
Generating Blogs from Product Catalogues: A
Model-Driven Approach

Oscar Diaza and Felipe M. Villoriab

aThe Onekin Group, University of the Basque Country
oscar.diaz@ehu.es
bDonostia Digital

fmartin@donostiadigital.com

Abstract. Blogs can be used as a conduit for customers opinions, and
in so doing, building communities around products. We attempt to re-
alise this vision by building blogs out of product catalogues. Unfortu-
nately, the lack of standards for blog APIs, and the limited experience
in virtual communities, make this endeavour risky. This refrains small-
and-medium companies from setting such blog-based communities. This
paper presents a model-driven approach to alleviate these drawbacks.
To this end, two abstract models are introduced: the catalogue model,
based on the standard Open Catalog Format, and the blog model, that
elaborates on the use of blogs as conduits for virtual communities. Blog
models end up being realised through blog engines. Specifically, we focus
on two popular platforms: a hosted and a standalone blog platform, both
in Blojsom. The paper outlines blog construction as an instance of the
MDD process, provides some transformation samples, and concludes by
comparing MDD and direct manual coding of blogs.

1 Introduction

Companies know the importance of creating consumer communities around their
products: users come together to exchange ideas, review and recommend new
products, and even support each other. As stated in [6] “more than one large
company has discovered that external customer communities provide better sup-
port to their customers than dedicated tier-II and tier-III customer service rep-
resentatives”. These communities are frequently supported through blogs. Ini-
tially thought as personal diaries, blogs’ scope has broaden to become a medium
for professionals to communicate [12], leading to the so-called corporate blog-
ging. Distinct studies [10, 8] endorse the use of blogs to market products, build
stronger relationships with customers, and obtain customer feedback.

Based on these observations, we aim at building a software factory that
delivers “catalogue blogs” out of “product catalogues” in a cost-effective way. The
challenge is then not on feasibility but cost effectiveness. Indeed, the advantages
of virtual communities around products are well-known, but so far they are only
enjoyed by large companies that can afford the price of ad-hoc development.
We do not claim blogs to be the ultimate support for virtual communities but

one with the lowest entry barrier. Reducing the cost of entry, can encourage
companies to become aware of the benefits of direct and sustainable customer
interaction using blogs. This experience can eventually lead companies to move
to more sophisticated blog engines or other solutions (e.g. Customer Relationship
Management (CRM) tooling). Unfortunately, the lack of portability among blog
engines can lock companies to a specific vendor.

There exists two main stumbling blocks. First, the plethora of blog platforms
of our customer base. Blogs can be hosted by dedicated blog hosting services or
be available for users to download and install on their own systems. Such di-
versity prevents experiences from using a given blog engine to be extrapolated
to a different engine. The second impediment is the youth of virtual commu-
nity development. The lack of clear guidelines for building such systems makes
perfective maintenance more than likely.

Therefore, our endeavor (i.e. building blogs out of product catalogues in a
cost-effective way) tackles three concerns: catalogue description, virtual commu-
nities and blog engines. Although catalogue description is quite stable (standards
exist), this is not the case for neither virtual communities nor blog engines. This
jeopardises reuse which, in turn, hinders the fulfilment of the cost-effective re-
quirement.

This situation is addressed by using Model Driven Development (MDD) [14].
MDD achieves reuse by introducing distinct models of a system at different levels
of abstraction, and, what is most important in our context, models consolidate
design decisions in the sense that changes in lower layers should not affect higher
models.

The contribution of this work is then two-fold. From a practitioner viewpoint,
it reports an experience on using MDD in a medium-size software organisation.
The focus is on providing a general view of the whole MDD process rather than
implementation details that would have required more space. From a research
perspective, the paper provides, to the best of our knowledge, original insights
about supporting virtual communities of consumers through blogs (i.e. the cat-
aBLOG model).

The rest of the paper is organised as follows. Section 2 looks at blog construc-
tion as a MDD process instance. The (meta)models, i.e. the catalogue model, the
cataBLOG model, and Blojsom, as well as the transformation rules are intro-
duced in sections 3, 4, 5 and 6. Section 7 discusses the approach and conclusions
end the paper.

2 Blog construction as an instance of the MDD process

When developing blog-based consumer communities, a large number of func-
tional concerns emerge: what products to include, how they are related, how
consumers interact, how information is made persistent, what API to use, etc.
Additionally, other non-functional issues might be important: cost (e.g. software
license of the blog engine), maintainability, existence of in-house development
expertise, etc. MDD provides a way to stratify these concerns by introducing

62

distinct models of a system at different levels of abstraction [14]. In our case,
the system is a “catalogue blog” whose development is layered as follows:

– the catalogue model, a Platform Independent Model (PIM), which addresses
the following questions: Which products are to be commented upon? Which
kind of cross-selling relationships are involved? To this end, this work takes
a standard to catalogue definition: Open Catalog Format (OCF) [9],

– the cataBLOG model, a PIM which faces how user feedback can be captured
through blogs, and other virtual-community issues,

– a hosted blog platform, a Platform Specific Model (PSM) which raises issues
concerning the realisation of the consumer community through a remote blog
using a specific blog engine: Blojsom [4],

– a standalone blog platform, also a PSM which realises the community through
a local blog using different functionality of Blojsom.

Fig. 1. From OCF catalog description to blog generation.

63

Now, manual coding is substituted by first modeling, next transforming.
Model transformation is the process of converting one or more input models
(a.k.a. source models) to one output model (a.k.a. the target model) of the same
application. Although the ultimate MDD scenario is automatic code generation,
our experience is that this seldom happens. Manual intervention is frequently
required at two different stages:

– before the transformation, the designer frequently needs to intervene to dis-
ambiguate the transformation. This is known as “annotation”. Annotations
are not about the source model as such but on how to transform the source
model. Hence, it is possible to have different outputs for the very same input
model based on indications on how the transformation should proceed,

– after the transformation, the designer often needs to complete the target
model with data that can not be generated from the source model. It is not
a question of determinism but a lack of information about the target model.

Therefore, the following actors are distinguished: the transformer (i.e. the soft-
ware that maps from source model to a target model), the domain expert (i.e.
the designer that provides hints about how the transformation should proceed
in case of ambiguity), and the virtual community expert (i.e. the designer that
supplements the generated model with additional details about the domain at
hand).

Figure 1 provides an example of an OCF description and its Blojsom coun-
terpart. The OCF-to-Blojsom process is depicted in Figure 1 as a SPEM process
[11]. First, the XML description of OCF is mapped to Ecore (i.e. the Eclipse-
based realization of MOF) that can now be processed as a model. This model is
then enriched by a domain expert that provides some hints about how to render
this catalog as a blog. On these grounds, the Ecore-to-cataBLOG transformation
outputs a partial cataBLOG model which basically holds product content. This
model needs to be supplemented with navigation and presentation concerns re-
garding virtual-community support. This rises a problem similar to “protected
regions” for PSM, where experience advices to use model-composition techniques
rather than inlaying this data directly into the source code. Likewise, additions
to a generated PIM are preferable to be provided as a separate “supplement
model” that is latter composed with the generated target model. This informa-
tion is provided through a separated model by a virtual community expert. Both
models can now be composed together to come up with a Full cataBLOG Model
ready to be transformed into the selected PSM (e.g. Blojsom). Unfortunately,
we did not manage to keep the supplement model independent of generation-
dependent data (e.g. product IDs), so we finally decide to do the composition
manually.

Figure 1 serves as a roadmap for the next sections. Space limitations make
us focus on the most representative parts of the process.

64

Fig. 2. OCF elements (left-hand side) and cataBLOG model (right-hand side)

3 The catalogue model

The catalogue model is based on the Open Catalog Format (OCF). OCF is an
open standard for describing product catalogs [9]1. This work takes OCF version
1.0. Figure 2 describes the main notions behind OCF: catalog, which consists of
a hierarchy of product categories; category, which contains attributes, param-
eters, links, products and subcategories. Each category has a name. A category
defines a set of parameters which specify certain special information about the
category. A category also defines a set of links (see below). Categories are ar-
ranged along parent-child relationships where a child category inherits all the
characterisation of its parent category; product, which belongs to a category
and defines values for attributes of this category. Besides those attributes, a
product can have attributes on its own; attributes, which describes a property
of a product; link, which indicates the existence of an association between ei-
ther categories or products. Links have a name that describe the nature of the
link. For instance, two categories can be “alternative” whereas two products can
hold a “compound” or “cross-selling” relationship between them. Since catalogue
information is natively provided as an XML file, it needs to be first converted
to Ecore.

4 The cataBLOG model

Web design methods promote a separation of concerns among content, naviga-
tion and presentation models [3]. A blog is a Web application. Hence, it could
be drawn that blogs should be described along these three different models.
However, in our opinion, blog simplicity makes too convoluted the use of three
separate models. Blogs restrict the freedom available for presenting and navigat-
ing, namely, (1) content should be arranged in terms of “post”, (2) navigation is
limited to category and chronology-based search, and (3) presentation is mainly

1 OCF is readily transformable to other major catalog standards like xCBL, Punchout,
xCBL, CIF, CUP, cXML, OCI or Rosettanet.

65

template based. Of course, more sophisticated forms of presentation and navi-
gation could be envisaged (e.g. using some configuration or facet-based search
for product indexing) but, then, we would have moved away from the realm of
simple blogs.

Therefore, our proposal is to use a single model: the cataBLOG model. A
cataBLOG model stands for the essence of what a blog is. It is an attempt to
abstract away from the peculiarities of the myriad of blog engines currently avail-
able. Additionally, this model is enriched with properties that capture virtual
community concerns. Next subsections delve into the details.

4.1 cataBLOG as an abstraction of blogs

A cataBLOG model captures the content model through the following construct2:
cataBLOG, post, category (which serve to structure the content of the blog),
metadata (that permits specific processing for posts, e.g. indexing or querying)
and descriptionDatum (i.e. a description of each of the product attributes that
become part of the content of the post3). Associations can be defined between
categories as well as among posts. Figure 2 depicts the <<parent>> association
used to describe category hierarchies, and the <<crossSelling>> association
to reflect the namesake relationship between post (i.e. products). This content
model provides the hook for adding navigation and presentation hints.

Navigation concerns. The “cataBLOG” construct includes a “postOrder”
property which indicates whether posts are ordered in descending chronological
order (i.e. the newest at the top), ascending chronological (i.e. the oldest at the
top), alphabetical (by post title) or by post category in the index page of the
blog.

Presentation concerns. Blogs use themes4 for rendering. Each blog engine
has its own collection of themes. This makes “theme” a platform specific concern
whereas cataBLOG is a PIM. Hence, the notion of “theme” needs to be abstracted
into those concerns that will eventually guide the selection of the theme at
transformation time, once the blog engine is selected.

For the purpose of this paper, this concern is “blogAudience”. Five values are
considered to capture the expected age of potential consumers: child, teenager,
young, adult and senior. This property characterises both the “cataBLOG” and
the “category” elements. The blogAudience set at the cataBLOG level can be
overridden for specific categories whose products are targeted to a different mar-
ket segment. Notice that it is up to the transformation to map each blogAudience
value to the concrete theme supported by the blog engine at hand.

This decision rests on the assumption that the age segment is the main cri-
teria for guiding the aesthetics of the blog. However, other concerns include
2 Notice that comments are left outside this models since they are not generated from

the catalogue, but dynamically provided by the end users.
3 Characteristics such as the “valuetype” or “unit” are kept from the catalogue descrip-

tion since they can impact the rendering of the post content.
4 A theme is “a preset package containing graphical appearance details”, used to cus-

tomise the look and feel of the blog.

66

demographic (e.g. sex, age, education, etc), geographic, attitudinal (e.g. interest
in lifelong learning) or behavioral (e.g. product usage rate) data [1]. The impor-
tant point is that the cataBLOG model captures those criteria explicitly through
properties: ageAudience, educationAudience, sexAudience, etc. And even more
important, the impact that these criteria have, better said, the impact that the
combined interaction of those criteria have in the aesthetic or other aspects
of the blog, are captured through cataBLOG-to-blojsom transformations. For
instance, expressions such as (ageAudience=”adult”, educationAudience=”BSc”,
sexAudience=”female”) can characterise a market segment with a specific render-
ing theme. These expressions can be explicitly captured through transformation
rules. Therefore, transformation rules embody design criteria about how market
segments impact the blog, and in so doing, they are true repositories of design
expertise.

4.2 cataBLOG as a virtual community model

Full-fledged virtual communities involve a broad range of mechanisms that are
outside the scope of blogs. This subsection restricts itself to those aspects that fall
within the blog realm. Specifically, we focus on interest sharing and participation
promotion.

Interest sharing. Social bookmarking is becoming a popular practice for
sharing interests. Tagging sites such as del.icio.us, Digg, Fark, Newsvine, Reddit,
Simpy or Spurl, permit to share URL-addresable resources. Since products are
now realised as blog entries (hence, URL addressable), it is now possible to affix
these entries into tagging sites, and in so doing, sharing product information
with a wider audience. This is an important difference with other approaches
such as CRM products. Every new post in a blog is actually a new page which
has a permalink (i.e. a permanent URL identifier to a specific post). The favours
the indexing of post by Google (i.e. potential customers can come across with
your product posts through Google), and allows for bookmarking using tagging
sites.

To this end, the cataBLOG model is enlarged with a “postIt” property. This
property holds a list of the tagging sites to which blog entries can be posted to.
Rendering wise, this property is realised as a set of icons at the bottom of each
entry (see Figure 1). By clicking on the e.g. Digg icon, the content of the entry is
published at Digg. By clicking on del.icio.us, the permalink of the current post
is stored at this tagging site. The list of tagging sites is up to the designer where
the value “null” indicates that posting is not allowed.

Participation promotion. In a blog setting, participation is realized through
commenting on a blog post. So far, commenting requires users to access directly
the blog. However, users can hold their own blogs, wikis or portals through which
they comment about products of your catalogue, and hence should be reachable
through the cataBLOG.

Trackbacks turn out to be a very useful mechanism to this end. They enable
websites communicate via “pings”, where each ping informs the blog that the
sending site has made a reference to a post on the blog [13]. As a product is

67

now realised as a post, this product can be trackbacked from other websites, i.e.
comments on this post can appear outside the blog. Instead of forcing customers
to comment only at the cataBLOG place, customers can now simply send a
“ping” to your cataBLOG every time they have something to say about your
products without having to leave their company website or personal blog. This
wides the scope of the community outside the blog itself, and serves to measure
the impact of a product: the larger the trackbacks, the stronger the impact.

However, trackbacks just indicate that there is a reference to the post, but
not its intention. Such intention can be expressed through VoteLink . This mi-
croformat proposes a set of three new values for the rev attribute of the <a>
(hyperlink) tag in HTML. The new values are “vote-for" “vote-abstain" or “vote-
against", which are mutually exclusive, and represent agreement, abstention,
and disagreement, respectively. Now, when a customer describes a product at
his own company’s website, he can indicate his likes to the product in a machine-
understandable way, e.g.

This is the customer’s website. We have successfully installed <a href="http://
.../cataBLOG/Computer Software/Acrobat2.3.html" rev="vote-for">Acrobat
2.3, after all difficulties with <a href="http://.../Computer Soft-
ware/Taborca3.2.html" rev="vote-against">Taborca 3.2

The value of the href attribute, i.e. the URL of Acrobat ’s post at the blog,
stands for the object of your vote. By sending a trackback to the blog, the
vote gets included into the results. Basically, this means a push rather than a
pull approach to voting: votes are spread all over the web, and it is the blog
itself (“the ballot box”) the one that goes to your website to collect the vote
(see [7] for supporting VoteLink -aware trackbacks). This approach can be ex-
tended to account for different perspectives. For instance, software products
can be ranked based on configurability, usability, interoperability and the like.
These different perspectives of the product can be embodied as distinct values
of the measure parameter in the URL of the post describing the product (e.g.
http://.../Acrobat2.3.html?measure=interoperability).

Fig. 3. AWM Metamodel Extension.

68

This feature is captured in the cataBLOG model through the vote4It prop-
erty. This property holds a set of strings that denote each of the criteria to assess
the blog products (e.g. vote4it: [configurability, usability, portability]). Notice,
however, that this extension departs from the VoteLink standard, and assumes
an agreement between the blog and the voting sites about the qualities to be
assessed.

5 catalog2cataBLOG transformation

Broadly, the transformation engine takes a catalogue as input, and delivers a
blog model. This process needs to be extended with two additional steps, before
and after the transformation.

Before the transformation, the domain expert provides some hints about
how the transformation should proceed. Specifically, catalogue attributes serve
to obtain the cataBLOG description. Additionally, some of them can become
cataBLOG metadata which are used as an indexing mechanism to recover blog
posts (see Figure 1). These decisions (i.e. which attributes will become metadata)
are not relevant to the cataBLOG model itself. To prevent the catalogue model
from being polluted, we use a distinct model to collect these decisions. Along
the lines described in [15], a weaving model is used to capture the relationships
between elements of the annotated model (i.e. the catalog attributes) and the
annotation as such (i.e. becoming metadata). Then, each link in the weaving
model represents an annotation for the woven model. ATLAS Model Weaver
(AMW) is used for this purpose [5]. Figure 3 shows the weaving metamodel.

Annotations (i.e. the weaving model) can then be consulted during transfor-
mation through helper functions. For instance, to know whether a given attribute
will become metadata, the helper function in Figure 4 looks for Metadata an-
notations, whose target element coincides to the attribute being passed as the
parameter (such woven element is identified through the _xmiID_ property.
This helper function is then used by the transformation rule mapping catalogue
attributes (see Figure 4).

After the transformation, the designer often needs to complete the target
model with data that can not be generated from the source model. Indeed, pre-
sentation and navigation properties cannot be obtained from the catalog model.
Hence, the virtual community expert provides a supplement model where proper-
ties postOrder, postIt, blogAudience and vote4It, are specified for the blog. Once
the cataBLOG model is completed, it is ready to be mapped to Blojsom.

6 Blojsom as a PSM

The heterogeneity in blog engines firstly motivates this work. A major distinction
is that of standalone blogs vs. hosted blogs. Standalone blogs are those where
the engine is available for users to download and install on their own systems. In
this case, blog creation involves the population of a database or the creation of a
folder structure that records the blog entries. LifeType, b2evolution and Blojsom

69

Fig. 4. catalog2cataBLOG mapping: this ATL rule only applies to catalogue attributes
that play the role of blog metadata. The helper function checks this out by consulting
the weaving model.

are some examples of this type. Unfortunately, the database schema or the folder
structure can differ greatly among engines.

On the other hand, hosted blogs are those where the engine resides remotely,
and blog creation is achieved through API calls. Movable Type, Blogger, Live-
Journal and Blojsom are some examples of this type. Unfortunately, current
situation is characterised by lack of standards (the same functionality is termed
differently), unstable APIs (APIs tend to change) and incomplete APIs (very
often the blog engine has to resort to distinct APIs). Even the protocols can
differ (e.g. XML-RPC in the case of post creation, whereas REST is used for
trackback and comment creation).

This work focuses on Blojsom[4]. Even within a single vendor like Blojsom
different alternatives exists: file-based blogs (Blojsom 2.x), database blogs or
hosted blogs (Blojsom 3.x through Blogger API 1.0). Due to space limitations,
we focus on file-based standalone blog engines.

File-based blog platforms rely on folders and files to embody blog elements.
Figure 5 outlines the file structure for our sample case. The mapping goes as
follows:

– categories are embodied through system folders which are named after
the category name (e.g. Computer Software folder stands for the namesake
category). The location of the root category (or root folder) is configured by
a blog installation property. Subcategories are supported as nesting folders.

70

/Computer Product/blojsom.properties
/Computer Product/Computer Hardware/
/Computer Product/Computer Software/11000078.html
/Computer Product/Computer Software/11000078.meta
/Computer Product/Computer Software/11000079.html
/Computer Product/Computer Software/11000079.meta
/Computer Product/Computer Software/blojsom.properties
/Computer Product/Computer Software/.trackbacks/11000078.html/1201455548880.meta
/Computer Product/Computer Software/.trackbacks/11000078.html/1201455548880.tb
/Computer Product/Computer Software/.trackbacks/11000079.html/1201455552085.meta
/Computer Product/Computer Software/.trackbacks/11000079.html/1201455552085.tb

Fig. 5. Directory file in Blojsom.

– category metadata are kept in the so-called blojsom.properties file, whose
content is a set of (property,value) pairs. This file is located inside the folder
category. For example, the metadata of the category Computer Software
could be found out at /Category Software/blojsom.properties.

– posts are supported as text files with html extension, whose name is the
title of the associated post. The content includes the title of the post (first
line), and the description of the post. These files are kept inside the post’s
category folder counterpart.

– post metadata turns out into a .meta file, named after the title of the post.
In this way, myPost.meta holds the metadata of myPost, whose content is a
set of (property, value) pairs. These files are kept inside the post’s category
folder counterpart,

– trackbacks are supported as .tb files, named after the trackback creation
timestamp.

– trackback metadata are contained in a .meta file, named after the cor-
responding trackback. For instance, 1201455552085.meta will contain the
metadata of the 1201455552085.tb trackback, whose content is a set of (prop-
erty, value) pairs.

Figure 6 shows a MOFScript snippet that realises this model-to-code transfor-
mation. For each post the rule “createPost” is called and an html-typed namesake
file is created. Its content (e.g. title, description) is obtained from the post at-
tributes.

7 Discussion

MDD aims at raising the level of abstraction in application specification and
increasing automation in program development. On the grounds of this project,
this section reflects on the methodology to achieve abstraction, and the potential
Return of Investment (ROI) brought by automation (i.e. code generation).

71

Fig. 6. MOFScript snippet that generates the post structure for Blojsom.

7.1 On the way to abstraction

Most MDD literature seems to suggest starting from abstract PIMs to then
introduce gradually more platform specifics, till, finally, the code can be gen-
erated. The structure of this paper reflects this state of mind. However, this
project follows the other way around. Our business partner has already a set of
blog engines he works with. From then, we abstract into a cataBLOG model.
This explains why cataBLOG is not a general-purpose model for Web applica-
tions, but a model that abstracts from existing blog engines. Your options are
limited to those available through blog engines. This is in contrast to general
Web models where navigation and rendering is fully modeled since their PSM
platforms can be as general as HTML [2]. This project however, does not take
a general-purpose programming language as the target PSM but blog engines.
Introducing PIM features which could not be eventually mapped to our targeted
set of PSM would have been a waste of time. Our experience then confirms the
insights of Markus Volter: “In my experience, it is better to start from the bot-
tom: first define a DSL that resembles your system’s software architecture (used
to describe applications), and build a generator that automates the grunt work
with the implementation technologies” [16].

Another issue is how many abstraction levels are needed. In our case, the exis-
tence of the catalogue model provides the upper limit. Catalogues are application-
independent resources, already available at the company. Abstracting from blogs
to catalogues permit to capitalise on an asset easy to understand for the cus-
tomer, and available for free. Taking catalogues as the starting point of the
generative process was really the decision that makes this experience profitable.
Next subsection delves into the details.

72

Fig. 7. Breakeven in terms of 50-product blogs: 48,91 cataBLOG projects are needed
for ROI.

7.2 Measuring ROI

We aim at producing blogs out of product catalogues in a cost-effective way.
Although the notion of cost is multifaceted, we focus on labour cost. Other
main MDD benefits such as quality improvement (i.e. models are easier to val-
idate/verify than raw code) or knowledge retention (i.e. PIMs and transforma-
tions as means for knowledge consolidation) are not considered here.

An empirical study was conducted comparing labour hours involved in ob-
taining the final blog through either manual coding or code generation (i.e.MDD).
Figure 7 shows the results for a 50-product catalogue. The different inputs in-
clude:

– cost of directly coding in Blojsom. This involves coding the products as blog
posts one by one. The cost of learning Blojsom has not be included as this
is an asset already available at the company. Total costs: 1,9 hours using
Blojsom wizards to create blog defaults.

– cost of generating the code out of the OCF document. The existence of the
OCF catalogue is taken it from granted. Therefore, the labour cost is re-
stricted to adding the virtual community properties through the supplement
model. Total costs: 0,25 hours.

– upfront investment. It includes both the cost of building the MDD infrastruc-
ture (i.e. meta-models and transformations), and the learning of the MDD
tooling (in our case ATL, AMW and MOFScript). For an experienced and
motivated developer, this accounts for 80 hours. The company incurs in this
base cost no matter the number of cataBLOGs being generated.

The ROI for this upfront cost much depends on two factors: the average size
of the product catalogue and the number of cataBLOG projects. The catalogue
size mainly influences the cost of directly coding in Blojsom. By contrast, it has

73

Fig. 8. Breakeven in terms of catalogue size and number of blog projects.

almost no impact on MDD where data is directly obtained from the OCF file.
For instance, a sample catalogue including 25 categories and 50 products and an
average of 7.2 properties per product, took 1,9 hours to obtain the cataBLOG
counterpart. By contrast, MDD achieves the same result involving only 0,25
hours of labour work (mainly, the elaboration of the supplement model and the
annotation model). Figure 7 keeps constant this catalog size, and obtains the
breakeven as the number of cataBLOG projects needed to payoff the upfront
investment. These figures show out the role of MDD as a reuse technique where
ROI is gradually obtained throughout distinct projects.

Both dimensions (i.e. catalogue size and number of cataBLOG projects) are
combined in Figure 8. The dotted line stands for using MDD to generate 5
cataBLOGs. The slope, almost imperceptible at this scale, goes from 0,25 hours
(for 50-product cataBLOGs) to 2,35 hours to get five blogs of 2500 products.
By contrast, the manual approach has a broader dispersion since all the product
data has to be introduced manually as blog properties. It is most important to
note that in our case, the MDD approach is specially favorable since it allows
to capitalise on an existing asset: the catalog. We do not need to come up with
a catalogue model but it is just obtained from the OCF specification. However,
other MDD scenarios spend considerable efforts in obtaining these PIMs.

8 Conclusions

Based on the premise that blogs can be a suitable solution to support consumer
communities, this work faces the heterogeneity of blog engines and the lack of
clear guidelines to support virtual communities. These issues are tackled using
MDD. The “felt benefits” include: abstracting away from proprietary blog en-
gines, consolidating through intermediate models (which requires the introduc-
tion of the cataBLOG model), and capitalising on existing product catalogues.

74

Future work includes enriching the cataBLOG model with additional as-
pects such as security or permission. Another main issue is evolution. Catalogues
evolve, and this evolution percolates their blog counterparts. However, our feel-
ing is that the notion of evolution within model-driven development is not yet
understood enough to be used in real applications.

References

1. BPIR.com and Massey University. Customer market segmentation.
http://www.bpir.com/customer-market-segmentation-bpir.com/menu-id-
72/expert-opinion.html.

2. Stefano Ceri, Piero Fraternali, and Stefano Paraboschi. Data-Driven, One-To-One
Web Site Generation for Data-Intensive Applications. In VLDB, pages 615–626,
1999.

3. María José Escalona Cuaresma and Nora Koch. Requirements Engineering for Web
Applications - A Comparative Study. Journal of Web Engineering, 2(3):193–212,
2004.

4. David Czarnecki. Blojsom. http://wiki.blojsom.com/wiki/display/blojsom3/
About+blojsom.

5. Marcos Didonet del Fabro, Jean Bézivin, and Patrick Valduriez. Weaving Models
with the Eclipse AMW plugin. Eclipse Modeling Symposium, Eclipse Summit
Europe, Esslingen, Germany., October 2006.

6. Dion Hinchcliffe. A checkpoint on Web 2.0 in the enterprise, Part 2, August 2007.
http://blogs.zdnet.com/Hinchcliffe/?p=135.

7. Steve Ivy. Votelinks + trackback: Voteback?, December 2006. http://redmonk.net/
archives/2006/12/20/votelinks-trackback-voteback.

8. Nicholas S. Lockwood and Alan R. Dennis. Exploring the Corporate Blogosphere:
A Taxonomy for Research and Practice. In Proceedings of the 41st Annual Hawaii
International Conference on System Sciences - HICSS, 2008.

9. MartSoft, Inc. OCF - Open Catalog Format. http://www.martsoft.com/.
10. Carr N. Lessons in corporate blogging. 2006. Business Week Online.
11. OMG. Software Process Engineering Metamodel Specification (SPEM). Adopted

Specification, January 2005.
12. Martin Röll. Distributed KM - Improving Knowledge Workers’ Productivity

and Organisational Knowledge Sharing with Weblog-based Personal Publishing.
BlogTalk 2.0, July 2004.

13. Six Apart. TrackBack Technical Specification, 2004. http://www.sixapart.com/
pronet/docs/trackback_spec.

14. Thomas Stahl and Markus Voelter. Model-Driven Software Development: Technol-
ogy, Engineering, Management. Wiley, 1 edition, May 2006.

15. Juan M. Vara, Ma Valeria de Castro, Marcos Didonet del Fabro, and Esper-
anza Marcos. Using Weaving Models to automate Model-Driven Web Engineer-
ing proposals. In XIII Jornadas de Ingeniería del Software y Bases de Datos
(JISBD/ZOCO 2008), Gijón, Spain, Oct 7-10, 2008.

16. Markus Völter. MD* Best Practices, December 2008. http://www.voelter.de/
data/articles/DSLBestPractices-Website.pdf.

75

