
Preface

Domain Engineering is an engineering discipline concerned with building reusable

assets, such as specification sets, patterns, and components, in specific domains. A

domain in this context can be defined as an area of knowledge that uses common

concepts for describing phenomena, requirements, problems, capabilities, and

solutions. The purpose of domain engineering is to identify, model, construct, catalog,

and disseminate artifacts that represent the commonalities and differences within a

domain. Although being applicable to different engineering disciplines, domain

engineering methods and domain specific languages (DSL) receive nowadays special

attention from the information systems and software engineering researchers and

practitioners who deal with artifact reuse, application validation, and domain

knowledge representation. In particular, these topics are of interest in the areas of

software product line engineering and ontology engineering. One of the reasons for

this interest is the increasing variability of information and software systems and the

need to obtain and share expertise in different, evolving domains.

Domain engineering deals with two main layers: the domain layer, which deals

with the representation of domain elements, and the application layer, which deals

with the software applications and information systems artifacts. In other words, the

programs, applications, or systems are included in the application layer, whereas their

common and variable characteristics, as can be described, for example, by patterns or

emerging standards, are generalized and presented in the domain layer.

Similarly to application engineering, domain engineering includes three main

activities: domain analysis, domain design, and domain implementation. Domain

analysis identifies a domain and captures its ontology. Its aim is to specify the basic

concepts of the domain, identify the possible relationships among these concepts, and

represent this understanding in a useful way. Domain design and domain

implementation are concerned with mechanisms for translating requirements to

artifacts that will operate in the domain, i.e., into systems that are made up of

components with the intent of reusing them to the highest extent possible. All these

activities are performed within the domain layer. However, domain engineering also

supports inter-layer activities, namely interactions that exist between the domain and

application layers. Specifically, domain layer artifacts may be reused and used for the

design and validation of the specifications of application layer artifacts, while the

applications may be generalized into domain artifacts in a process that can be termed

knowledge elicitation. Figure 1 visually summarizes the two layer model of domain

engineering and its related activities.

Domain engineering as a discipline has practical significance as it can provide

methods and techniques that may help reduce time-to-market, product cost, and

projects risks on one hand, and help improve product quality and performance on a

consistent basis on the other hand.

Figure 1. The two layer model of domain engineering

The purpose of this workshop is to bring together researchers and practitioners in

the area of domain engineering in order to identify possible points of synergy,

common problems and solutions, and visions for the future of the area. The workshop

accepted 7 papers and 1 invited talk in the following topics:

Invited talk:

Jorn Bettin, Model Oriented Domain Analysis: an Industry Voice

Modeling approaches:

1. Niklas Mellegård and Miroslaw Staron, A Domain Specific Modelling

Language for Specifying and Visualizing Requirements.

2. Catherine S. Price, Jules-Raymond Tapamo, Felicity Blakeway, and Fethi

Ahmed, Plantation Forestry: an Analysis of the Domain.

3. Iris Reinhartz-Berger, Domain Aspects: Weaving Aspect Families to Domain-

Specific Applications

Supporting tools and frameworks:

4. Catalin Constantin, Vincent Englebert, and Philippe Thiran, A Reconciliation

Framework to Support Cooperative Work with DSML.

5. Ruben Heradio and David Fernandez, Towards a time-efficient algorithm to

calculate the total number of products of a Software Product Line.

Analyzing specific domains:

6. Abdelouahed Gherbi, Pejman Salehi, Ferhat Khendek, and Abdelwahab

Hamou-Lhadj, Capturing and Formalizing SAF Availability Management

Framework Configuration Requirements

7. Camelia Maga and Nasser Jazdi, Concept of a Domain Repository for

Industrial Automation

 Iris Reinhartz-Berger, Arnon Sturm, and Yair Wand

 DE@CAiSE'2009 co-chairs

For more information on the workshop, see our website

http://www.bgu.ac.il/~sturm/DE@CAiSE09/, or

contact Iris Reinhartz-Berger (iris@mis.haifa.ac.il),

Arnon Sturm (sturm@bgu.ac.il)

mailto:iris@mis.haifa.ac.il
mailto:sturm@bgu.ac.il

Organization

DE@CAiSE’09 co-chairs

Prof. Yair Wand,

University of British

Columbia, Canada

Dr. Arnon Sturm

Ben Gurion University of

the Negev, Israel

Dr. Iris Reinhartz-Berger

University of Haifa,

Israel

Program committee

Colin Atkinson University of Mannheim, Germany

Mira Balaban Ben-Gurion University of the Negev, Israel

Sholom Cohen CMU-SEI, USA

Kim Dae-Kyoo Oakland University, USA

Dov Dori Technion – Israel Institute of Technology, Israel

Joerg Evermann Memorial University of Newfoundland, Canada

Jeff Gray University of Alabama at Birmingham, USA

Atzmon Hen-Tov Pontis, Israel

Steven Kelly MetaCase, Finland

Philippe Kruchten University of British Columbia, Canada

John McGregor Clemson University, USA

Dirk Muthig Fraunhofer Institute for Experimental Software

Engineering, Germany

Klaus Pohl University of Duisburg-Essen, Germany

Iris Reinhartz-Berger University of Haifa, Israel

Michael Rosemann The University of Queensland, Australia

Julia Rubin IBM Haifa Research Labs, Israel

Bernhard Rumpe Braunschweig University of Technology, Germany

Lior Schachter Pontis, Israel

Klaus Schmid University of Hildesheim, Germany

Keng Siau University of Nebraska-Lincoln, USA

Pnina Soffer University of Haifa, Israel

Il-Yeol Song Drexel University, USA

Arnon Sturm Ben Gurion University of the Negev, Israel

Giancarlo Succi Free University of Bozen-Bolzano, Italy

Juha-Pekka Tolvanen MetaCase, Finland

Yair Wand University of British Columbia, Canada

Gabi Zodik IBM Haifa Research Labs, Israel

Additional reviewers

Dirk Reiss, Braunschweig University of Technology, Germany

Holger Eichelberger, University of Hildesheim, Germany

