implicit triples into intermediate ta-
bles. The stored procedure eliminates duplicates from
these tables, and only then inserts new triples into appro-
priate tables.

Entailment process for answering the query (18) is de-
picted in Fig. 4. Note that 3 rules support (1): R4 is ap-
plied to (7) and two rules like R5 are tailored for (8) and
(9). Number of iterations of Algorithm 3 in this example
can vary from 2 to 6 depend on order of rules firing and
usage of intermediate tables.

Table taskdep was created to realize the D set. It
populates after all goals are determined, and before start-
ing of the entailment algorithm in the following way:
values of its fields are unique identifiers automatically
generated for each goal in old tgt table, and if tup is
a row in the taskdep table, it means that the goal with
id tup.con id depends on the goal with id tup.anc id.
This table makes it easier to find dependencies between
goals by reducing this task to search in one table by in-
teger field and avoiding search in multiple dependency
tables with more complicated conditions.

Algorithm 3 terminates, because the set T expands
on all iterations, and its size is limited at worst by N3,
where N is number of entities in the dictionary. Al-
though SWRL is known to be undecidable, our estimate
is correct, because anonymous individuals are not gen-
erated during ABox reasoning. Only resources from the
dictionary are considered, when SWRL rules are used
for entailment. Therefore, even Datalog safeness is not
mandatory for SWRL rules, because variables violating
it can have only values from the dictionary. The same
is done in [20] by addition of O predicate to the body
of rules. However, true support of SWRL built-ins will
require some safeness conditions.

4.3 TBox Reasoning

The following ways can be used to build a concept hier-
archy (i.e. to determine relations between concepts):

• Construct an OWL document on base of stored in-
formation about concept descriptions and relations
between them, use some complete reasoner (e.g.
Pellet [26]) for TBox reasoning on it, and then store
implicit relations in the database. The database
schema used in our work allows constructing such
OWL document easily. This approach can be prac-
tical in cases, when size of stored ontologies is not
very large and completeness of TBox reasoning is
important.

• Perform reasoning using DBMS features. In this
case reasoning will be sound, but may be incom-
plete. However, as it was mentioned above, ontolo-
gies with large number of named concepts are ap-
pearing, which are serious challenges for complete
DL reasoners, and usage of such reasoners can be
unpractical in certain applications. So we imple-
ment TBox reasoning in database as it is presented
below in this Section.

4.3.1 Strategy of TBox Reasoning

Result of TBox reasoning is determination of im-
plicit relations (subClassOf, equivalentClassOf and
disjointWith) between concepts (both named and
anonymous) and role inclusion axioms. To solve this
task, a set of inference rules easily translated into SQL
queries over the statements tables is determined on base
of OWL constructs. It includes the following ones:

C1 @ C2 ∧ C2 @ C3 =⇒ C1 @ C3 (19)
D is C1 t . . . t Ci t . . . t Cn =⇒ Ci @ D (20)

D1 is C1 t . . . t Cn

∀i = 1, . . . , n : Ci @ D2

}
=⇒ D1 @ D2 (21)

D1 is ∃P.C1

D2 is ∀P.C2

C1 u C2 @ ⊥

 =⇒ D1 u D2 @ ⊥ (22)

The simplest algorithm for TBox reasoning is to exe-
cute determined rules iteratively until no more relations
can be entailed. However, as since the set of inference
rules is static, it is possible to analyze dependencies be-
tween rules and to determine order of rules execution
which allows obtaining the same set of relations more
effectively. For instance, rules (19)-(20) produce and de-
pend on subClassOf-axioms and they are executed to-
gether in one loop. Rule (22) produces and depends on
disjointWith-axioms and can be executed once before
or after the loop. Thus, process of TBox reasoning con-
sists of a sequence of commands and iterations of com-
mands. It terminates, because number of relations in-
creases on all iterations and is limited by O(N2

C + N2
P),

where NC is a number of stored concepts and NP is a
number of stored properties.

4.3.2 Influence on ABox reasoning

TBox reasoning produces information about concepts
from the ontology which itself can be interesting for the
user. In addition, it can improve ABox reasoning. Goals
collecting is driven by the existing set of dependencies
which can be extended during TBox reasoning.

Let us consider axioms (10) and (11) represented as
(12)-(15). Let it is also known that some individual r
is instance of either C1 or C2 (i.e. G(r)). Although
axioms (10) and (11) imply D1(r), the Abox reasoning
algorithm doesn’t allow one to find any instance of D1

using only (12)-(15). The situation is changing, if TBox
reasoning was performed previously. Application of (20)
to (12)-(13) entails that C1 and F are subclasses of D1,
and F itself has C2 as subclass. This allows (19) to entail
that C2 is also subclass of D1. The entailed axioms and
(14) are used by (21) to entail that G is subclass of D1

what allows to find that r is instance for D1.

Therefore, performing TBox reasoning before ABox
reasoning allows obtaining more complete answers.

5 RDF Querying
5.1 Implementation

Table function RDF QUERY was implemented to provide
users ability to access RDF data. Its input is SPARQL-
like RDF graph pattern with restrictions described in
Sect. 4.2.1 and result is table with columns correspond-
ing to the variables in the given pattern. The func-
tion parses the pattern to build goal patterns and SQL
command to retrieve results. Then it inserts the gener-
ated goal patterns into new tgt to start goals collecting.
When goals are collected, it invokes the entailment pro-
cedure implementing Algorithm 3. Finally, it executes
built SQL command to return answer on the query. Thus,
the user does not need to know actual database and rea-
soning schemas to access RDF data.

As [29] notes, caching previous query results or full
pre-computation can speedup or avoid reasoning at the
query time. Although TBox reasoning is pre-computed,
the presented approach also allows pre-computation and
caching previous results for ABox reasoning. Since all
entailed triples are stored in the same tables as asserted
ones, it is enough to not remove them after query answer-
ing to apply caching. Stored procedure was tailored for
full pre-computation. It creates goals from consequences
of all stored dependencies, inserts them into old tgt
and invokes the entailment procedure. Table function
RDF QUERYWOI was created to access RDF data, when
reasoning is pre-computed. It has the same interface with
RDF QUERY, and the difference is that it does not con-
struct goals and perform reasoning.

5.2 Query examples

This Section shows some examples of queries to RDF
data with reasoning on base of OWL statements and
SWRL rules. The examples are queries to the Family
ontology from [2]. In this ontology most family relations
(including that used below) are asserted implicitly using
SWRL rules and OWL statements (including property re-
strictions, intersections, etc.). Query Q1 returns names of
all persons who are known to be sisters. Note that prefix
p is specified for conciseness of the query.

Q1: SELECT n1,n2 FROM RDF QUERY(
’{!PREFIX p http://a.com/ontology#}
{?s p:hasSister ?m}
{?s p:name ?n1}{?m p:name ?n2}’)
AS res(s text, m text, n1 text, n2 text);

5.2.1 Restriction Definitions

Our extension of SPARQL graph pattern is ability to de-
fine restrictions. Query Q2 demonstrates how restrictions
can be defined and used. The query returns names of all
persons who are known to have at least 2 brothers.

Q2: SELECT n FROM RDF QUERY(
’{!PREFIX p http://a.com/ontology#}
{!RESTR r p:hasBrother [minCard 2]}
{$s rdf:type $r}{$s p:name $n}’)
AS res(s text, n text);

If this restriction is not stored in the database, the query
procedure will store it into the corresponding table and
create inference rule for it. RDF QUERYWOI also entails
instances of it. It can be not desired to store all restric-
tions defined in queries. Therefore, table tmp cls stores
for each such restriction number of queries utilizing it,
and this information can be used to decide either it should
be stored or deleted from the database.

Persons with at least 2 brothers also can be found
with query Q3 which does not use restriction definitions.
Though, usage of restrictions has several advantages:
First, a user does not need to care how RDF data is
stored, and the database schema changes do not cause
rewriting of queries. In contrast, explicit selections from
triples and the dictionary (denoted by get id) are
used in query Q3. Second, it is easier to write and under-
stand query Q2 than Q3. Note that although restriction to
have at least 2 brothers is implemented as outer condition
in Q3, the pattern with property hasBrother is added to
infer all persons who have a brother to obtain expected
answer6. Third, additional condition in RDF QUERY may
reduce number of rows returned through table function
interface. Finally, when query with definition of restric-
tion is executed, information about individuals satisfying
it is stored in the database, and will be used for follow-
ing queries. So if it is queried frequently, query Q2 is
preferable. And query Q3 may be preferable else.

Q3: SELECT n FROM RDF QUERY(
’{!PREFIX p http://a.com/ontology#}
{$s p:name $n}{$ p:hasBrother $b}’)
AS res(s text, n text, b text) WHERE
(SELECT count(*) FROM triples WHERE
subj id = get id(res.s) AND prop id =
id(’http://a.com/ontology#hasBrother’)

) >= 2;

5.2.2 Data Integration

Query Q3 shows that data returned by RDF QUERY can
be interpreted as an ordinary table: arbitrary conditions
can be used for selection from it, some statements, ag-
gregates can be computed on returned data, there can be
joins with other tables in the database, even not only
used for storing of RDF data. Thus, we have a way
to integrate data stored in relational databases with Se-
mantic Web data. For instance, let we have a table
emp(emp name,dep id) which is used to store names
of employees and numbers of their departments. Then
we can find all persons who work with their brothers in
the same department using query Q4:

Q4: SELECT e1.* FROM RDF QUERY(
’{!PREFIX p http://a.com/ontology#}
{?s p:hasBrother ?m}
{?s p:name ?n1}{?m p:name ?n2}’)
AS res(s text, m text, n1 text, n2 text),
emp e1, emp e2
WHERE e1.emp name = n1
AND e2.emp name = n2
AND e1.dep id = e2.dep id;

6it is not required for RDF QUERYWOI

5.2.3 SPARQL Features

Although only core feature of SPARQL is supported,
SQL power can be used in outer query to implement
more comprehensive queries to RDF data with such
SPARQL features as FILTER, OPTIONAL, UNION.
Query Q5 implements the SPARQL query on Fig. 1
which uses UNION7:

Q5: SELECT n1,n2 FROM (
SELECT * FROM RDF QUERYWOI(
’{!PREFIX p http://a.com/ontology#}
{?s p:hasAunt ?m}
{?s p:name ?n1}{?m p:name ?n2}’
) AS res (s text,m text,n1 text,n2 text)
UNION
SELECT * FROM RDF QUERYWOI(
’{!PREFIX p http://a.com/ontology#}
{?s p:hasUncle ?m}
{?s p:name ?n1}{?m p:name ?n2}’
) AS res (s text,m text,n1 text,n2 text)
) AS foo;

5.3 Completeness and Soundness

In researches on translation of DL knowledge bases into
Datalog rules usage of DL constructs is often restricted
to adhere to completeness of reasoning. For instance, in
DLP [12] it is forbidden to use allValuesFrom restric-
tions on the left-hand side of subClassOf axioms, and
someValuesFrom restrictions and unionOf construct
on the right-hand side. Our approach does not restrict
OWL DL somehow. Although reasoning may be incom-
plete in this case (e.g. constructs with non-determinism
are not supported fully), query answering for more ex-
pressive ontologies is allowed.

Let consider the following toy ontology:

MovieLover @ ∃ interestedIn.Movies (23)
SportFan @ ∀ interestedIn.Sports (24)

Sports u Movies @ ⊥ (25)
(> 2 hasFriend) @ Sociable (26)

SportFan(Peter) (27)
MovieLover(Anna) (28)

hasFriend(Alex, Peter) (29)
hasFriend(Alex, Anna) (30)

This ontology is not in DLP, and our approach allows
someone to find individuals of the concept Sociable de-
scribed in it. First, it applies (22) to (23), (24) and (25)
during TBox reasoning to entail

MovieLover u SportFan @ ⊥ . (31)

Then it uses (31) and the assertions (27)-(28) to entail

differentFrom (Anna, Peter) . (32)

Finally, it uses the axiom (26), the assertions (29), (30)
and (32) to entail the answer

Sociable(Alex) . (33)

7If RDF QUERY were used in Q5, ABox reasoning would be per-
formed twice.

Table 1: LUBM(1) – LUBM(10) experimental results
Explicit Inferred Reason (m:s) Query (ms)
100808 49725 00:22 18.54-732.46
230345 112802 00:59 51.16-1044.4
337427 165228 01:31 59.66-1208
478105 233710 02:12 53.74-1496.8
624875 305373 03:02 79.57-1760.1
723311 353275 03:35 96.77-1924.5
884525 432072 04:34 137.4-2513.4
1001817 489582 04:43 155.6-2715.2
1125031 549965 05:17 161.8-3156.6
1273014 622223 06:06 176.8-3875.6

Although answers for some queries may be incom-
plete, all answers are sound. Inference rules were im-
plemented to apply open-world semantics of DLs, when
closed-world (and closed-domain) semantics are more
natural for databases. For instance, the presented ap-
proach does not entail that any individual from the on-
tology (23)-(30) is instance of concept described as
(6 2 hasFriend). Indeed, although all the individuals
have no more than 2 objects for hasFriend, the ontol-
ogy does not say that they can not have more objects for
it. For in-depth description of differences between the
semantics please refer to [22].

Further, Unique Name Assumption (UNA) is often
used in researches for DLs. It assumes that individuals
with different names are different. Therefore the answer
(33) can be returned without entailment of (31) and (32).
Although UNA simplifies reasoning, it is not applicable
for OWL, because of its distributed nature. Therefore, it
is not applied in the implementation of inference rules.

Moreover, although answers on RDF queries are in-
complete in the general case, it might be enough to han-
dle practical ontologies. Popular benchmark LUBM [13]
was used for experiments with the implementation. The
testing system is Intel Pentium IV 2.6 GHz machine with
2 Gb of main memory running Linux, PostgreSQL 8.2.
ABox reasoning was pre-computed. The results for the
first ten universities (number of explicit and inferred
triples, reasoning time, minimal and maximal querying
time) are shown in Table 1. Good performance and scal-
ability of reasoning and query answering were obtained
in the experiments. However, experiments with greater
number of universities are planned to examine scalability
further. Answers for all the queries from the benchmark
are sound and complete.

Reasoning for the Family ontology was performed
during querying. Number of inferred triples is about
1400, and query time is less than 3 seconds. All the
family relations were determined fully and correct, and
the most of concepts were instantiated, except Sibling
which uses restriction (∀hasSibling.Sibling) in its de-
scription. It does not cause infinite recursion during rea-
soning, but can’t be instantiated in our approach. Its
elimination from the description allows Sibling to be in-
stantiated correctly.

Because the approach allows only sound answers for
queries, it can be used for partial performing of stan-
dard DL reasoning tasks in the following sense. If an-
swer set for the query {?x rdf:type owl:Nothing}
is not empty, it can be said that the stored ontology is

inconsistent. However, if the set is empty, it can be said
nothing about consistency of the ontology. Therefore,
the approach can be used also for ontology debugging.

6 Related Work
Researches on usage of relational DBMS in DL reason-
ing with large-scale datasets had begun before the no-
tion of the Semantic Web was proposed. For example, in
[9] a problem of effective reasoning in knowledge base
management system CLASSIC with large-scale dataset
stored in relational databases is regarded.

Early systems supporting OWL use in-memory rea-
soners based on the tableaux algorithms. Some of them
utilize databases to persist large RDF data sets and of-
ten do not even leverage their query optimization power.
Thus, Sesame [10] uses a special module which decom-
poses conjunctive queries to a set of SQL queries to re-
duce influence of a particular DBMS. As since much at-
tention was paid to effective retrieval of RDF triples from
databases, it results in development of various database
schemas for storing RDF data (e.g. [3, 10, 11, 25, 30]).

The OWL instance Store [6] is the system which uses
a hybrid database/reasoner architecture to perform rea-
soning over large volumes of instance data. However,
the system supports answering instance retrieval queries,
not arbitrary SPARQL queries. It is also mentioned that
role assertions are not supported.

In [21], a proposal for scalable query answering is
presented. It is based on translating DL KB (OWL on-
tology) into DL2DB KB, which contains a fixed set of
inference rules. These Datalog rules are used for ABox
reasoning. As in our work, bi-directional strategy is
proposed for Abox reasoning. However, there are sev-
eral distinctions between these algorithms. Firstly, we
suggest to implement ABox reasoning in DBMS, not in
some middle-ware layer. Secondly, in [21] the set of in-
ference rules is fixed and supports logic SHI , less ex-
pressive than OWL. Finally, in contrast to simple itera-
tive execution of all instantiated rules in BottomUp algo-
rithm, we change a set of goals on all iterations of Al-
gorithm 3 and propose some techniques to avoid redun-
dant computations. Reasoning in [21] is performed dur-
ing querying as in our work. However, in contrast to our
work, neither pre-computation nor caching of previous
queries results are used in [21]. Finally, TBox reasoning
is performed using external reasoners.

Owlgres [27] is the OWL reasoner using PostgreSQL
connected via JDBC to optimize query answering. Sup-
ported OWL dialect does not accept features like transi-
tive properties and someValuesFrom restrictions in the
l.h.s. of axioms. Thus, even LUBM ontology used in our
experiments is not compatible with Owlgres.

These loosely-coupled approaches have several short-
comings: (1) DBMS users cannot reference ontology
data directly, (2) the query processing and optimization
power of a DBMS is not used fully. Inefficiency often
is incurred by transformation of data from SQL to other
formats. However, for the best of our knowledge, there
are only a few proposals to use DBMS for ontology man-
agement without external reasoners.

Oracle implements inference engine for ABox reason-
ing, suggesting TBox reasoning to be performed using

external reasoners. Initially, the Oracle’s approach [11]
supported reasoning based only on RDFS and user-
defined rules with limited recursion. Inference possi-
bilities were extended in Oracle 11g to support a sub-
set of OWL not including several constructs (unionOf,
intersectionOf, and cardinality restrictions). Un-
like our approach, the inference engine in Oracle 11g
does not obtain complete answers for several queries in
LUBM benchmark [13] without external DL reasoner.
As since the majority of nowadays data is stored in re-
lational databases, ability to access RDF and relational
data in one SQL query presented by both Oracle’s and
our approaches is very important.

Another proposal [18] is based on leveraging of XML
support in hybrid relational-XML DBMSs to persist tax-
onomies contained in ontologies, and using SQL/XML
and XQuery to query RDF data. However, only reason-
ing on base of transitive relations is considered in [18].

7 Conclusion and Future Work
The paper presents an approach to query answering and
reasoning for Semantic Web data. Both ABox and TBox
reasoning are performed using only RDBMS features.
Most of them are common for the majority of RDBMSs.
Use of the only exception (the rule system) is not manda-
tory, and it can be replaced by triggers. Therefore, the
approach can be implemented in any RDBMS support-
ing triggers, stored procedures and table functions.

Following to proposals in [29], the approach does not
adhere to completeness property of reasoning. This al-
lows our approach to support sound reasoning for more
expressive ontologies. If completeness is important for a
certain application, our database schema allows usage of
external state of the art reasoners to perform TBox rea-
soning. As since entailed triples are stored with exten-
sional ones, it is possible to use caching of prior results
for reasoning or even pre-compute it.

Although only core features of SPARQL language are
implemented now, it is shown in the paper that more ex-
pressive features are supported using the implemented
RDF query functions and SQL power. The approach also
allows querying both data stored in a relational database
and Semantic Web data simultaneously.

Future work may be directed on aspects of the Seman-
tic Web which are not in the focus of researches’ atten-
tion now, but could be very useful in practice: full sup-
port of data-valued properties and the Proof layer of the
architecture [7].

8 Acknowledgments
The author thanks Alexander S. Markov for his contribu-
tion to the paper.

References
[1] PostgreSQL home page. www.postgresql.org.

[2] Protégé ontologies library. http://protege.cim3.net/
cgi-bin/wiki.pl?ProtegeOntologiesLibrary.

[3] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hol-
lenbach. Scalable semantic web data management

using vertical partitioning. In VLDB, pages 411–
422, 2007.

[4] M. Aslani and V. Haarslev. Towards parallel clas-
sification of TBoxes. In Proc. of the 2008 Interna-
tional Workshop on Description Logics (DL 2008),
volume 353 of CEUR, 2008.

[5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,
and P. Patel-Schneider. The Description Logic
Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2003.

[6] S. Bechhofer, I. Horrocks, and D. Turi. The OWL
instance store: System description. In CADE,
volume 3632 of LNCS, pages 177–181. Springer,
2005.

[7] T. Berners-Lee. Standards, semantics and survival.
SIIA Upgrade, pages 6–10, June/July 2003.

[8] T. Berners-Lee, J. Handler, and O. Lassila. The
semantic web. Scientific American, 284(5):34–43,
May 2001.

[9] A. Borgida and R. J. Brachman. Loading data
into description reasoners. ACM SIGMOD Record,
22(2):217–226, 1993.

[10] J. Broekstra, A. Kampman, and F. van Harmelen.
Sesame: A generic architecture for storing and
querying RDF and RDF Schema. In Proc. of Inter-
national Semantic Web Conference (ISWC), pages
54–68, 2002.

[11] E. I. Chong, S. Das, G. Eadon, and J. Srinivasan.
An efficient SQL-based RDF querying scheme. In
VLDB, pages 1216–1227, 2005.

[12] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker.
Description logic programs: Combining logic pro-
grams with description logic. In WWW, pages 48–
57, 2003.

[13] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark
for OWL knowledge base systems. Journal of Web
Semantics, 3(2):158–182, 2005.

[14] I. Horrocks. Semantic Web: The story so far. In
Proc. of the 2007 international cross-disciplinary
conference on Web accessibility (W4A), pages 120–
125, 2007.

[15] I. Horrocks, P. F. Patel-Schneider, H. Boley,
S. Tabet, B. Grosof, and M. Dean. SWRL: A
semantic web rule language combining OWL and
RuleML. W3C Member Submission, 21 May 2004.
http://www.w3.org/Submission/2004/SUBM-
SWRL-20040521/.

[16] I. Horrocks, U. Sattler, and S. Tobies. Practical rea-
soning for expressive description logics. In LPAR,
volume 1705 of LNCS, pages 161–180. Springer,
1999.

[17] U. Hustadt and B. Motik. Description logics and
disjunctive datalog — the story so far. In Proc.
of the 2005 International Workshop on Description
Logics (DL 2005), volume 147 of CEUR, 2005.

[18] L. Lim, H. Wang, and M. Wang. Semantic data
management: Towards querying data with their
meaning. In ICDE, pages 1438–1442. IEEE, 2007.

[19] F. Manola and E. Miller. RDF primer.
W3C Recommendation, 10 February 2004.
http://www.w3.org/TR/2004/REC-rdf-primer-
20040210/.

[20] J. Mei, H. Boley, J. Li, V. C. Bhavsar, and Z. Lin.
The DatalogDL combination of deduction rules
and description logics. Computational Intelligence
Journal, 23(3):356–372, 2007.

[21] J. Mei, L. Ma, and Y. Pan. Ontology query answer-
ing on databases. In Proc. of International Seman-
tic Web Conference (ISWC), pages 445–458, 2006.

[22] B. Motik, I. Horrocks, R. Rosati, and U. Sattler.
Can OWL and logic programming live together
happily ever after? In Proc. of International Se-
mantic Web Conference (ISWC), pages 501–514,
2006.

[23] P. F. Patel-Schneider, P. Hayes, and I. Horrocks.
OWL Web Ontology Language semantics and ab-
stract syntax. W3C Recommendation, 10 February
2004. http://www.w3.org/TR/owl-semantics/.

[24] E. Prud’hommeaux and A. Seaborne. SPARQL
query language for RDF. W3C Recommenda-
tion, 15 January 2008. http://www.w3.org/TR/rdf-
sparql-query/.

[25] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes,
and S. Manegold. Column-store support for RDF
data management: not all swans are white. In
VLDB, pages 1553–1563, 2008.

[26] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur,
and Y. Katz. Pellet: A practical OWL-DL reasoner.
Journal of Web Semantics, 5(2):51–53, 2007.

[27] M. Stocker and M. Smith. Owlgres: A scalable
OWL reasoner. In Proc. of the 5th OWLED Work-
shop on OWL: Experiences and Directions, co-
located with ISWC 2008, volume 432 of CEUR,
2008.

[28] M. Stonebraker, A. Jhingran, J. Goh, and
S. Potamianos. On rules, procedures, caching and
views in database systems. In Proc. ACM-SIGMOD
Conference on Management of Data, pages 281–
290, 1990.

[29] R. Volz. Change paths in reasoning! In Proc. of the
1st International Workshop “New forms of reason-
ing for the Semantic Web: scalable, tolerant and
dynamic”, co-located with ISWC 2007 and ASWC
2007, volume 291 of CEUR, 2007.

[30] K. Wilkinson, C. Sayers, H. Kuno, and
D. Reynolds. Efficient RDF storage and re-
trieval in Jena2. In Proc. of SWDB’03, First
International Workshop on Semantic Web and
Databases, pages 131–150, 2003.

