
Predicting Service Request Rates for Adaptive
Resource Allocation in SOA

Alexander Serebrenik and Natalia Sidorova

Department of Mathematics and Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{a.serebrenik,n.sidorova}@tue.nl

Abstract. Service orientation is rapidly becoming the common prac-
tice in the IT world. A price one often has to pay for the advantages
of service oriented architectures (SOA) is performance deterioration.
SOA performance heavily depends on the allocation of computational
resources to services. The needs of services in computational resources
are however changing, depending e.g. on the environmental factors and
changes in business processes (and hence service orchestrations). To en-
sure good performance results, the resource allocation should respond
to the changes in the SOA environment. In this paper we focus on the
detection of the changes in the environment and the prediction of the ex-
pected service requests rates. For this purpose we first discover a stochas-
tic model of the service request rates. Then we monitor the system to
detect changes in the environment behaviour and signal the necessity to
reconsider the resource allocation, providing a prediction of the service
request rates for the coming period. Moreover, we monitor whether the
model is still a fair reflection of the behaviour, and when necessary, we
adapt the model appropriately.

Key words: service, performance, adaptivity, statistical analysis

1 Introduction

Service orientation [15, 28] is almost unanimously proclaimed to become the
common practice in the IT world within a couple of years. One of the most
essential benefits of service orientation for business is delivering enterprise agility.
A promise of service reconfiguration flexibility, with changes done in days by
business people, not in weeks by technical specialists attracts many enterprises
on the SOA (service-oriented architectures) side. Among other advantages are
reusability raised to the new level, namely reusability of services as business
units of logic, lowering costs and risks of software evolution.

Today’s SOA practice at many enterprises is still very far from the “ideal”
one, as introducing SOA often results in performance deterioration, i.e., imple-
mentation of SOA often compromises quality of service that should be ensured



by the service-level agreement. Indeed, compared to “bare” functionality imple-
mentation the use of services implies computation overheads pertaining to inter-
service communication via XML messages, service composition, orchestration
and invocation. Moreover, although one of the most important SOA principles
is that software modules are independent of implementation and infrastructure
details, SOA performance heavily depends on the allocation of computational
resources to services [27]. To optimise the performance by balancing the resource
load and minimising data transfer time, resource allocation should take into ac-
count service requests rates and the volumes of data exchanged by services.

Optimization of the resource allocation is difficult already due to the dis-
tributed and autonomous nature of services. Among other factors complicating
the optimization are factors related to the changing nature of the SOA environ-
ment:

– business processes that should be supported by SOA are subject to frequent
changes due to the evolving nature of businesses, which is reflected in the
changes of service orchestrations or/and implementations;

– even when the business processes supported by SOA remain relatively stable,
the amount of work assigned to different services can vary depending on
external factors such as season, day time, market conditions, etc.

Due to this changing nature, the resource allocation for SOA providing the best
performance does not exist in principle.

To ensure good performance results, the resource allocation should respond
to the changes in the SOA environment. Therefore, we want to automate the
detection of the changes and the prediction of the expected service requests
rates. We stress that we consider only static SOA, i.e., in this paper we do not
consider the resource availability problem. This is, for instance, the case for an
intra-enterprise SOA or many Software as a Service (SaaS) applications.

To provide an efficient resource allocation, we need not only to see the current
snapshot of the system with the information about the resource load, the rate of
service requests, etc., but also to be able to predict the developments that can be
expected in the near future. The importance of adaptivity has been recognized
both by the scientific community [28] and by industry [25].

To provide the input data for the adaptive resource allocation mechanisms,
we build the Adaptive Predictive Model (APM) capturing the expected system
behaviour. The APM provides for the ability to signal the necessity to re-allocate
resources before a critical workload of resources is achieved.

Every state of the APM reflects the characteristics of the system behaviour
in some work mode. The changes of modes are triggered by changes in the
environmental factors influencing the system, e.g. the start of a holiday period,
weather conditions, changes in the stock exchange indices, etc. Some of these
factors are known a priori as potentially influencing the system and they can be
monitored using (external) information sources. Other factors can only be seen
via the increase/decrease of the amount of requests of some particular service,
which can be monitored on the system. When a change of the mode is observed
or expected, the APM changes its state.



The APM is based on the information about dependencies and correlations
between the requests of different services, as well as the correlations of the service
requests and the external factors such as seasons, weather, etc. By dependencies
we understand causal relations, e.g., one service sending a message upon which
the execution of another service depends. As opposed to dependencies, correla-
tions may be caused by external reasons: e.g. an increase in demands of the flight
reservations at a travel agency may have a clear correlation with an increase in
demands of the hotel reservations.

An important source of information about the dependencies and correlations
are execution logs registering events happening in the system, their originators,
timing aspects, data and resources involved. Data mining offers a number of
ready-to-use solutions for the correlation detection between the types of service
requests and external factors. Moreover, execution logs were already successfully
used in Process Mining [1] to (re)construct process models. In this paper we
present techniques for the discovery of correlations between service requests using
elements of both data mining and process mining. As we already mentioned, the
SOA environment is a highly changeable one. Therefore, for some correlations
not the whole log can be used as a source of relevant information. The research
question here is the diagnostics which parts of the log should be considered as
relevant.

The APM is based on the observations from the past. In the future we might
observe serious deviations of the system behaviour from the behaviour predicted
by the APM in the current mode. Therefore, once such a discrepancy has been
established, the APM is adapted appropriately.

The remainder of the paper is organized as follows. In Section 2 we describe
the Adaptive Predictive Model (APM). Initial construction of the APM is dis-
cussed in Section 3, its monitoring and adaptation in Section 4. Finally, we
review the related work in Section 5 and conclude the paper by discussing its
contributions and identifying directions of the future work in Section 6.

2 Adaptive Predictive Model

The core of our approach is the Adaptive Predictive Model (APM) capturing the
expected system behaviour, expressed in the terms of correlations and dependen-
cies. Every state of the APM reflects the characteristics of the system behaviour
in some work mode. By work mode we understand a specific combination of ex-
ternal parameters, such as weather conditions or changes in the stock exchange
indices, and service request rates for interface services, i.e., services that can be
invoked by the environment. Non-interface services will be called internal.

Service request rates are described by their probability distribution param-
eters. In practical cases, we usually will assume service request rates to be dis-
tributed exponentially. The distribution parameter λ, in practice, will be es-
timated based on the observations of the service request rates. Formally, we
introduce the following definitions.



Definition 1. Let E be a set of external parameters with associated domains De,
e ∈ E. Function υ : E → ∪e∈EDe is called a valuation function if υ(e) ∈ De for
all e ∈ E. Let S be a set of services and S0 ⊆ S be a set of interface services.
With each service s ∈ S we associate the probability distribution of its request
rates ν(s).

A work mode w is a pair recording a vector of values of the external param-
eters and frequencies of interface services, i.e.,

〈
∏

e∈E

υ(e),
∏

s∈S0

ν(s)〉.

The class of all possible working modes for given E and S0 is denoted WE,S0 .

While clearly, a system can reside in infinitely many work modes, we opt for
a finite representation of the modes by APM states.

Definition 2. Adaptive predictive model M is a pair 〈Σ, ϕ, ρ, δ〉 such that Σ
is a finite set containing states of the APM, ϕ : Σ → 2WE,S0 mapping states to
sets of vectors of values of external parameters and distributions of the interface
services’ request rates, ρ : Σ → 2(S×S) mapping states to sets of pairs of signifi-
cantly strongly (dis)agreeing (with each other) services, δ : Σ → 2(S×S) mapping
states to sets of pairs of dependent services.

Recall that a disagreement (also known as negative correlation) indicates
that the increase of the value of variable x corresponds to a decrease of the value
of variable y, and vice versa. If the relationship between x and y is close to a
decreasing linear relationship, i.e., to the relationship that can be described as
ax+ by + c = 0 with a > 0, b > 0, the correlation coefficients such as the Pearson
correlation coefficient r [18] or Kendall’s τ [24] will be close to -1. In the opposite
situation, when the increase of x corresponds to the increase of y we talk about
agreement (positive correlation). Should the relation between two variables x
and y be close to an increasing linear relationship, i.e., to ax + by + c = 0
with a < 0, b > 0, the correlation coefficients are close to 1. If the correlation
coefficient is close to 1 (-1) we say that an agreement (a disagreement) is strong; if
the correlation coefficient is close to 0 we say that an agreement (a disagreement)
is weak. Furthermore, we say that an agreement (a disagreement) is significant
if the corresponding p value is small, i.e., it is unlikely that the relation has
been observed just by chance. Important agreements and disagreements should
be both strong and significant.

The APM is called predictive since we will predict the request rates for inter-
nal services (dependent variables) based on the dependencies and correlations as
well as the interface services’ request rates (independent variables). Moreover, in
the presence of correlations between the interface services’ request rates, know-
ing the request rates for some interface services we predict the request rates for
additional related service request rates. Techniques that can be applied to this
end belong to the well-studied research domain of regression analysis [17], and
we do not elaborate on them further in the current study. The second adjective,
adaptive is discussed in Section 4.



We say that an APM M is complete with respect to E and S0 if for any
w ∈ WE,S0 there exists σ ∈ Σ such that w ∈ ϕ(σ).

To illustrate the notion of APM consider the following example.

Example 1. A travel agency (cf. [26]) sells flights, stays at hotels and combina-
tions (e.g., flight and hotel). Typical services involved would pertain to booking
flights and hotels:

S = {“book a flight”, “book a conference room”,

“book a hotel room”, “return a booking confirmation”}.
These services constitute the set S. Interface services pertain to booking flights
and rooms, i.e.,

S0 = {“book a flight”, “book a conference room”, “book a hotel room”}.
Assume also that E = {“period”, “daytime”}, D“period” = {“regular”, “holiday”},
and D“daytime” = {“working hours”, “outside the working hours”}.

Let the APM M then be composed from {σrw, σhw, σro, σho} representing
working hours during a regular period, working hours during a holiday pe-
riod, time outside the working hours during a regular period and time outside
the working hours during a holiday period, respectively. We define ϕ(σrw) as
{〈“regular”, “working hours”, ϕrwf , ϕrwc, ϕrwh〉}, where the distribution ϕrwf is
the ν(“book a flight”) restricted to the observations corresponding to the work-
ing hours during a regular period, ϕrwc is the ν(“book a conference room”) re-
stricted to the same period and daytime and ϕrwh is the ν(“book a hotel room”)
restricted to the same period and daytime. Mapping ϕ for three remaining states
can be defined in a similar way.

Correlations between services are expressed by the function ρ. For all states
σ ∈ Σ we expect 〈“book a flight”, “book a hotel room”〉 ∈ ρ(σ) reflecting the
correlation between bookings of flights and hotels: usually, if a flight is booked, a
hotel should be booked as well. Some correlations, however, hold only in certain
states: for instance, business meetings are usually booked during the working
hours of a regular period. Such a business meeting typically requires a con-
ference room and a number of flights booked for the participants. Therefore,
〈“book a flight”, “book a conference room”〉 ∈ ρ(σrw).

Finally, dependencies we consider in this example reflect the message ex-
change between the services. In our example, the message exchange occurs be-
tween bookings and confirmations and is independent from the APM state, i.e.,

δ(σ) = {〈“book a flight”, “return a booking confirmation”〉,
〈“book a hotel room”, “return a booking confirmation”〉,
〈“book a conference room”, “return a booking confirmation”〉}

for all σ ∈ Σ. ¤
We stress that the detection of dependencies and correlations as well as the

distinction between dependencies and correlations are essential for efficient re-
source allocation: to improve the performance by reducing the data transfer time



between services. We might like to allocate actively communicating services to
the same resource. On the other hand, correlated but independent services can be
allocated to different resources to achieve a balanced spreading of the workload.

3 Initial Construction of the APM

In this section we discuss practical aspects of the initial APM construction. We
postpone the discussion of monitoring and adaptation to Section 4.

One of the important sources of information about what services are cur-
rently active are execution logs registering events happening in the system, their
originators, timing aspects, data and resources involved. Execution logs will be
used to determine correlations. Detecting correlations is, however, challenged by
the multiplicity of services and multiplicity of changes in the ongoing processes.
Indeed, as indicated by industry, 50–100 services is named as a typical number
of services being deployed at a company. According a Gartner study small com-
panies deploy about 25 services on average while very large enterprises have a
total amount of more than 1000 services [23]. Therefore, considering pairwise
correlations of all services with all services, or of all services with all external
parameters is not practical and we should develop a more scalable approach,
e.g., restricting our attention only to a subset of services (Section 3.1). Once this
question has been addressed, we proceed with discussing how the APM states
should be defined (Section 3.2) and how correlations and dependencies should be
determined (Section 3.3). To detect dependencies we supplement the informa-
tion from the logs with the specification of service orchestrations. The presence
of dependencies, such as message exchange, can be detected by observing the
execution log. We should, however, be able to distinguish between message ex-
change corresponding to different orchestrations of services. To this end, we need
to analyze the orchestration specification.

3.1 Determining “Important” Services

As mentioned above, studying pairwise correlations between all possible services
and external parameters is not practically feasible. To understand how one can
address this problem, recall Example 1. In this example ρ was in fact related to
S0 rather than to S. This should not be surprising as correlations between the
interface services and correlations between the interface services act as a kind
of “contract” between the environment and the SOA. Therefore, the validity of
the APM is determined by the validity of its “contract” with the environment
of the SOA, i.e., we should first consider correlations and dependencies between
the interface services.

In order to make predictions, we need also to consider relations between the
interface services and the internal services. The internal services can be invoked
only by another service of the system, external or internal, i.e., every internal
service is directly or indirectly invoked by an interface one. Therefore, we proceed



with studying correlations and dependencies between the interface services and
the internal services.

From the practical point of view, interface services can be distinguished from
the internal ones by analyzing orchestrations.

3.2 Defining States of the APM

Once the important services have been identified we need to define states of the
APM. Recall that states depend on the values of external parameters and on
the service request rates of the interface services.

External parameters While in Example 1 all domains of the external parameters
were finite, this is not necessarily the case when continuous external parameters
are considered, such as temperature or the Dow Jones index. Moreover, even if
all domains of the external parameters are finite, considering all possible com-
binations of the external parameters might be impractical. Hence, we need to
identify finitely many groups of “related” values of external parameters. This
problem is a well-known clustering problem, common in statistical data analy-
sis. Clusters obtained by means of one of the existing clustering techniques [16,
5] serve as the first candidate for the set of APM states.

Interface services Next we refine the set of clusters obtained so far by consid-
ering interface services. We would like to describe the service request rate of a
given interface service over a given cluster by means of a well-known probability
distribution. This is, however, not necessarily the case in practice as the actual
distribution might have been different during different periods of time. In the
travel agency example, for instance, the log might have recorded information
pertaining to two different economic situations. If the economy is doing well,
people take more flights during the holiday period than during the holiday pe-
riod in crisis times. Failure to distinguish between the two economic situations
would result in an ill-fitted statistical model. Therefore, we need to be able to
distinguish between the event log parts corresponding to different situations. As
we cannot a priori guess which external parameters might become relevant and
explicitly take them into account in the APM, a different technique is required.

For each cluster C we need to carry out change detection analysis on the
service request rates obtained for service s. To this end various nonparamet-
ric change detection techniques can be applied [10, 34]. Let b1, . . . , bn be the
set of change points detected in the observed service request rates of s cor-
responding to C, and let νC,s = {ν0, . . . νn+1} be distributions correspond-
ing to the observations preceding b1, between b1 and b2, . . . , after bn, respec-
tively. If no change has been observed we consider the distribution correspond-
ing to the entire set of observations. Our first candidate to define Σ is hence
Σ0 = {〈C, s, ν〉|C ∈ Clusters, s ∈ S0, ν ∈ νC,s}.
Example 2. Example 1, continued. Since there are only four possible combina-
tions for values of external parameters we do not consider perform clustering.



Let the request rates for “book a flight” as observed during the working hours
in a number of weeks of the regular period be as follows: 324, 287, 273, 313,
298, 215, 243, 237, 256, 221, 248, 296, 308, 284, 312, 288, 302. To estimate the
change points in these time series, we follow [6, 34] and minimize the residual
sum of squares of the following linear regression equation: fi,j = βi +ui,j , where
fi,j is the j’s observation (request rate) on the segment i, βi is a segment-
dependent coefficient and ui,j is the residual corresponding to fi,j . Applying
this technique to the request rates above, we detect a change at the fifths and
at the eleventh weeks of the observations. Hence, the partial samples we need to
consider are v1 = (324, 287, 273, 313, 298), v2 = (298, 215, 243, 237, 256, 221, 248)
and v3 = (248, 296, 308, 284, 312, 288, 302). ¤

Unfortunately, Σ0 might be too fine grained: each distribution is determined
based on a restricted number of observations, and hence, coefficients obtained by
fitting models might be not statistically significant. Therefore, we try to make
the sets of observations larger by joining different sets of observations. However,
the sets joined should not be arbitrary: it should be likely that the observations
originate from the same distribution. In practice various statistical tests can be
used to determine whether two samples of observations originate from the same
distribution. Since we cannot assume probability distributions to be normal,
non-parametric tests should be used, e.g., the Mann-Whitney test, also known
as Wilcoxon test, or Kolmogorov-Smirnov two-sample test [13]. In the presence
of ties Kolmogorov-Smirnov test should be preferred.

Mann-Whitney test starts by computing the test statistic together with the
corresponding p value. Depending on test statistic the null hypothesis (two sam-
ples of observations originate from the same distribution) may be rejected. To
this end the test statistic is compared with two critical values (determined by a
level of significance): if the statistic is less, than the smaller of the critical values
or is greater than the bigger of the two, the null hypothesis is rejected. Hence, to
obtain Σ for any pair of samples in Σ0 we apply either the Mann-Whitney test
or the Kolmogorov-Smirnov test and depending on whether the null hypothesis
has been rejected, either join the samples or not.

Example 3. Example 2, continued. Using the Mann-Whitney test as implemented
in R [29] we compute the the test statistic for v1 and v2 to be 32.5 (p-value =
0.01833). The critical values for 5% are 7 and 28. Since 32.5 > 28 we reject
the null hypothesis, i.e., v1 and v2 should not be joined. For v1 and v3 the test
statistics is 21 (p-value = 0.6389) and the critical values for 5% are the same
as for v1 and v3, i.e., 7 and 28. Since 7 ≤ 21 ≤ 28 we cannot reject the null
hypothesis and join v1 and v3. ¤

Note further that the set of states obtained as described above is not nec-
essarily complete: certain combinations of values of the external parameters or
service frequency rates can fail to be appear in the log. This set of states is, how-
ever, complete with respect to the log being considered as long as the clustering
algorithm does not reject observations.



3.3 Correlations and Dependencies

Once the states of the APM have been determined, for each one of them we
need to identify ρ and δ, i.e., the corresponding sets of pairs of services with
strong (dis)agreement and message exchange. We start by considering ρ, i.e.,
correlations.

To identify the correlations holding in a state σ we first select all observations
corresponding to σ. Next, given two services s1 and s2 and the service request
rates of these services corresponding to σ we would like to use non-parametric
correlation tests such as Spearman rank coefficient or Kendall’s τ [13] to deter-
mine correlation between s1 and s2. Unfortunately, validity of this approach is
undermined by the underlying assumption: the correlation between s1 and s2 in
σ does not evolve with time. Hence, rather than considering the entire samples
at once, we need to restrict our attention to a sliding window of samples similarly
to change detection techniques [7, 11].

To detect the dependencies we need to analyse orchestrations. WS-BPEL, a
popular language for specifying orchestrations [4], specifies the message exchange
via partner links and distinguishes between static and dynamic processes. In
static processes, the partner link information is defined at design time. In dy-
namic processes the partner link information is not known to the developer or
needs to change at runtime to adapt to data or other dynamic requirements.
To analyse dynamic processes we combine the log analysis with static analysis
techniques originally designed for static processes.

Joined analysis of orchestrations and logs allows us furthermore to detect
correlations between the services belonging to some long-running orchestration.

Example 4. Consider the following example. The tax office receives and proceeds
tax declarations. Typical services would be “receive a declaration”, “check a dec-
laration”, “send an invoice”, “refund”, “select a declaration for audit”, “receive
a complaint” and “process a complaint”. Interface services include “receive a
declaration”, “select a declaration for audit” and “receive a complaint”. While
there is a correlation between the service request rates for “receive a declara-
tion”, “send an invoice” and “receive a complaint”. This correlation refers to
service rates with the shift of the sliding window: if, say, many declarations have
been received in February, many invoices will be send in May and many com-
plaints will be received in June. Combining the analysis of orchestrations with
the analysis of logs allows detecting the size of the sliding window, and, hence,
the prediction of the request rates for time-separated service requests. ¤

4 Monitoring and Adaptation

Once an APM has been constructed, it should be constantly reconsidered with
respect to new observations. To this end we introduce a monitor (Figure 1). The
monitor observes the execution log, the values of the external parameters and
the current state σ of the APM. If the correlations in ρ(σ) and dependencies



APM’s current stateExecution log

Monitor

APM’s new state

External parameters

APM is valid but the current
state does not match the
observations

Adapted APM and
its new state

APM is no
longer valid

Fig. 1. APM monitor

in δ(σ) are still satisfied, we need to determine the state corresponding to the
current work mode. If correlations or dependencies do not match ρ(σ) or δ(σ)
APM should be adapted. Since the sample observed might be too small and,
e.g., not represent all possible states of the APM, we assume the correlations to
hold (null hypothesis) unless the statistical analysis demands us to reject it.

Hence, for every sample of observations we need to determine the correspond-
ing state of the APM and to check whether the correlations and the dependencies
observed in the sample match the corresponding ρ and δ. To determine the state
of the APM, we first determine to which cluster the combination of the values
of the external parameters belong. Next we select the part of the sample cor-
responding to this cluster and analyse changes (cf. Section 3.2). Then we check
whether the observations following the most recent change point and correspond-
ing to the chosen cluster originate from the same distribution as the observations
the APM has been based upon. If this is indeed the case, there exists a state,
say σ, in the APM corresponding to the observations being analyzed. If this is
not the case, the APM should be adapted by adding new states corresponding
to possible combinations of the new distribution with the existing distributions
and values of the external parameters in the same way we have constructed Σ0

above.
Still, even if no new states should be added to the APM, it still might require

an adaptation if, e.g., the sets of correlations and dependencies do not hold
anymore. To decide whether ρ or δ should be adapted, we repeat the same
process described in Section 3.3 and derive new values for ρ and δ.

5 Related Work

Importance of historical data has been commonly recognised. Histories [21, 22]
and related notions such as event systems [31] and pomsets [19, 8] have been used
in the past to provide a causality-preserving semantics for Petri nets. Unlike these
works, we do not integrate historical data in the process models themselves but
develop a model that is a compressed representation of the historical data.



Detecting “outdated” parts of the logs is related to the change-point detec-
tion [14, 12, 20, 33]: part of the log preceding the change-point should be disre-
garded. Unlike the approaches cited, we do not consider timed series, i.e., series of
time-stamped events, but logs, i.e., series of series of time-stamped events. More-
over, no a priori knowledge of the distribution of the events is available. Still,
as indicated above, we largely benefit from the existing work on nonparametric
statistics [13, 10]. We apply the statistical techniques, however, in an entirely
new setting and combine them with static analysis.

Logs were used in the past to derive information about the ongoing pro-
cesses [1]. In this paper and the subsequent papers the notion of process mining
has been introduced. Our approach is similar to process mining since in both
cases execution logs are used to derive information about the ongoing processes.
However, while process mining concentrates on deriving order-based process
models describing the behaviour of one process instance, e.g., Petri nets [30],
we focus on statistical models expressing correlations between services (activi-
ties) rather than on an order between them and consider a model of cumulative
behaviour of multiple instances running in parallel.

Resource allocation for SOA has been considered, e.g., in [3, 32]. [32] consid-
ers prediction of workload dynamics of component services as requests traverse
and pipeline through the workflow. The authors aim at predicting the incurred
execution plan based on the given service transition probabilities, estimate the
future workload of each component service, and finally allocate resources to them
accordingly. The authors assume transition probabilities to be given, while we fo-
cus on discovering correlations, notion closely related to transition probabilities.
[3] combines a short-term resource allocation with a long-term capacity planning
problem. To address both problems the authors introduce the revenue/penalty
system. Similarly to [32] the authors do not discuss prediction but consider ex-
isting workload forecasting methods [2].

6 Conclusions and Future Work

In this paper we have presented an approach that can be used as a preliminary
step for adaptive resource allocation in SOA. The methodology focuses on the
prediction of service request rates in service-oriented systems. We stress that
understanding correlations and dependencies between the services is essential
for efficient resource allocation. Therefore, correlations and dependencies form a
core part of an adaptive predictive model (APM), upon which we will base our
resource allocation. To construct the APM we combine static analysis of service
orchestrations with statistical techniques, such as change detection, correlation
testing and hypothesis testing.

While in this paper we focused on proposing a methodology, its experimental
validation constitutes the main part of the future work considered. To this end
we need to implement the approach and empirically compare different statistical
techniques. Recall that we do not advocate the use of specific regression analysis
techniques, correlation tests or change point detection methods but consider



them as “plug-ins” in our methodology. A separate study should be conducted
to assess applicability and precision of different statistical techniques.

In addition to the APM we plan to develop the Data Exchange Model (DEM)
estimating the volumes of data transferred between services. Since the data ex-
change rate is not reflected in the logs, it should be estimated by means of static
analysis. As services can be implemented in a variety of programming languages,
a generic-language based approach, such as ASF+SDF [9], is required. Note that
we need to estimate the amount of information that will be exchanged by the
services in the near future. As we do not know a priori the distribution of the
amount of information being exchanged, we will develop a statistical model con-
structed by means of static analysis of the orchestration and implementations of
services.

Finally, we aim at the integration of the prediction step described in this
paper with existing resource allocation approaches such as [32]. Special atten-
tion will be paid to reducing the costs associated with the reallocation of the
resources.

References

1. W. M. P. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discover-
ing process models from event logs. IEEE Trans. Knowl. Data Eng., 16(9):1128–
1142, 2004.

2. B. Abraham and J. Ledolter. Statistical Methods for Forecasting. Wiley, Toronto,
1983.

3. J. Almeida, V. Almeida, D. Ardagna, C. Francalanci, and M. Trubian. Resource
management in the autonomic service-oriented architecture. Autonomic Comput-
ing, International Conference on, 0:84–92, 2006.

4. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Technical report, BEA Sys-
tems, International Business Machines Corporation, Microsoft Corporation, 2003.

5. M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points
to identify the clustering structure. In A. Delis, C. Faloutsos, and S. Ghande-
harizadeh, editors, SIGMOD 1999, Proceedings ACM SIGMOD International Con-
ference on Management of Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA,
pages 49–60. ACM Press, 1999.

6. J. Bai and P. Perron. Computation and analysis of multiple structural change
models. Journal of Applied Econometrics, 18(1):1–22, 2003.

7. P. Bauer and P. Hackl. The use of mosums for quality control. Technometrics,
20(1):431–436, 1978.

8. E. Best and R. R. Devillers. Sequential and concurrent behaviour in Petri net
theory. Theoretical Computer Science, 55(1):87–136, 1987.

9. M. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser,
and J. Visser. The ASF+SDF Meta-environment: A component-based language
development environment. In R. Wilhelm, editor, Compiler Construction, volume
2027 of Lecture Notes in Computer Science, pages 365–370. Springer, 2001.



10. B. E. Brodsky and B. S. Darkhovsky. Nonparametric Methods in Change-Point
Problems. Kluwer Academic, Dodrecht, 1993.

11. C.-S. J. Chu, K. Hornik, and C.-M. Kuan. The moving-estimates test for parameter
stability. Econometric Theory, 11(4):699–720, August 1995.

12. C. Curry, R. L. Grossman, D. Locke, S. Vejcik, and J. Bugajski. Detecting changes
in large data sets of payment card data: a case study. In P. Berkhin, R. Caruana,
and X. Wu, editors, Knowledge Discovery and Data Mining, pages 1018–1022.
ACM, 2007.

13. W. W. Daniel. Applied Nonparametric Statistics. PWS-KENT Publishing Com-
pany, Boston, 1990.

14. H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. J. Keogh. Querying
and mining of time series data: experimental comparison of representations and
distance measures. Proceedings of the VLDB Endowment, 1(2):1542–1552, 2008.

15. T. Erl. Service-Oriented Architecture : Concepts, Technology, and Design. Prentice
Hall PTR, August 2005.

16. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Knowledge Discovery
and Data Mining, pages 226–231, 1996.

17. R. J. Freund, W. J. Wilson, and P. Sa. Regression analysis: statistical modeling of
a response variable. Academic Press, Amsterdam, 2006.

18. F. Galton. Co-relations and their measurement, chiefly from anthropological data.
Proceedings of the Royal Society of London, 45:135–145, 1888.

19. U. Goltz and W. Reisig. The non-sequential behavior of Petri nets. Information
and Control, 57(2/3):125–147, 1983.

20. V. Guralnik and J. Srivastava. Event detection from time series data. In Knowledge
Discovery and Data Mining, pages 33–42, 1999.

21. K. M. van Hee, O. Oanea, A. Serebrenik, N. Sidorova, and M. Voorhoeve. History-
based joins: Semantics, soundness and implementation. Data & Knowledge Engi-
neering, 64(1):24–37, 2008.

22. K. M. van Hee, A. Serebrenik, N. Sidorova, and W. M. P. van der Aalst. History-
dependent Petri nets. In J. Kleijn and A. Yakovlev, editors, Petri Nets and Other
Models of Concurrency - ICATPN 2007, volume 4546 of Lecture Notes in Computer
Science. Springer, 2007.

23. M. Jaeger and G. Rojec-Goldmann. SENECA – simulation of algorithms for the
selection of web services for compositions. In Technologies for E-Services, volume
3811 of Lecture Notes in Computer Science, pages 84–97. Springer, 2006.

24. M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93,
June 1938.

25. J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, January 2003.

26. D. Martin, J. Domingue, M. L. Brodie, and F. Leymann. Semantic web services,
part 1. IEEE Intelligent Systems, 22(5):12–17, 2007.

27. L. O’Brien, P. Brebner, and J. Gray. Business transformation to soa: aspects of
the migration and performance and qos issues. In SDSOA ’08: Proceedings of the
2nd international workshop on Systems development in SOA environments, pages
35–40, New York, NY, USA, 2008. ACM.

28. M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented
computing: a research roadmap. International Journal of Cooperative Information
Systems, 17(2):223–255, 2008.

29. R Development Team. R homepage, 2008. Available at
http://www.r-project.org/ Consulted on March 8, 2009.



30. J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, and A. Serebrenik.
Process discovery using integer linear programming. In K. M. van Hee and R. Valk,
editors, Petri Nets, volume 5062 of Lecture Notes in Computer Science, pages 368–
387. Springer, 2008.

31. G. Winskel. Event structures. In W. Brauer, W. Reisig, and G. Rozenberg, editors,
Advances in Petri Nets, volume 255 of Lecture Notes in Computer Science, pages
325–392. Springer, 1986.

32. B. Wu, C.-H. Chi, Z. Chen, M. Gu, and J. Sun. Workflow-based resource allocation
to optimize overall performance of composite services. Future Generation Comp.
Syst., 25(3):199–212, 2009.

33. K. Yamanishi and J. i. Takeuchi. A unifying framework for detecting outliers and
change points from non-stationary time series data. In Knowledge Discovery and
Data Mining, pages 676–681. ACM, 2002.

34. A. Zeileis, F. Leisch, K. Hornik, and C. Kleiber. strucchange: An R package for
testing for structural change in linear regression models. Journal of Statistical
Software, 7(2):1–38, 2002.


