Classifying Elements for XML Query Transformation

© KeGeng

University of Auckland, New Zealand
ke@cs.auckland.ac.nz

Abstract

Research into XML query transformation has
become important with the increased use of
XML. Currently the research into XML query
transformation concentrates on transformation
based on structure of the XML document. In
this paper, wewill introduce our research which
transforms queries using the classification of el-
ements of XML documents. The experiments
have shown that our method improves query ex-
ecution dramatically.

1 Introduction

Query transformation [1] is an important branch
of semantic query optimization [13]. Some research
into XML query transformation has been carried out
[5] [9] [4], but this research concentrates on transforming
XML queries based on the structure of the XML docu-
ment and there is little research into transforming XML
gueries based on the content of the data. Thisis because
XML documents are too complex and the complexity
limits the implementation of existing analysis technolo-
gies to glean information from the content of the XML
document.

In this paper, we introduce our research into transform-
ing XML queries based on the datain XML documents.
The aim of our research is to improve query execution
by transforming the queries based on the elements’ clas-
sification. Elements in the queried XML document will
be analyzed and their value distribution characteristics
will be abstracted. Then classificationswill be generated
based on the elements value distribution charactestics.
With the information of the elements’ classification, the
input XML queries will be evaluated and transformed to
a query, which will return the same results as the origi-
nal query but can be executed faster. A series of exper-
iments have been carried out and the results show that
guery execution can be improved dramatically with our
method. Our early contributions are: First, we introduce
amethod to transform XML queries based on the content
of the XML document [6]. Second, we introduce possi-
ble query transformationsin our method [6]. Third, we
present experimenta results to examine the practicality
of transforming XML queries based on element classifi-
cation and study theinfluence of query transformation on
query execution [7]. Based on these contributions, the

Proceedings of the Spring Young Researcher’s Colloquium
on Database and Information Systems, Moscow, Russia, 2006

novel contributions in this papaer are: First, we discuss
the challenges of XML dataanalysis and the possible so-
lution. Second, we propose a possible XML data analy-
sis method. Previously, we assumed a technique existed
that analyses the XML data and classifies the elements.
In this paper , we propose that XMeans can be used to do
the classification.

The remainder of this paper is structured as follows.
Background information is introduced in section 2. Our
query transformation method is introduced in section 3.
Section 4 introduces the query transformations in our
method. In section 5, we introduce the experiments and
analyze the experimental results. In section 6, we discuss
related work. Section 7 draws conclusions and discusses
the problems that we are working on.

2 Background

In this section, we discuss the existing semantic query
optimization methods in XML and the challenges that
arisein XML analysis.

XML semantic query optimization can be classified into
two main groups. optimization based on the structure of
the document, and optimization based on the content of
the document. Optimization based on the structure of
the document uses information that is found in the doc-
ument’s schema to optimize XML query processing. In
[9], an ordered graph schemaisintroduced. Input queries
are evaluated against the schema and query conditions
that will not influence the final result are eliminated.
Another implementation of optimization based on struc-
tureis outlined in [5], which checks target XML docu-
ments against the schemaand skips unnecessary compu-
tations. The authorsin [11] introduce methods to trans-
form XPath queries based on unique location path con-
straints abstracted from the XML Schema.
Optimizations based on the content use the characteris-
tics of values of elements to improve XML query exe-
cution. Currently most of this kind of research concen-
trates on statistical information. An example of thiskind
of optimization isimplemented in Lore [12], which uses
statistical information of elementsto improve query exe-
cution by rearranging the sub query execution order. Pat-
terntrees [2] are used in another important implementa-
tion of query optimization based on statistics.

How to analyse XML documents and abstract element
characteristics is an obstacle to transforming queries
based on the content of XML. This obstacle arises be-
cause XML is very flexible and complex, limiting the
existing XML analysis:

=product= =product= =product= =product= =product=
=product= =ID=182037=/ID= =ID=220031-/ID= =I1D=144023</1D= =I1D=205026-/1D= =ID=153061-/ID=
=1D=145026=/1D= =material=cotton =material=leather =material=cotton =material=leather =material=cotton
=material=cotton = /material= = /material= = /material= = /material= = /material=
</material= =price=$300 =price=$380 <price=$249 =price=$420 =<price=$690
=<price=$280 </price= =/price= =/price= =/price= =/price=
<{price= <madeln=Italy =1madeIn=India =1nadeIn=Italy =madeIn=TUsA =1madeIn=India
=madeln=India =/madeln= </madeIn> </madeIn> =/madeIn= =/madeIn=
</madeln= =/product= =/product= =/product= =/product= =/product=
</product=
Figure 1: XML document store.xml
age totalPay mportance | area a query “document('store.xml’)//product[ID >
bt 100000 !) 200000 and material = ‘leather’]” can betransformed
0 2001 10000 . : to “document(’'store.xml’)//productmaterial =
40-49 10001-15000 2 2 Jeath L) d th t Sf ed “ et
=050 15001-20000 3 7 eatner] an . .e ransrormed query W! return same
60-79 20001-30000 3 3 results as the original when executed against the datain

Figure 2: The values of inserted elements

1. the structure of XML documents is unpredictable
and users can compose their XML documents us-
ing any arbitrary structure. Also, the same con-
tent can be expressed in various ways, such as
“< name > JohnGoldberg < [name >"
and “< name >< firstName > John <
/firstName >< lastName > Goldberg <
/lastName >< [name >".

2. the relationship between elements can be complex.
The relationship can be siblings, parent-child or
ancestor-descendant.

3. same name elements may appear within different
parent nodes and be distributed at different levels
inan XML document.

3 Methodology

Our method for transforming XML queries is to
classify elements based on distribution characteristics of
the values of elements and transform the queries based
on the classifications. As we discussed in the previous
section, the biggest obstacle is the flexibility of XML
documents. However if we concentrate only on specific
elements instead of the whole document, it is possible
to abstract their value distribution characteristics, and
related elements may be classified based on the distribu-
tion characteristics. Then query transformation may be
carried out based on the classification.

Consider the XML file shown in Fig. 1. It may be
difficult to classify the product elements based on the
values of all their subelements. This problem can be
overcome by choosing the most important elements for
the classification. For example we may analyze two
elements ID and material, and find that al products
that are made of cotton have IDs smaller than 200000
and the IDs of products that are made of leather are
greater than 200000. So we can classify the elements
product to two groups. product of cotton, which have
IDs smaller than 200000, and product of leather, which
have IDs bigger than 200000. With this classification,

Fig. 1.

The element classification results and the related
information of elements, including both element value
characteristics and the number of the elements of each
group, are al useful in query transformation. With the
classification information, queries will be evaluated and
possible query transformations may be generated. If
there are multiple transformations, the number of ele-
ments in each group may be used to choose the most
efficient transformation.

4 Transform XML query with element
classification

Element classification based XML query transforma-
tions can be classified into three categories: Elimina-
tion, which removes mutually exclusive query condi-
tions; Reduction, which removes the semantically re-
dundant query conditions; and Introduction, which in-
troduces extra conditions to the original query condi-
tions. Below, we will discuss these transformations in
detail. In order to explain the transformations clearly,
we will use “Conditiony(e)” to represent the result
of evaluating query condition “M” on element “€’ and
ocon(m)(E) to represent all the elements that satisfy
query condition “M” when applied to the elementsin E.

4.1 Elimination Transformation

Elimination is the operation that eliminates queries
with mutually exclusive query conditions. Consider an
XML document in which “al the managers are paid
more than $5000”, then the condition of query “docu-
ment(’record.xml’)//person [position = 'manager’ and
getPaid < 4500] " can be transformed to False.
Theorem 3.1 If two conditionsin a query are mutually
exclusive and the operator between themis “A”, the two
conditions can be transformed to False, which can be
illustrated as

Conditionpan(e) = False

if Conditionys(e) A Conditiony (e) = False?

1We represent all queries in this paper in XPath.
2For more discussion and a proof about each transformation please
refer to [6].

Original gquery

Generated query

Query for Elimination

document(‘record.xml) personftotalP ay<5000 and age>35]

Hull

Cuery for Reduction

document(‘record.xml) person(totall ay< Vail and age< chfg]

document(‘record.xml) person(totall ay< Vail]

Query for Introduction | gocument(‘record xml”)/personftotalPay< Val|]

document(‘record. xml”)personftotalP ay< Fal and AddCon *< Fal,]

*addCon is the element name appears in the mtroduced condition

Figure 3: Queries for the experiments

-
o Cuery related
\-_ temerplions

escriptions in OWL,~”
LN

Beducing
cendition
moadule

User query ©

Intraducing
condition
module

User intertace * Transtorming engine

HKML databaze

Figure 4: The structure of the transforming engine

The elimination transformationis a branch of the reduc-
tion transformation. We discussit separately becausethis
transformation may help us detect and block queriesthat
return no result due to mutually exclusive conditions, as
shown in the example above. These queriesdo not return
any result and executing these queries wastes time.

4.2 Reduction Transformation

Reduction is the operation that eliminates redun-

dant query conditions so this kind of transformation
can only be applied to multiple-condition queries. An
example of this transformation is that the original
query “document(’record.xml’) // person [position =’
manager’ and salary > 5000]" can be simplified to
“document('record.xml’)//
person[position =" manager’']” if we know that al the
managers are paid more than 5000.
Theorem 3.2 If al elements“¢€’ that satisfy query con-
dition “M” aways satisfy condition “N” and the oper-
ator between the two query conditionsis “A”, then the
two query conditions can be simplified to condition“M”.
Thisiswritten below:

Conditionpyan (€) = Conditionp(e)

if Ve(e € OCon(M) (E> =ec OCon(N) (E>>

Theorem 3.3 If al elements*“¢e” that satisfy query condi-
tion “M” always satisfy condition “N” and the operator
between the two query conditions is “V”, then the two
guery conditionscan be simplified to condition“N”. This
can be represented as.

Conditionyryn(e) = Conditiony (e)

if Ve(e € OCon(M) (E> =ec OCon(N) (E>>

| Tnformation management module | = B

2500 O0riginal nocaching antoind

2000 X
’E 1500 =] | |HGenerated nocaching antain
= 1000 {1 dex
500 —I—‘ igi i i
5 I |_|—| | | [O0riginal caching manmalind

ex
254 50k 15k

execution time

100k 125K

OGenerated caching mnualin

document size dex

Figure 5: The results of elimination

Because the redundant query conditions are removed by
the reduction transformation, both the amount of work of
“computation” and “join” will be reduced and the perfor-
mance of the query execution will be improved.

4.3

Introduction is the transformation that adds a new
condition, with the aim of reducing the query search
space, compared with the original query condition.
Consider the scenario where only people, whose rank
is lower that 4, get paid less than 3000, the query
“ document('record.xml’)// person [salary < 3000]
" can be transformed to “ document(’record.xml’)//
person[rank < 4 and salary < 3000] ". The nec-
essary conditionsfor thiskind of transformation are :

Introduction Transformation

o the domain of the original query condition must be
a subset of the domain of the additional condition.

e anindex is built on the additiona condition-related
element.

o theselectivity of the additional condition-related el-
ement is higher than that of the original condition-
related element.

Theorem 3.4 If al elements“€” that satisfy query con-
dition “M” always satisfy condition “N”, then the query
condition“M” can betransformedto condition“ M AN™.
The transformation can be illustrated as

Condition s (e) = Conditionpan(€)

if ve<6 € OCon(M) (E) =ec€ UCo7L(N)(E))

5 Experimentation

In this section, we present the experiments designed
for our research. All the experiments are run on an HP
workstation XW4200, which is equipped with an Intel
Pentium 4 CPU 3.40GHZ and 2 GB memory.

The experimental data sets are built using an XML gen-
erator [8] based on the XMark benchmark [16]. We use
the generator to build five XML documents with sizes
of 20M, 40M, 60M, 80M and 100M. Then weinsert four
kinds of elementsas child nodesto the“ person” element.
The inserted elements and values are listed in Fig. 2.
From the figure, you can see that “ person” elements can
be classified into different groups based on the values
of the inserted elements, such as a grouping of all the
persons that are in their thirties and with an importance
valueof 1.

Three groups of queries are designed for the experiments
and the formats are shown in Fig. 3. Because the condi-
tion of the original query will be transformed to False
using the Elimination Transformation, there is no query
generated. For “reduction” and “introduction”, we can
get a series of querieswith different selectivity by chang-
ing the values of Val; and Val,. Theintroduced condi-
tion for “introduction” will be generated automatically
according the descriptions of element classifications and
for different situations the generated conditions are dif-
ferent.

A transforming engine was designed for the experiments,
which includes the following modules:

1. Information management module, which is de-
signed to manage the elements’ classification de-
scriptions used in query transformation;

2. Information extraction module, whichisdesigned
to extract information for each kind of element from
the XML document;

3. Blocking unsatisfied query module, which deals
with the Elimination transformation;

4. Reducing condition module, which deals with the
Reduction transformation;

5. Introducing condition module, which deals with
the Introduction transformation.

The structure of the engineis shown in Fig. 4°.

We use the eXist XML database [3] in our experiments.
Because eXist provides a query caching function to im-
prove the speed of query execution and an index on ele-
ments can be built both automatically and manually, both
the original queries and the generated queries are exe-
cuted in four situations:

1. no query caching plus an automatically built index,
2. no query caching plus a manualy built index,

3. with query caching plusan automatically built index
4. with query caching plus a manually built index.

Because of the space limitations, we only list the results
in two situations. no query caching plus an automati-
cally made index and with query caching plusamanually
made index, and with two selectivities; 20% and 80%.
Experiment for Elimination

The results of these experiments are shown in Fig. 5. It

3For more discussion about the transforming engine please refer to

(7.

can be seen that time spent on the original query execu-
tion is much longer than the time spent on the queries,
which are generated by the transformation engine. This
is becausethe conditionsof the original queriesaretrans-
formed to “ Flalse”, and no queries are sent to the server
and all the computationsare finished ontheclient side. If
we contrast this with the time spent on the original query
execution, the time spent on query transformation can
almost be ignored especially when transformation works
together with query caching.

Experiment for Reduction

Results of “reduction” are shown in Fig. 6. From the
Fig. it can be seen that because the workload on both
computation and join are reduced, the performance of
query execution can be improved by about 30% when
the query is executed with the automatically built index.
When the queries are executed with a manually built in-
dex, the performance can be improved around 20%. This
phenomena becomes more obvious when the selectivity
or the size of the XML document is increased.
Experiment for Introduction

From Fig. 7, it can be seen that the results of “introduc-
tion” are different from our prediction and the query ex-
ecution time has increased instead of reduced. In fact,
the bigger the selectivity or the size of the document,
the more the execution time increases. After analyzing
the query execution, we assume transformation “intro-
duction” may only work on some query engines which
execute queries by choosing a sub-query execution strat-
egy. And for query engines, which execute multiple-
condition queries by choosing the intersection of the re-
sults of each sub-query, the transformation “introduc-
tion” will increase the workload and make the query ex-
ecution worse.

From the results of our experimentswe can draw the con-
clusion that element classification based query transfor-
mation can improve the query execution in some situa-
tions.

6 Related work

Currently XML query optimization based on the content
of the data mainly concentrates on element statistics. In
the optimization mechanismin “Lore” [12], the database
system abstracts all the information of nodes and edges,
and stores them as several indexes in the database man-
agement system. All input queries are broken into a
series of sub-operations and each sub-operation can be
evaluated as part of the query. By creating evaluations
for all the sub-operationsand joining all the result aggre-
gations together, the system can get the most effective
execution order for the sub-operations, resulting in faster
execution of the query.

In [17], an element classification method is intro-
duced, which is based on the information of struc-
ture of XML documents. By analyzing the DTD [10]
of an XML document, elements are classified based
on their child nodes. For example: description “<
IELEMENT person(name, emailx) >" will lead to
akind of classification of “person with email” and “ per-
son without email”. With the classification, the query
searching areawill be reduced.

Authors of [4] introduce a heuristic-based algebraic

selectivity = 20% selectivity = 80%
3000 5000
-) 4500 ;)
g 2500 Baignal_nacachi | (% g4ngg OCrighal _nhacachi
= ni_aut of ndesc = em ng_aut oi ndex
E 2000 &
E B Gener ated nocach| | 3n00 B Cener at ed_nocach)
= ut oi ne = Ut oi nd
= 15001 i ng_aut oi ndes = m i ngg_aut oi ndex
2 Oignal _eaching| 2 2000 OCrignal _caching
= 1000 7 _rranual i nesc = 500 _reanual i hiex
o o
g sm Ocener ated cachin| |5 1000 O cener at ed_cachi n
o_ranual i ndesx 00 o_ranual i ndex
1} 1}
260 50m TEM 100M 125M 2am S0 7o 100M 12aM
docurent size docurent size
T . “ 4 til
Figure 6: The performance of “reduction
selectivity = 20% selectivity = 80%
3000 5000
2500 B iginal hi o acri | hi
B igi nal _nocachi | | & i hal _nhocachi
E ng_aut oi ndext g 000 1 ho_aut o hdex
B 20001 g 500
S a _Ganer at e!j_nncach = 3000 4 B Cener at e!:l_nocach
T 1500 1 i ng_aut oi ndex 2500 1 i no_aut of hdex
2 OQignal _caching| |2 2000 1 Original _cachi ng|
= 1000 _rranual i ndex S 1500 _rranual i ndest
g =
g sm O Cener st ed_cachinf [z 1000 O cener at ed_cachi n|
tf_rmnual | ndex 500 o_ranual i ndex
1} 0
25M 50M 7am 100M 125M 2aM 50r 7ah 100m 12aM
docurent size docurent size

Figure 7: The performance of “introduction”

XML query transformation method. The method isbased
on a series of equivalences that are represented in PAT
algebraexpressions [15]. With information of the struc-
ture of an XML document, a set of deterministic alge-
braic transformation rules can be derived based on the
PAT equivalences. Then an input query can be trans-
formed to a more effective one with the transformation
rules.

The research reported above improves the performance
of XML query execution. However, none of thiswork is
based on the distribution of the values of elements.

7 Conclusion and problems to be solved

In this paper, We discuss the possibility of transforming
XML queries based on the content of data. We also dis-
cuss the possible transformations, which are carried out
based on the content of data. A series of experimentsare
presented and the results are discussed. The experimen-
tal results show that transforming queries based on data
can improve query execution time in some situations.
Currently the element classifications are edited manually.
Now we are working on an algorithm, which analyzesthe
values of elements and abstracts distribution characteris-
tics. As we discussed previously, XML documents are
very flexible making analysis difficult. We have identi-
fied the following issues:

1. the number of classifications When an XML doc-
ument is analyzed, it is very difficult for a user
or database administrator to specify an accurate
or suitable number of classifications based on the
data distribution. Because of this, we chose the
XMeans [14] algorithm to do the clustering, which
is an adapted KMeans algorithm. The advantage
of XMeans is that users input maximum and mini-
mum number of classifications instead of specify-
ing the exact number of classifications. XMeans

will explorethe best classification number automat-
ically. Some experiments have shown that XMeans
can satisfy our demands.

missing element or missing values For this prob-
lem, we propose to find an element which has simi-
lar characteristics to the element that has a missing
subelement or missing value and attach the subele-
ment or value found in the similar element. Con-
sider the example in Fig. 8, with the people ele-
ments. One of the people has a missing value for
“ID”. The similar element belongs to department
“computer” and has “ID” 01030, so the two ele-
ments will be classified into the same group.

multiple same name elements under one par-
ent element For this situation, as a first step we
will replicate and divide the element. For exam-
ple < people >< /[hobby >< [hobby ><
/name >< /people > will bedividedintotwo ele-
ments that has structure < people >< /hobby ><
/name >< /people >. This solution will enable
us to classify people based on individual hobbies
but not on multiple hobbies.

datatype handling Valuesof elementg/attributesin
XML documents may belong to various datatypes.
The data can be number, string or other types. The
datacan bevery long, such asaparagraph of abook,
or very short, such as an English character. Also the
data can be classified as continuous or discrete data.
Usually the data needs preprocessing before analy-
sis. Currently our system can analyse number, short
string or character. More functionality of datatype
handling will be added to the whole system in the
future.

value distribution When the classification is de-
rived, the value distribution of each group will be

people people

department department

Computer 010340 Computer

people people

department in department D

statistics 02191 physics 03005

Figure 8: The XML document with missing value

used to optimize the input queries. The distribu-
tions can be classified into three types: isolated,
overlapping and including. In our paper, we only
demonstrate one situation where the value of each
group isisolated. In our research, we found that the
value distribution is very complex and the distribu-
tionsinfluence the possibility of query optimization
greatly. An example for overlapping is all lectur-
ers have salary from 4000 to 6000 and all profes-
sors have salary from 5500 to 8000. An example
for including is that the carparks for professors are
distributed on level 2 and level 3 while the carparks
for lectures are distributed on level 1, 2 and 3. How
to handle the complex situation of value distribu-
tion and how to carry out query optimization with
the complex data distribution will be studied in the
future.

6. complex elements Even when we can specify sev-
eral elementsto analyze, some elements with com-
plex structure may still be involved in the analy-
sis.How to deal with complex objectsisstill an open
question for us.

Our contributions to date have been a data generator to
build data sets with specific characteristics to carry out
accurate and targeted experiments, the classification of
possible transformations and experimentsthat prove how
well the transformations work. From here, we plan to
build atool that classifies the data. In order to do so, we
will have to address the issues described above.

References

[1] R. Ahme, A. Lee, A. Witkowski, D. Das, H. Su,
M. Zait, and Cruanes T. Cost-based query tranfor-
mation in oracle. Seoul, Korea, 2006. VLDB.

[2] A. Barta, M. P. Consens, and A. O. Mendelzon.
Xml query optimization using path indexes. Paris,
France, 2004. XIME-P.

[3] A. B. Chaudhri, A. Rashid, and R. Zicari. XML
Data Management: Native XML and XML-Enabled
Database Systems. Addison Wesley, 2003.

[4] D. Che, K. Aberer, and T. Ozsu. Query optimiza-
tion in xml structured-document databases. the
International Journal on Very Large Data Base,
20086.

[5] M. Fernandez and D. Suciu. Optimizing regular
path expressions using graph schemas. Orlando,
Florida, 1998. ICDE.

[6] K. Geng and G. Dabbie. Element classification
based transformation of xml queries. Jakarta, In-
donesia, 2007. [IWAS.

[7] K. Gengand G. Dobbie. Using datain the transfor-
mation of xml queries. Christchurch, New Zealand,
2008. NZCSRSC.

[8] K. Geng and Gillian Dobbie. An xml document
generator for semantic query optimization experi-
mentation. Yogyakarta, Indonesia, 2006. IIWAS.

[9] S. Groppe and S. Bottcher. Schema-based query
optimization for xquery queries. Tallinn, Estonia,
2005. ADBIS.

[10] D.Hunter, K. Cagle, C. Dix, R. Kovack, J. Pinnock,
and J. Rafter. Beginning XML. Wrox Press, Indi-
anapolis, Indiana, second edition, 2003.

[11] D. X.T.Le, S. Bressan, D. Taniar, and W. Rahayu.
Semantic xpath query transformation: Opportuni-
ties and performance. Bangkok Thailand, 2007.
DASFAA.

[12] J. McHugh and J. Widom. Query optimization for
xml. Edinburgh, Scotland, 1999. VLDB.

[13] H.H.Pang, H. J. Lu,andB. C. Ooi. An efficient se-
mantic query optimization algorithm. Kobe, Japan,
1991. ICDE.

[14] D. Pelleg and A. Moore. X-means. Extending k-
means with efficient estimation of number of clus-
ters. San Francisco, 2000. ICML.

[15] A. Salminen and F. W. Tompa. Pat expressions: an
algebra for text search. Acta Linguistica Hungar-
ica, 1992.

[16] A. Schmidt, F. Waas, M. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. Xmark: A benchmark
for xml data management. Hong Kong, China,
2002. VLDB.

[17] W. Sun, D. Liu, and W. Zhang. An efficient method
for xml queries optimization based dtd abstrac-
tion and classification. Hangzhou, China, 2004.
WCICA.

