
A Reconciliation Framework to Support
Cooperative Work with DSM

Catalin Constantin, Vincent Englebert, and Philippe Thiran

PReCISE Research Centre, University of Namur
Rue Grandgagnage 21, B-5000 Namur, Belgium

{catalin.constantin,vincent.englebert,philippe.thiran}@fundp.ac.be

Abstract. Despite the fact that DSM tools become very powerful and
more frequently used, the support for their cooperation has not reached
its full strength and the demand for model management is growing. In
cooperative work, the decision agents are semi-autonomous and there-
fore a solution for reconciliating DSM after a concurrent evolution is
needed. Many GPML environments are proposed by the CSCW commu-
nity but they do not usually provide reconciliation, merging or versioning
functionalities after asynchronous evolutions. In this paper we propose
a reconciliation framework for cooperative work with a DSM language.
The main goal is to support the e�ciency of software developers and the
reuse of software artifacts.
Keywords: CSCW, DSM, metaCASE, model versioning, model recon-
ciliation and merging

1 Introduction
Domain Speci�c Modelling (DSM) languages are now considered as an e�cient
alternative to General Purpose Modelling Languages (e.g., UML, Petri Nets) for
modelling complex systems [12]. Nevertheless, they require ad-hoc environment
tools (called metaCASE tools) that enable method engineers to edit and manage
models as well as metamodels. Since the 90's, several tools have been developed
such as MetaEdit+ [11], EMF [7], GME [14], and Atom3 [6].

These tools generally consider the modelling task as a single user concern.
However, the design of software systems often implies many competences (e.g.,
middleware engineers, human interface designers, database experts, business an-
alysts). Hence, there is a need to share the modelling artifacts between several
engineers and to synchronize their activities. To the best of our knowledge, there
is a small number of frameworks that are representative for the cooperative work.
MetaEdit+ is a tool that provides a concurrent access to its repository with a
Smart Model Access Restricting Technology (Smart Locks c©). This mode solves
the concurrent access to a shared repository but assumes that the information is
managed consensually by users. It also o�ers import-export facilities for manag-
ing modelling development. There are other ways of cooperative work1: Schmidt
1 We de�ne �Cooperative work � as �[. . .] multiple persons working together to produce
a product or service.� from [21].

and al. [21] argue that the group of people concerned by a cooperative task can
be large, transient, not stable or even non determinable. They also show that
the pattern of interactions can change dynamically and that agents are semi-
autonomous in their partial work. There is thus a space for a weakly coupled
mode of cooperation where users would have the control of the shared data in
an asynchronous way. They could even distribute them without the control of
an omniscient central authority. This mode should allow users to have the con-
trol of their data, to work in isolation of any other user or a central authority.
Implementing the exchange of method chunks [19] could serve as a basis for
this kind of collaborative work. In this paper, we consider a chunk as a co-
hesive, autonomous and interoperable model. Standard formats like CDIF [8],
GXL [10], PNML [18], or XMI [17] were designed to facilitate the exchange of
models among users. Unfortunately, if they de�ne quite well the structure of
data, they disregard their semantics. This has jeopardized the interoperability
of CASE tools. But the exchange of models between users of the same family of
CASE tools is still possible.

We propose to support a weakly coupled cooperation work for DSM users.
This mode of cooperation implies dealing with its speci�c features:
1. Users store models in local repositories;
2. Models can be exchanged between users for long periods of time;
3. Users can be distributed in the world and belong to heterogeneous pro�les;
4. Users can work concurrently on models in asynchronous way;
5. Users can delegate their models ownership to other users;
6. When a user owns several models that had a common ancestor model in

the past (i.e. they are the result of concurrent modi�cations applied on a
common model � the ancestor), an oracle should be able, if possible, to
reconcile the models and to merge them into one unique model by preserving
the consistency.

Dealing with cooperative issues for DSM tools entails new problems. As
DSMs are de�ned to match as close as possible the application domain, DSMs
have to follow its evolution and the new requirements of the stakeholders [23].
MetaCASE tools must then be able to support the evolution of DSM languages
during all the project life-cycle. From this observation and from hypothesis 2,4
and 5, we deduce that not only models evolve concurrently, but also their meta-
models. Hence, the oracle should be able to reconcile both models and meta-
models.

In this paper, we argue that a weakly coupled cooperative work is possible
for DSM tool users, even if we take into consideration the natural evolution of
the language (its metamodel). We present in the next sections the principles
of a framework that makes possible the de�nition of a reconciliation oracle for
both models and their metamodels, and that meets the hypothesis of the weakly
coupled cooperation model.

The paper is structured as follows: Section 2 gives a small summary of the
related work on reconciliation after cooperative work, Section 3 illustrates the
issues of cooperative work for DSM tools with an example, Section 4 introduces

 Proceedings of DE@CAiSE'2009

the data description language that de�nes the methods data (e.g., models, meta-
models), and the reconciliation framework is introduced in Section 5. Section 6
presents the bene�ts of our framework and Section 7 concludes the paper.

2 Related Work

Many GPML environments are proposed by the Computer Supported Cooper-
ative Work (CSCW) community but they do not usually provide reconciliation,
merging or versioning functionalities for asynchronous evolution. For instance,
[15] proposes a cooperative tool supporting distributed edition of UML models
but in synchronous mode only.

Regarding DSM, to the best of our knowledge, few approaches have been
proposed so far. MetaEdit+ uses a Client/Server approach with a smart locking
strategy to share data between users. It also o�ers import-export facilities for
the asynchronous modelling development. This can update the source reposi-
tory, so that imports into target repositories update the source models there
rather than creating new ones. The tool is able to support asynchronous coop-
erative work with its model patches for common scenarios that are propagated
to all users. It allows the users to reference, reuse or create their representa-
tion of these core models. Eclipse Modelling Framework Project (EMF) [7] is a
modelling framework and a code generation facility for building tools and other
applications based on a structured data model. EMF provides resources for de-
veloping and implementing UML models using semantic and notational data
that is implemented in terms of metamodels de�ned in EMF. The UML models
are partitioned to facilitate a concurrent development and to reduce the likeli-
hood of a non trivial merging. Every change made at the model level generates
multiple changes at the metamodel level. The delta (di�erence) engine is imple-
mented at the EMF level and generates the di�erences related to both EMF and
UML models.

The approach in [20] proposes the use of a versioning system between method
chunks. It does not refer to the support of cooperative working and versioning
and it is mainly used to solve consistency problems between models and meta-
models when a tool allows their independent evolution. [3] describes a proposal
for the consistency-receiving merge of model versions, a formalism is introduced
to describe the evolution of model revisions which includes a semantic de�ni-
tion of optimistic merge procedure. It however refers the metamodels as static
artifacts; only the models are dynamic assets.

Computer Aided Design (CAD) is also a well established �eld for CSCW
as a domain of inquiry. Objects can be described from di�erent viewpoints,
representing results of either synchronous or asynchronous cooperative work.
Maintaining the relationships amongst these models has been discussed in [13]
but CAD tools generally suppose that objects are organized hierarchically and,
hence, aggregates are necessarily disjoint [5]. This last hypothesis is too strong
in software engineering.

 Proceedings of DE@CAiSE'2009

metaclass

mcname:String

metaproperty

mpname:String
mptype:type

has

entity

name:String

customer

Metamodel MM

Model M

Metametamodel

instanceof

instanceof

one metaclass

one metaproperty

one entity

and its name

Fig. 1. The Entity-Relationship Model M and its MetaModel MM . The entity
metaclass owns one metaproperty (name) whose type is String; customer is such entity.
The static diagrams are represented with the UML notation for the sake of simplicity.

3 Cooperation Scenario
The cooperation scenario can be illustrated by a simple example. A user Alice
creates an Entity-Relationship model M along with its metamodel MM (Fig-
ure 1). M and MM are then sent to Bob to be re�ned. Bob has then to import
model M and its metamodel MM while preserving its local knowledge to avoid
any clash between Alice's concepts and his own. Once the data is imported, he
extends MM by adding a persistent �eld to the entity metaclass, and valu-
ates that �eld as �SQL� for the customer entity. He then renames this entity as
�Customer� (with an uppercase), and he �nally changes the name of the entity
metaclass to �EntityType�. The result (M1,MM1) is sent back to Alice and Bob
deletes this information from his repository. The problem consists in merging
M with M1 along with the merging of MM with MM1. If in the same time,
Alice modi�es M (i.e. M2) or MM (i.e. MM2), the problem becomes more com-
plex: the artifacts evolve independently and the reconciliation of M1/M2 and
MM1/MM2 may require to solve inconsistencies, redundancies, semantic mis-
matches, etc. For instance, Alice can change the name of the customer entity
in M from �customer� to �CUSTOMER�. This scenario is illustrated in Figure
2. Of course, this scenario must be generalized since models can be the object
of much more complex work�ows. For the sake of simplicity, only the simple
scenario is discussed in this paper.

4 The MetaL Language
This research is carried out in the context of the MetaDone project that aims to
develop a metaCASE tool whose functionalities are driven by �rst-class models.
This goal leads us to adopt a fully rei�ed and bootstrapped repository with a
speci�c meta data description language:MetaL. Contrary to EMF or UML, there
is no distinction between models and metamodels, items can have several types

 Proceedings of DE@CAiSE'2009

entity

name:String

cus tomer idle

s ta te

name:String

idle

s tate

name:String

EntityType

name:String
techno:String

« SQL »
Cus to mer

entity

name:String

CUSTOMER

EntityType

name:String
techno:String

« SQL »
CUSTOMER

idle

s ta te

name:String

M1/MM1

M/MM

M2/MM2

Fig. 2. Cooperative Scenario. This �gure shows the exchange of information and the
successive evolutions of the (meta)models. Modi�cations are indicated with bold letters.
Cross symbols denote import and reconciliation processes. The upper cross consists
mainly in importing the chunk by preserving the local data. The bottom cross requires
a more complex reconciliation process.

 Proceedings of DE@CAiSE'2009

(e.g. both an EClass and a EAttribute), items can belong to distinct abstraction
levels at the same time. The bene�ts of this approach are discussed in [9]. The
next paragraph gives details of the main features of MetaL.

Data is modelled as a set of items D de�ned as the non-disjoined union of two
sets O and P . Elements of O denote objects, while those of P denote properties
characterized by a domain and a range that are objects themselves. A subset of O
(OT) denotes object types and a many-to-many relationship iof exists between
O and OT . In the same way, a subset of P (PT) represents property types and
a one-to-many relationship pof is de�ned between P and PT � a property has
exactly one property type. For the sake of simplicity, we will not describe the
specialization relationship, and the constraints of this language. A subset OVS of
O will hold string values. Let's just make clear that cycles are allowed in the iof
and pof graphs and items can play several roles (object or/and property) at the
same time, and can lose or gain roles. A function name = OT ∪ PT → String
maps types to unique identi�ers. This language is presented in [9].

String:type

npname:__mcname:__

entity : metaclass

metaproperty:__metaclass:__

h1:has name : metaproperty

__:mcname

« entity»: String

type:type

mptype:__

has:__

__:mpname

«name»:String

mp1:mptype

String:type

: entity :h1 :ename «Customer »
:String:mp1

Object

ObjectType domainrange Property PropertyType

m
odel

m
etam

odel
m

etam
etam

odel

value

Fig. 3. Graphical Syntax of MetaL. Objects and object types are depicted with rect-
angles while properties and property types are represented with ellipses. The shapes are
labeled as �lhs:rhs� where lhs is the facultative name of the item and rhs its type(s) �
lhs is sometimes omitted since only types are named. When an item is both a property
and an object, its shapes are juxtaposed (this case is not illustrated). Values associated
with elements of OVS are placed on the left side.

Figure 3 illustrates the graphical syntax of the MetaL language and how
the DSM language from Figure 1 is described with MetaL. We will reuse this
example in the rest of this paper. iof and pof relationships are not represented
graphically, but are explicit in our approach.

 Proceedings of DE@CAiSE'2009

MetaL describes the �rst layer of our metaCASE architecture, a second
layer (MetaL2) exists with more abstract concepts (metaobjects, metaproper-
ties, metaroles, metamodels, identi�ers, cardinalities, . . .) in the same way that
OWL is de�ned on top of RDF [22]. Figure 4 illustrates how a DSL statechart
can be modelled and used with this language � only an excerpt of MetaL2 is
presented. The main important aspect is that all the abstraction levels (e.g.,
models, metamodels, metametamodels) are stored together by keeping an ex-
plicit relationship between �instances� and �types�. MetaL is de�ned to overcome
the usual limitations of current DSM languages: limited number of abstraction
levels, forbidden relationships between elements of distinct abstraction levels,
and management of all the abstraction levels in a homogeneous way. Figure 5
illustrates the use of this modelling language in the context of the MetaDone
metaCASE environment.

MP:MP,MO

MO:MO

has:has

type:type

MR:MO,MR

T:T

state:MO

transition:MR,MO

state name:MP

t1:type

h1:has

«»,S tring:S tring,T

name:name

"transition":String

"state":String

"state name":String

:name

:name

:name

:state :state

"idle":string "busy":string

:state name :state name

:transition

:h1 :h1

:t1 :t1

MetaMetaMode l Leve l MetaMode l Leve l Mode l Leve l

MM:MO,MM

wp:wp

statechart:MM :name

:wp3 :wp1 :wp1 :wp3

wp2:wpwp1:wp
:statechart

:wp2

isa

isa

isa

wp3:wp

"statechart":String

«»,String:S tring,T

Fig. 4. MetaL2. The left pane shows the metametamodel in terms of object and
property types. MM , MO, MP , and MR denote resp. the MetaModel, MetaObject,
MetaProperty, and MetaRole metaclasses. Every item is de�ned as an instance of it-
self, ensuring a re�exive de�nition. The middle pane depicts the de�nition of a simple
statechart metamodel and the right pane shows how this metamodel can be used to
instantiate a simple statechart (idle→busy).

5 The Reconciliation Framework
We �rst formally describe the hypothesis of the world in which users play. We
note U the set of all the possible users who can play some roles in a cooperative
work. They can join or leave the game (i.e. cooperative work) whenever they
want. Let's call R the databases/repositories users work with. The relation use ⊆
U × R denotes the use of a database by a user; given that databases are not
shared between users. Each database is �lled to store a MetaL speci�cation (i.e.
a set D). We note data : R → T × L this process, where T is an in�nite set
of names and L denotes all the sets Ds (see Section 4) that ful�l the axioms

 Proceedings of DE@CAiSE'2009

Fig. 5. DSM examples modelled with MetaL2. Window 2 shows the metamodel of
a DSL to specify security privileges related to database schemas. Model 4 attaches
privileges on elements of model 5 to users of the organisational model 3. Model 1 is a
classical UML like statechart.

 Proceedings of DE@CAiSE'2009

of the MetaL language. At this time, the name in T denotes the repository
from where data is coming from. The initial situation of our scenario would be
described as use = {(A,RA), (B, RB)} where Alice (A) and Bob (B) are resp.
using repositories RA and RB . They are populated as: data(RA) = {rA} ×DA,
data(RB) = {rB} ×DB where DA,B ∈ L.

The cooperation scenario is implemented by the exchange of a repository
chunk from A to B. This chunk is a subset S of data(RA) that contains informa-
tion relevant for the user and that meets the axioms of MetaL2: it is cohesive and
autonomous. The chunk is built by a �xpoint process that improves the chunk
at each step in order to meet the axioms. This process is explained hereafter:

Let's �rst de�ne some preliminary functions: function γ : 2D → B returns
true if the information is consistent wrt. the MetaL axioms. Function
δ : 2D → 2D computes which elements from D are lacking in order
to make the argument �more� consistent, indeed, the addition of new
elements can in turn infringe other axioms. The following properties are
satis�ed: P1 ≡ γ(D) = true, and P2 ≡ ∀X ⊆ D : δ(X) ⊆ D. If C:
C ⊆ D denotes the elements of interest to user A, then the chunk can
be computed as:

while not γ(C) do C : = C ∪ δ(C)
This computes the smallest consistent set S containing C. The δ(X)
function is built from rules such as: if ∃x ∈ X ∩ O, ∃ot ∈ OT \ X :
iof(o, ot), and features of ot are used in X, then δ(X) must return ot.
From properties P1 and P2, we see that a) such a set exists, b) that the
process terminates, and c) that the result is contained in D.

When Bob receives S, the problem consists in adding S to data(RB). But
this last process must make sure to preserve the distinct identity of the data
that would be speci�c to A and to merge the common data between A and B
� for instance, elementary types such as object types String, metaclass, etc.
We suppose that a function IR : D 7→ Z maps every item to a unique negative
number if this item is a common knowledge. Otherwise it maps every item to
a unique positive number. Of course, there are as many functions IR as there
are repositories3. If we keep the information about the original repository with
every data, we can now merge S and data(RB) as:

data(RB) ∪ {
(r, d) ∈ S | IRA(d) ≥ 0

}

An action is an elementary access to the repository (create, read, update,
delete) with additional information. Let's name Action the set of actions that
can be performed on one element.

Bob can now modify his copy of the chunk: create/read/update/delete (CRUD)
data at the model and metamodel levels. Once this job is �nished, the modi�ed
2 i.e. {d|∃(r, d) ∈ S} ∈ L.
3 These functions can be de�ned as an increment, and then, several repositories could
hold the same data while building distinct functions I.

 Proceedings of DE@CAiSE'2009

chunk can be sent back to Alice. As in [20], we suppose that all the CRUD
actions on the repository are logged and stored in a journal. All events related
to an item are listed and the sequence of modi�cations can be reiterated. This
enables the re-creation of models at di�erent stages of their development. It also
contains important milestones such as sending and receiving of method chunks
or even free users annotations. When receiving the journal JB from Bob, entries
from the local journal and JB can be compared to decide if JB can be replayed
while preserving the actions operated by Alice. This decision could be de�ned in
order to preserve a strong serialization between the transactions [4], but weaker
de�nitions could be considered depending on the granularity of the data to allow
an interleaved execution for instance. The consistency rules should be checked at
the end of this process. Since the concepts of instances and types are considered
as �rst-class data, the merging of both journals according to the serialization
rules concerns both models and metamodels at the same time.

Figure 6 presents how users Alice and Bob can work asynchronously on either
M or MM . In this �gure, labels noted �__� denote information not relevant for
our explanation. The top panel of every repository is considered as a common
knowledge, and is thus mapped to a consistent negative value by functions Ix.
The reconciliation process merges these panels. When the �rst chunk arrives in
Bob's repository, the items are added and any confusion is avoided with the
adornment of the origin repository name (the T element is the label on the left
top corner). When Bob sends back the chunk, a second reconciliation occurs. By
comparing the journals, the T element helps the process to recover the elements
that come from Bob, possibly modi�ed, but that should be merged with items
already present on the Alice's side. The �gure shows one possible result of the
reconciliation process. Others could exist depending on the strategy used, as
discussed previously.

Another issue is the consistency of the repository that may occur when a
part is replicated and maybe modifed by concurrent users. The journals can
help to detect such problems and even to solve them sometimes. But this action
unfortunately occur a-posteriori and this may be too late. A �weight-watchers�
technique [2] can be used to detect such problems a-priori. This consists in mark-
ing each data with a weight (say 256). This weight would next be distributed
(e.g. division by 2) between the users if they share data. When a reconciliation
happens, the data recovers its weight if the sender abandons his/her ownership.
The use of shared data (i.e. its weight<256) can now be detected, and compu-
tations that would have side e�ects outside the method chunk can be detected
and executed at his/her own risks. Figure 7 demonstrates this principle where
at some time t, Alice and Bob share the same chunk. Every data of this chunk is
then weighted 256

2 , if Alice decides in meanwhile to apply a transformation from
that chunk to a relational model, then the output of this transformation can be
invalidated later if the reconciliation process a�ects the chunk.

 Proceedings of DE@CAiSE'2009

String:type

npname:__mcname:__

entity : metaclass

metaproperty:__metaclass:__

h1:has name : metaproperty

__:mcname

« entity»: String

type:type

mptype:__

has:__

__:mpname

«name»:String

mp1:mptype

String:type

Customer
: entity __:h1 __:ename «customer »

:String__:mp1

String: type

npname:__mcname:__

state : metaclass

metaproperty:__metaclass:__

h1:has name : metaproperty

__:mcname

«State»:String

Idle
:state __:h1 __:name «Idle»

:String
__:mp1

type:type

mptype:__

has:__

__:mpname

«name»:String

mp1:mptype

String:type

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

String:type

npname:__mcname:__

entity : metaclass

metaproperty:__metaclass:__

h1:has name : metaproperty

__:mcname

«entity»: String

type:type

mptype:__

has:__

__:mpname

«name»:String

mp1:mptype

String:type

Customer
: entity __:h1 __:ename «CUSTOMER »

:String__:mp1
r

A
r

A
r

Ar
A

r
A

r
A

r
A

r
A r

A

r
A

r
A

r
A

r
A

r
Ar

A

r
A

r
A

r
A

r
A

r
A

r
A

r
A

String: type

npname:__mcname:__

entity : metaclass

metaproperty:__metaclass:__

h1:has name : metaproperty

__:mcname

« EntityType»

Customer
:entity __:h1 __:name «CUSTOMER »

:String__:mp1

type:type

mptype:__

has:__

__:mpname

«name»

mp1:mptype

String

h2:has techno : metaproperty

__:mpname

«persistent »:String

mp2:mptype

String:type

__:h2 __:techno «SQL »:String__:mp1

r
A

r
A

r
A

r
A

r
A

r
A

r
A

r
A

r
Ar

A

r
A

r
A

r
A

r
A

r
A r

A

r
A

r
A

r
A

r
A

r
A

r
A

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

String: type

npname:__mcname:__

entity : metaclass

metaproperty:__metaclass:__

h1:has name : metaproperty

__:mcname

« EntityType»:String

Customer
:entity __:h1 __:name «Customer »

:String__:mp1

type:type

mptype:__

has:__

__:mpname

«name»:String

mp1:mptype

String:type

h2:has techno : metaproperty

__:mpname

«persistent »:String

mp2:mptype

String:type

__:h2 __:techno «SQL »:String__:mp1

r
B

r
B

r
B

r
Br

B

r
Br

B
r

B

r
B

r
B

r
B r

B

r
Ar

A

r
A

r
A

r
A

r
B

r
B

r
B

r
B

r
B

r
B

r
A

r
A

r
A r

A

r
A

r
A

r
A

r
A

r
A

r
A

state : metaclass h1:has name : metaproperty

__:mcname

«State»:String

Idle
:state __:h1 __:name «Idle»

:String__:mp1

__:mpname

«name»:String

mp1:mptype

String:type

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

r
B

Fig. 6. The Reconciliation Scenario. Modi�ed items are represented with bold letters
or a thick line. This scenario doesn't illustrate items deletion.

 Proceedings of DE@CAiSE'2009

EntityType

name:String
techno:String

« SQL »
CUSTOMER

« SQL »
Customer

Table

name:String

CUSTOMER

=256/2 =256/2=256

trs f_ER2SQL

EntityType

name:String
techno:String

Fig. 7. Weight-Watcher Example. When Alice decides to transform the �CUS-
TOMER� entity type, the presence of partial weights in the argument of the trans-
formation informs her that the argument could change once the transformation has
been applied, impacting so the semantics of traceability between the models.

6 Results and Discussion
Our proposition allows the exchange of method chunks that consists in both
models and metamodels data. The reconciliation of both models and metamodels
may require to solve inconsistencies, redundancies and semantic mismatches. By
preserving in a unique language the relationships between the instances and
their types, we can provide a reconciliation process that encompasses several
abstraction levels at the same time. To the best of our knowledge, [20] is the
most complete work in that domain, but by generating explicitly a database
schema from the metamodel, it breaks this homogeneity. Moreover, by avoiding
the use of a central server (database or CVS-like), users can be autonomous and
do not require any administration. In MetaEdit+ [1], import/export of chunks
is possible as well as merging chunks together but there is a restriction: a user
can not import back the chunk he has just exported. Nevertheless, this tool
allows users to update the replica with patches, that scenario has not yet been
considered in our framework.

We envision other bene�ts as the journals could be interactively reiterated
to explain the contribution of the concurrent users or become �rst-class objects.
The journal enables the recreation of models/metamodels at di�erent stages of
their development. Although our approach has been introduced with the MetaL
language, it will be possible to extend this framework to other works such as
RDF/OWL [22] or Telos [16].

7 Future work and conclusions
The support for cooperative tasks between DSM tools is still an open issue, espe-
cially for asynchronous collaboration. This cooperative approach can be achieved

 Proceedings of DE@CAiSE'2009

by the exchange of method chunks. Our paper presents a theoretical framework
that allows such exchanges at all the abstraction levels (models & metamodels)
based on an ad-hoc meta data description language (MetaL).

This work is carried out in the context of the MetaDone DSM tool. It is
based on MetaL and is currently being implemented in Java (30 KLOC). Al-
though MetaL proposes interesting advantages over other DSLs like EMF or
UML (rei�cation, de�ning relationships between elements of distinct abstrac-
tion levels, management of all the abstraction levels in a homogenous way),
these make the reconciliation process more complex. The proposed reconciliation
framework is still at its early stage of design. Speci�c DSM reconciliation aspects
should be considered: maintaining the consistency, re�ning the reconciliation or-
acle and explaining its strategies to the users, and de�ning a methodological
framework for method chunks reconciliation.

References
1. MetaEdit+ System Administration. http://www.metacase.com/support/45/

manuals/sysadmin/sa-2_4_1.html, 2009.
2. Maarten van Steen Andrew S. Tanenbaum. Distributed Systems: Principles and

Paradigms. Prentice-Hall, 2002.
3. Christian Bartelt. Consistence preserving model merge in collaborative develop-

ment processes. In CVSM'08: Proceedings of the 2008 international workshop on
Comparison and versioning of software models, pages 13�18, New York, NY, USA,
2008. ACM.

4. Philip Bernstein. Principles of Transaction Processing. Morgan Kaufmann, San
Diego, 1997.

5. H.T. Chou and W. Kim. A unifying framework for version control in a CAD
environment. In Twelfth International Conference on VeryLarge Data Bases, pages
336�p344, Kyoto, 1986.

6. Juan de Lara and Hans Vangheluwe. Using atom3 as a meta-case tool. In ICEIS,
pages 642�649, 2002.

7. Eclipse. http://www.eclipse.org/.
8. Electronic Industries Association. CDIF Technical Committee. CDIF Integrated

Meta-model Common Subject Area, eia/is-112 edition, December 1995.
9. Vincent Englebert and Patrick Heymans. Towards more extensible metaCASE

tools. In A.L. Opdhal J. Krogstie and G. Sindre, editors, International Conference
on Advanced Information Systems Engineering (CAiSE'07), number 4495 in LNCS,
pages 454�468, 2007.

10. Holt, Schürr, Sim, and Winter. GXL: A graph-based standard exchange format
for reengineering. Science of Computer Programming, 60(2):149�170, April 2006.

11. Steven Kelly. Case tool support for co-operative work in information system design.
In Colette Rolland, Yu Chen, and Meiqi Fang, editors, Information Systems in the
WWW Environment, volume 115 of IFIP Conference Proceedings, pages 49�69.
Chapman & Hall, 1998.

12. Steven Kelly and Juha-Pekka Tolvanen. Domain-Speci�c Modeling. Enabling full
code generation. Wiley-IEEE Computer Society Pr, 2008.

13. Takashi Kiriyama, Tetsuo Tomiyama, and Hiroyuki Yoshikawa. A model integra-
tion framework for cooperative design. In Duvvuru Sriram, Robert Logcher, and

 Proceedings of DE@CAiSE'2009

Shuichi Fukuda, editors, MIT-JSME Workshop, volume 492 of Lecture Notes in
Computer Science, pages 126�139. Springer, 1989.

14. Akos Ledeczi, Miklos Maroti, Arpad Bakay, Gabor Karsai, Jason Garrett, Charles
Thomason, Greg Nordstrom, Jonathan Sprinkle, and Peter Volgyesi. The generic
modeling environment.

15. Andrea De Lucia, Fausto Fasano, Giuseppe Scanniello, and Genny Tortora. En-
hancing collaborative synchronous uml modelling with �ne-grained versioning of
software artefacts. J. Vis. Lang. Comput., 18(5):492�503, 2007.

16. J. Mylopoulos. Conceptual modeling and telos. In P. Loucopoulos and R. Zicari,
editors, Conceptual Modeling, Databases, and CASE. An Integrated View of Infor-
mation Systems Development, chapter 2, pages 49�68. John Wiley & Sons, Ltd,
1992.

17. OMG. MOF 2.0/XMI Mapping Speci�cation, v2.1, formal/05-09-01 edition, 2005.
18. PNML. http://www.pnml.org/.
19. Jolita Ralyté and Colette Rolland. An approach for method reengineering. In

Hideko S. Kunii, Sushil Jajodia, and Arne Sølvberg, editors, ER, volume 2224 of
Lecture Notes in Computer Science, pages 471�484. Springer, 2001.

20. Motoshi Saeki. Con�guration management in a method engineering context. In
Eric Dubois and Klaus Pohl, editors, CAiSE, volume 4001 of Lecture Notes in
Computer Science, pages 384�398. Springer, 2006.

21. Kjeld Schmidt and Liam Bannon. Taking CSCW seriously: Supporting articulation
work. Computer Supported Cooperative Work, 1:7�40, 1992.

22. W3C. The world wide web consortium (w3c) � http://www.w3c.org.
23. Jing Zhang. Metamodel-driven model interpreter evolution. In OOPSLA '05:

Companion to the 20th annual ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pages 214�215, New York, NY,
USA, 2005. ACM.

 Proceedings of DE@CAiSE'2009

