

A Domain Specific Modelling Language for
Specifying and Visualizing Requirements

Niklas Mellegård, Miroslaw Staron

IT University of Gothenburg,
Chalmers Tekniska Högskola | Göteborgs Universitet

SE-412 96 Gothenburg, Sweden
{niklas.mellegard, miroslaw.staron}@ituniv.se

Requirements can cause substantial problems in large software projects if not
handled correctly and efficiently. The problems of missing requirements or
incorrect de-scoping of projects are virtually the most prominent ones.
Combining graphical representation of requirements and organizing these
requirements in several abstraction levels was identified as one of the potential
solutions to such issues in our research project conducted with one of major
automotive companies in Sweden. The objective of the research reported in this
paper is to improve requirements engineering activities by using a graphical
modelling language for managing requirements based on Requirement
Abstraction Model (RAM). We evaluated our results via a pilot controlled
experiment and the results show a statistically significant improvement in the
time required to assess the impact of changes by 37% with the same accuracy.

1. INTRODUCTION

Model Driven Engineering [1] is an established software analysis and design
paradigm, bringing software engineering even closer to other engineering disciplines
[2,3]. Nevertheless, in order to achieve significant improvements after introducing
models into development processes, domain-specific modelling notations should be
used [4]. Here, the notion of the domain can either be a vertical domain (e.g.
automotive or telecom) or a horizontal one (e.g. requirements engineering,
architecture). In our work with the industrial partner (Volvo Car Corporation) we
noticed that there is a need for improvement in the area of these horizontal domains.
In particular to introduce (although not necessarily develop from scratch) a graphical
notation for modelling requirements. Despite the numerous advantages of the existing
modelling techniques which can be used for modelling requirements (e.g. UML [5],
DSLs1 [6], SysML [7]) engineers still struggle to efficiently link requirements to
design models for the purpose of documentation, traceability, or later change impact
assessment. In the automotive domain, the textual requirements are common as this
domain often combines heterogeneous disciplines like hardware engineering, software
engineering, mechanical engineering, each with different tools and techniques. These
different tools and techniques usually result in using text as the common ground for
communication between the teams. The complexity and volume of the requirement

1 Domain-Specific Language

Proceedings of DE@CAiSE'2009

specifications in vehicle projects are often problematic for the understanding of
specifications. The problems with understanding and incompleteness of the
specification [8] might lead to quality problems with the final products or timeliness
of car development projects (when the quality has to be improved before the release).

In this paper, we present a notation developed in order to evaluate whether using a
graphical way of structuring requirements leads to improved quality of the design
models during car development projects. The modelling language is based on the
existing framework for structuring requirements – Requirement Abstraction Model
(RAM) and is intended to fulfil the following requirements:

• The models should graphically visualize requirements at different abstraction
levels and the relationships between them.

• The models should be fully integrated with the existing requirements engineering
tools, e.g. RequisitePro [9] from IBM/Rational.

• The models should support both forward and reverse engineering – i.e. modelling
the requirements and generating text specifications (forward) and vice-versa
(reverse).

• By using the models, business analysts and developers should be able to assess
the impact of requirement change in a shorter time, identify contradicting and
missing requirements in a shorter time and thus increase the quality of the final
software product.

• All requirements should be traceable to the design documents (e.g. UML or
Simulink models) to support assessment of changes in the design (as an effect of
optimizations) on the requirement specification.

These requirements resulted in developing a new modelling notation as a domain-
specific modelling language gRAM. The initial evaluation of this language via a
controlled experiment shows that such a notation fulfils the requirements for
shortening the time required for assessing the impact of change.

This paper is structured as follows; Section 2 presents work related to this research.
Section 3 briefly introduces the requirements specification format used in this
evaluation. Section 4 reports the design and result of the evaluation and section 5
concludes the paper.

2. RELATED WORK

The work presented in this paper is part of our ongoing research outlined in [10]
within the research project ASIS done in cooperation with Volvo Car Corporation
[11]. One part of the project aims at improving the way requirements is specified, and
in particular, the extent to which requirement specification can be reused with a
minimum of effort. As part of this research, a model for the requirements
specification process is developed with the intention of finding areas where Model-
Driven Engineering (MDE) approaches may improve efficiency. The research in this

Proceedings of DE@CAiSE'2009

paper contributes to that research; by examining to what extent a graphical model of
the requirements affect the process of assessing the impact of a change request, a
common way of reusing a requirements specification, to a specified system.

Existing graphical modelling languages which include requirements modelling are
the UML [5] (after Objectory [12]) and SysML [7]. In the latter, the requirements are
specified as stereotyped objects linked to first-order design entities. The notion of ‘use
case’ is used in UML to capture requirements, which makes them more structured
than textual documents, although leaving the format of specifying and linking
requirements open for interpretation for the modellers (which usually leads to
problems). The Entity-Relationship diagrams were used historically to capture
requirements for databases. The modelling notation presented in EAST-DSL [13]
(after AUTOSAR [14]) also advocates modelling requirements using abstraction
levels, although does not solve this problem in the current version of the modelling
language.

Modelling of requirements has also been advocated in the context of MDE/MDA,
e.g. in [15-17] and in particular in the context of executable UML [18-20]. In the
executable UML the requirements are very closely linked with the conceptual models
(domain models) which are used as the first steps in creating working software.

Studies to validate the effectiveness of the RAM approach have been done in e.g.
[21-23] and in our paper we intend to extend these studies by investigating change
impact assessment and using graphical DSL. In this paper, we evaluate whether
adding a graphical representation for RAM-structured requirement specification can
lead to further improvements. However, we also consider time as one of the factors,
thus focusing on efficiency, not only effectiveness.

3. REQUIREMENTS SPECIFICATION FORMAT

In this section we present the graphical modelling language for structuring
requirements and summarize the basis for it – the textual format of Requirement
Abstraction Model.

3.1. REQUIREMENTS ABSTRACTION MODEL

The Requirement Abstraction Model (RAM) [21] has the goal of ensuring
consistency and traceability among requirements in order to increase the overall
quality of requirement specifications. The RAM defines a number of abstraction
levels to which each requirement is classified and checklists to ensure that the
requirements are assigned their proper level. In their original paper Gorschek and
Wohlin [21] suggest, but do not limit their model to, four abstraction levels:
− Product: Product level requirements have a goal-like nature, very high-level

descriptions of the desired functional and qualitative properties of the product.
− Feature: Feature-level requirements describe the features that fulfil the product

level goals.

Proceedings of DE@CAiSE'2009

− Function: Function level requirements define which functions should be provided
by the system in order to provide the features.

− Component: Component level requirements describe how something should be
solved, i.e. bordering to design information.

RAM ensures traceability between requirements through all levels of abstraction by
enforcing that, with the exception of the product level, no requirement may exist
without a link to the more abstract requirement. The rationale is that no requirement
may exist unless there is a clear and unambiguous reason for its existence motivated
by higher-level requirements, and conversely, high-level requirements should be
traceable to the lower-level requirements that satisfy them.

3.2. gRAM – DSL FOR MODELLING REQUIREMENTS

gRAM is a Model-Driven Engineering (MDE) approach to requirements specification
with the purpose of creating an easy to use environment for direct on-screen
manipulation of a requirements structure, from which other documents can be
automatically generated. The gRAM is a formalized graphical Domain Specific
Language2 (DSL) complying with the RAM, where validation rules (i.e. static
semantics) built into the gRAM ensures that the model and the resulting requirement
specification are syntactically correct and well-formed according to the RAM. gRAM
defines traceability links according to the RAM with its Owns/Satisfies link between
requirements at adjacent abstraction levels, and adds the Depends-on traceability link,
which indicates that there is a dependency between two requirements within the same
abstraction level.

The definition of the gRAM follows the approach for language engineering as
advocated by Evans et al. [24] and is divided into three parts:
− Abstract syntax – a meta-model complying with the RAM, defined using MS

Visual Studio 2008 DSL Toolkit [25].
− Concrete syntax – a set of graphical shapes for elements. The concrete syntax is

defined using the domain designer in MS Visual Studio.
− Semantics – The semantic parts of the gRAM are (i) static semantics (validation

rules) in order to ensure that the diagram complies with the specifications of RAM
and (ii) translational semantics for information interchange with other tools. The
rules for transforming the requirements structure to a structured text document are
part of the latter.

The above elements are defined in the following sub-sections.

Syntax

The main component in the abstract syntax, shown as a UML meta-model in Fig. 1,
is the concept of abstraction level as defined in RAM. The top node in the abstract

2 In this context the term “domain” is requirement engineering, not a vertical application

domain like automotive or telecom

Proceedin

syntax is
(Abstract
These tw

Each r
requireme
Any give
relationsh
abstractio
design th

This
abstractio
a higher
static sem
need to b
engineeri

The co
Domain D
structure

Semantic

The sema
rules in o
(ii) transl

Fig. 1

ngs of DE@C

s the notion
tion Level).
o containmen
requirement, w
ent one abstra
en requiremen
hip DependsO
on (Componen
at implements
abstract synt
on levels. The
abstraction le

mantics – val
be able to mov
ing processes.
oncrete syntax
Designer. The
presented in t

cs

antic parts of
order to ensure
lational seman

1 The gRAM U

CAiSE'2009

of the mod
The abstracti

nt relationships
with the excep
action level h
nt can also de
On/UsedBy. F
nt in our cas
s the requirem
tax defines m
e constraint th
evel is not exp
idation rules.
ve requiremen

x is defined us
e concrete syn
the following

f the gRAM a
e that the diag
ntics for inform

UML meta-mode

del (Model),
ion levels co
s are denoted
ption of ones
higher – deno
epend on othe
Furthermore, r
e) also have

ment.
models that

hat each requir
pressed in the
 This particu
nts between a

sing a set of g
ntax is shown
subsection.

are (i) static s
gram complies
mation interch

el

which conta
ontain require
by the name “
at Product lev

oted by relatio
er requiremen
requirements
a link to the

contain requ
rement must l
e abstract synt
lar design ch

abstraction lev

geometric shap
n as an examp

semantics, in
s with the spec
hange with oth

ains abstracti
ements (Requ
“BelongsTo”.
vel, must be l
onship Owns/O
nts – as defin

at the lowes
e module in th

uirements gr
link to a requi
tax, but is exp

hoice is dictat
vels during re

pes in MS DS
ple gRAM req

the form of
cifications of
her tools.

ion levels
uirement).

inked to a
OwnedBy.

ned by the
st level of
he logical

rouped in
irement at
pressed as
ted by the
quirement

SL Toolkit
quirements

validation
RAM and

Proceedin

Fig.

Static sem

The static
RAM. Th
language

Althou
suggested

Translati

The trans
tools. Th
defined;
IBM/Rati
Word for
as descri
graphical
documen

3.3. EXA

The purp
using gRA

Let us
identify a
vehicle m
the driver

ngs of DE@C

 2 An example

mantics

c semantics a
he validation
(C#) which a

ugh our propo
d in [21], the s

ional semantic

slational sema
he version of

ability to exp
ional Requisit
rmat (used to
ibed in sectio
l requirement

nts in other for

AMPLE

ose of this ex
AM.
s consider a r
and take a pi

model or type
rs face. An ex

CAiSE'2009

gRAM require

are validation
rules in gRA

allows for the
osed DSL as s
static semantic

cs

antics of the
gRAM propo
port the requ
tePro [9] and
generate the

on 4). The tra
ts structure
rmats, thus loc

ample is to ill

roadside spee
cture of a sp
, the registrat

xcerpt of a sim

ements structure

rules ensurin
AM is written
creation of cu
shown here is
cs does not lim

gRAM allow
osed in this p
uirements stru
two different
requirement s

anslational se
in gRAM, a

calizing chang

lustrate how a

ed surveillanc
eeding vehicl
tion plate num

mplified requir

e

ng that the mo
n in a general
ustom complex
s based on the
mit the numbe

ws information
paper, three su
ucture to a fo
styles of struc
specifications
mantics allow
and then au
ges to one arte

a set of require

ce camera, wh
le, and from t
mber and extra
rement structu

odel complies
l purpose prog
x rule sets.
e four abstract
er of levels.

n exchange w
uch semantic
ormat compa
ctured text in
s used in the e
w for manipu
utomatically g
efact (the mod

ements can be

hich should b
that image id
act a cropped

ure is shown in

s with the
gramming

tion levels

with other
sets were

atible with
Microsoft
evaluation

ulating the
generating

del).

e designed

be able to
dentify the
d image of
n Fig. 2.

Proceedin

In the
assigned
requireme
integrity
correct th

When
requireme
structure
considere
for use
external
is expor
the
interchan
format,
can be u
import in
desired to
3 and F
show
versions
requireme
evaluatio

4. EVA

The purp
requireme
The stud
efficiency
specified

In the
results ar

4.1. Exp

The evalu
experime
introduce
system. O
with a sh
while the
Fig. 4.

ngs of DE@C

requirements
to the requi

ents to be drag
checks. An i

he problems.
a valid

ent
is

ed ready
in an

tool, it
rted to

textual
nge

which
used for
nto the
ool. Fig.
Fig. 4

two
of a

ent exported
n reported in

ALUATIO

pose of this i
ents specifica

dy examined
y, with respe
system.
following sub
e reported.

periment desi

uation of the
ent using the
ed to the requ
One group wa
hort textual req
e other group
Both of thes

F

F

CAiSE'2009

s structure, th
irement depe
gged and drop
invalid mode

to Microsoft
the following

ON

initial evalua
ation model, s

whether ther
ect to speed a

bsections, the

ign

gRAM was c
same basic

uirements spe
as presented w
quirements sp
with a the fu

se requiremen

ig. 4 A generat

ig. 3 A generat

e level a requ
ending on wh
pped into anot
l cannot be s

t Word forma
section).

ation is to ex
such as gRAM
re is any sta
and accuracy

experiment d

conducted thr
instrumentati

ecification an
with the graph
pecification, as
ull textual req
nts specificati

ted gRAM requ

ted gRAM requ

uirement belo
here it is pla
ther abstractio
saved and the

at (these vers

xamine how t
M, affects chan
atistically sign
y, of assessing

design is briefl

rough one init
ion. Two gro

nd logical des
hical requirem
s shown in fig

quirements spe
ons were gen

uirement (full v

uirement (short

ongs to is auto
aced. The to
on level, with
e modeller is

sions were us

the use of a
nge impact as
nificant impa
g change imp

ly outlined an

tial and one r
oups of subj
sign of a toy

ments structur
gure Fig. 2 an
ecification as
nerated from

version)

version)

omatically
ool allows

automatic
s asked to

sed in the

graphical
ssessment.
act on the
pact on a

nd then the

replication
ects were

y software
e together
nd Fig. 3,
shown in
the same

Proceedings of DE@CAiSE'2009

model to ensure consistency. The subjects were then asked to perform a number of
change impact assessment tasks, common to both groups, using the provided material.

The following subsections details the experiment design.

Population and Sample

The population of this experiment is software designers working with implementation
of software requirement specifications and systems analysts creating/maintaining
these specifications.

In the initial experiment, the participants were 14 first and second year master
students (i.e. in their 4th and 5th year of university studies) attending Software
Engineering and Management programme and four 3rd year bachelor students (i.e.
their 3rd year of education) from the same programme. Most of the participating
master students had over one year of industrial experience prior to their studies.

In the replication experiment, 12 bachelor students, attending the first year of the
Software Engineering and Management programme, participated.

Instrumentation

In each experiment, the test subjects were introduced to the context of a toy software
system by the following scenario:

A vehicle manufacturing company has designed and implemented a simulator
for a new type of drive-by-wire power steering system. The intention of the
simulator is to provide a realistic environment for engineers to experiment
with, e.g. different algorithms for solving certain tasks related to the power
steering system. The design of the simulator has the goals of providing a
realistic physical environment, a realistic software architecture and easy
visualization of the vehicle; in particular, the parts related to steering.

The simulator was implemented in Java prior to the experiment and the requirements
were traced to the software components of the simulator (via the requirements at the
lowest level of abstraction). Two versions of software requirements specifications
were prepared – a textual and a gRAM-based one, both generated from the same
gRAM model, by using the translational semantics built into gRAM to ensure
consistency. The toy system was inspired by the real-world systems our partners work
with, and which could not be used due to confidentiality and the complexity of the
systems.

The experiment objects were: (i) written experiment instructions, (ii) a
requirements specification, and (iii) logical view of the system. An introductory
lecture was given to each group separately, with the only difference in contents being
the requirements specification format; where one group was presented with the textual
RAM format (an example requirement is shown in Fig. 4), while the other with the
gRAM format (an excerpt of a graphical example requirements structure is shown in
Fig. 2, and an example requirement is shown in Fig. 3). The written experiment
instructions and requirements specification differed between the groups in the same

Proceedings of DE@CAiSE'2009

way. The requirements specification consisted of 56 requirements, of which 29 were
at the lowest (component) level of abstraction.

The logical view, showing a high-level class diagram of the implemented power
steering simulator, was identical for both groups, and consisted of 10 logical modules
and 15 inter-module dependencies. The full set of experiment material is available at
[26].

Measurements

The measurements collected for each task include the time taken, the score as a
percentage of correct answers, number of false positives and the subjects’ perceived
confidence. The following variables were derived from the collected variables for
each subject:
− AVG_SCORE The subject’s average score over all tasks (%)
− TOT_FP The subject’s total number of false positives for all tasks
− TOT_TIME The total amount of time the subject spent on the tasks
− AVG_CONF The average of the subject’s confidence level over all tasks
− EFF The efficiency of the change impact assessment process,

calculated as AVG_SCORE / TOT_TIME

The null hypotheses posed are that there is no difference in mean values in the derived
variables between the two groups of subjects.

Validity Evaluation

The main threats to the validity of the study are external and conclusion validity, as
described by Wohlin et al. [27].

External Validity
The main threat to the external validity is the use of student subjects, which may limit
the ability to generalize the result to an industrial situation. The study was done
mainly to evaluate the impact of the format of the requirements specification, and we
do not make any conclusions about its applicability in an industrial situation yet. An
industrial evaluation of gRAM is planned for the future in the same way as an
industrial evaluation presented in [28].

Conclusion Validity
The statistical power of the conclusions is quite low due to the small sample size. This
threat to validity limits the strength of the conclusions drawn from the study. Rather
than stating firm conclusion, we limit ourselves to indications and tendencies.

Testing of the collected data showed that many of the variables did not fit to the
normal distribution. Of this reason, non-parametric tests were chosen, which further
decreases the statistical power of the result but does avoid the risk of violating
assumptions and introducing further threats to the validity of the conclusions.

Proceedings of DE@CAiSE'2009

Fig. 5 Efficiency as defined by the EFF-variable

Fig. 6 Total amount of time spent (TOT_TIME)

4.2. RESULTS

Descriptive statistics

Table 1 shows the
descriptive statistics
for the derived
variables in the
experiment. The
results indicate (with
statistical significance
as shown in Table 1)
that the gRAM group
was 37% faster than
the text group
(TOT_TIME). Although not significant,
the results also show that the text group
scores 12% better (AVG_SCORE) and
produce 22% less false positives
(TOT_FP) than the gRAM group,
indicating that the textual specification
improves the accuracy of change impact
assessment. A hypothesis for this is that
the graphical notation quickly gives a
sense of overview and understanding of
the structure of the requirements, which
in turn leads to the subject being
confident more quickly and hence
satisfied with the answer more quickly.
This hypothesis was supported by post-experiment interviews with a sample of the
test subjects. There is an indication of a difference in the perceived confidence of the
answers (TOT_CONF) with slightly higher confidence in the gRAM group, further

supporting this hypothesis.
The efficiency (EFF), calculated as

score over time, is 44% higher for the
gRAM group indicating a great
improvement in efficiency, considered as
the number of correctly given answers
per time unit. The difference in
efficiency could however not be shown
statistically significant. Fig. 5 and Fig.
6 show the boxplots of the time and
efficiency variables, where group 1 was
provided with the textual requirements
specification and group 2 with the
graphical version.

Variable Mean Std. Dev. Sign. (p)
AVG_SCORETEXT 49.07 12.16 No

(0.424) AVG_SCOREgRAM 40.00 17.53
TOT_FPTEXT 17.75 11.25 No

(0.351) TOT_FPgRAM 22.40 11.29
TOT_TIMETEXT 3113.00 253.49 Yes

(0.002) TOT_TIMEgRAM 1965.50 741.65
TOT_CONFTEXT 14.13 1.64 No

(0.501) TOT_CONFgRAM 15.4 4.67
EFFTEXT 0.01572 0.0035 No

(0.183) EFFgRAM 0.02265 0.01406

Table 1 Descriptive statistics

Proceedings of DE@CAiSE'2009

5. CONCLUSION

One of the more prominent problems with realizing the visions of model-driven
development is limited traceability between requirements and design models [29].
This lack of traceability can lead to inefficient change impact assessment, a common
activity when reusing requirement specifications. In this paper, we presented a
Domain Specific Modelling Language for modelling requirements according to the
principles of Requirements Abstraction Model (RAM), named gRAM.

Our preliminary conclusions from using the gRAM are that it makes it easier to
develop a requirement specification, provides means for automatic verification of the
specifications, and provides more flexibility in the process of creating the
specification. The visualization of requirements gives a clear overview of the
requirements structure and allows for direct manipulation and on-screen feedback of
the implications of the manipulations (e.g. automatically changing the requirement
properties when moving the requirement between abstraction levels), thus making
graphical requirements modelling a more powerful approach than a textual-based one.
Using gRAM enables automatic verification of requirements format and structure by
validating static semantics as defined by the RAM. Preliminary observations that
using gRAM results in more complete and less inconsistent requirement
specifications were confirmed during the development of the experiment material
reported in this paper, when several inconsistencies in the requirements specification
were detected; the inconsistencies had not been spotted when inspecting the text
format prior to that. During the development of experiment materials, the gRAM
allowed for quick restructuring of requirements in order to try different approaches,
allowing for flexibility that is not as easily achieved in a pure textual format.

The goal of information exchange with other established requirement management
tools was partly accomplished by the using translational semantics in gRAM, which
converts the gRAM requirements model into a textual format understandable by the
desired tool (e.g. IBM/Rational Requisite Pro)

We performed an experiment conducted in two sessions to evaluate what effect the
use of gRAM has on the efficiency of assessing the impact of a requested change. The
conclusions from the evaluation shows that using the gRAM visual requirement
structure improves the speed of assessing the impact of a requested change, in our
case by 37%.

In our future research, as part of the evaluating this approach a study at a company
is planned. The study is expected to discover whether this approach adequately
addresses the challenge of producing complete and structurally sound requirements
documents in industry.

ACKNOWLEDGMENTS

This research is partially sponsored by VINNOVA under the V-ICT program and the
ASIS (Algorithms and Software for Improved Safety) project.

Proceedings of DE@CAiSE'2009

REFERENCES

[1] S. Kent, “Model Driven Engineering,” Integrated Formal Methods, 2002, pp. 286-298.
[2] R. France and B. Rumpe, “Model-driven Development of Complex Software: A Research

Roadmap,” 2007 Future of Software Engineering, IEEE Computer Society, 2007, pp. 37-
54.

[3] J. Ludewig, “Models in software engineering – an introduction,” Software and Systems
Modeling, vol. 2, Mar. 2003, pp. 5-14.

[4] Miroslaw Staron, “Transitioning from code-centric to model-driven industrial projects –
empirical studies in industry and academia,” Model Driven Software Development:
Integrating Quality Assurance, Information Science Reference, 2008, pp. 236-262.

[5] Object Management Group [Internet], Available from 'http://www.omg.org/', (Accessed
2008-09-22).

[6] J. Greenfield and K. Short, “Software factories: assembling applications with patterns,
models, frameworks and tools,” Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications,
Anaheim, CA, USA: ACM, 2003, pp. 16-27.

[7] SysML - Open Source Specification Project [Internet],
Available from 'http://www.sysml.org/', (Accessed 2008-09-22).

[8] J. Noppen, P. van den Broek, and M. Aksit, “Imperfect Requirements in Software
Development,” Requirements Engineering: Foundation for Software Quality, Springer
Berlin / Heidelberg, 2007, pp. 247-261.

[9] IBM/Rational RequisitePro - Software [Internet], Available from 'http://www-
01.ibm.com/software/awdtools/reqpro/', (Accessed 2008-09-22).

[10] N. Mellegård and M. Staron , “Methodology for Requirements Engineering in Model-
Based Projects for Reactive Automotive Software,” Paphos, Cyprus: Springer--Verlag,
2008.

[11] ASIS - Algorithms and Software for Improved Safety [Internet], Available from
'http://www.ait.gu.se/english/research_groups/se_management/research_projects/ASIS_A
ctive_Safety_Systems/', (Accessed 2009-04-7).

[12] I. Jacobson, Object Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley Professional, 1992.

[13] ATESST Webpage [Internet], Available from 'http://www.atesst.org', (Accessed 2008-05-
09).

[14] AUTOSAR Webpage [Internet], Available from 'http://www.autosar.org', (Accessed 2008-
05-09).

[15] M.D. Miguel, J. Jourdan, and S. Salicki, “Practical Experiences in the Application of
MDA,” Proceedings of the 5th International Conference on The Unified Modeling
Language, Springer-Verlag, 2002, pp. 128-139.

[16] A. Wegmann and O. Preiss, “MDA in enterprise architecture? The living system theory to
the rescue,” Enterprise Distributed Object Computing Conference, 2003. Proceedings.
Seventh IEEE International, 2003, pp. 2-13.

[17] T. Meservy and K. Fenstermacher, “Transforming software development: an MDA road
map,” Computer, vol. 38, 2005, pp. 52-58.

[18] S.J. Mellor and M. Balcer, Executable UML: A foundation for model-driven architecture,
Addison Wesley, 2002.

[19] L. Starr, Executable UML How to Build Class Models, Prentice Hall PTR, 2001.
[20] S.J. Mellor, Executable and Translatable UML [Internet], Available from

'http://www.embedded.com/9900932', (Accessed 2009-04-08).
[21] T. Gorschek and C. Wohlin, “Requirements abstraction model,” Requir. Eng., vol. 11,

2006, pp. 79-101.

Proceedings of DE@CAiSE'2009

[22] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin, “Industry evaluation of the
Requirements Abstraction Model,” Requirements Engineering, vol. 12, Jul. 2007, pp.
163-190.

[23] N. Mohammad, Y. Vandewoude, Y. Berbers, and R. Feldt, “Suitability of Requirements
Abstraction Model (RAM) Requirements for High-Level System Testing,” International
Journal of Computer and Information Science and Engineering, vol. 2.

[24] T. Clark, A. Evans, P. Sammut, and J. Willans, Applied metamodelling: A foundation for
language driven development, 2004.

[25] Microsoft, Redmond WA, Microsoft Visual Studio 2008 Software Development Kit
[Internet], Available from 'http://msdn.microsoft.com/en-us/library/bb166441.aspx',
(Accessed 2008-09-22).

[26] gRAM Experiment Material [Internet], Available from
 'http://www.ituniv.se/~miroslaw/ram-dsl_experiment/', (Accessed 2009-04-7).

[27] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslèn,
Experimentation in Software Engineering: An Introduction, Boston MA: Kluwer
Academic Publisher, 2000.

[28] M. Staron, L. Kuzniarz, and C. Wohlin, “Empirical assessment of using stereotypes to
improve comprehension of UML models: A set of experiments,” Journal of Systems and
Software, vol. 79, 2006, p. 727-742.

[29] M. Staron, “Adopting MDD in Industry - A Case Study at Two Companies,” ACM/IEEE
9th International Conference on Model Driven Engineering Languages and Systems, O.
Nierstrasz, J. Whittle, D. Harel, and G. Reggio, eds., Genova, Italy: Springer-Verlag,
2006, pp. 57--72.

