
A Contribution to User Interface Modelling

Based on Graph Transformations Approach

Martin Molhanec

Department of e-Technology, Faculty of Electrical Engineering
Czech Technical University in Prague

Technická 2, 166 27 Praha 6, Czech Republic
Phone (++420) 224 352 118, Fax (++420) 224 353 949

molhanec@fel.cvut.cz

http://technology.feld.cvut.cz; http://martin.molhanec.googlepages.com

Abstract At present time a very big progress proceeds in all branches
of the software engineering �eld. Anyhow, one particular area is not un-
der the enhanced focus of software developers and researchers. It is the
area of the GUI formalization and modelling. The aim of our article
is to overcome this de�ciency by the suggestion of lightweight formal
method for the design of user interface by the GUI modelling based on
the graph transformations of underlying conceptual data model. The
proposed method gives us a very visual tool for our objective. In addi-
tion, our method is an innovative and original speci�cation and mod-
elling technique targeted primarily for a utilization of large and complex
modern-day web based applications.

Key words: user interface modelling, conceptual data model, graph
transformations

1 Introduction

The aim of our article is a suggestion of lightweight formal method for the design
of user interface by the modelling of the GUI based on the graph transforma-
tions of underlying conceptual data model. The particular problem resides in
an insu�cient methodical support for the user interface design phase. Notwith-
standing, that exist some user interface design methods; none of them is based
on a conception of deriving the user interface schemes from the conceptual data
model speci�cations. This conceptual de�ciency makes a semantic gap between
the database content and information presented by a user interface.

In this contribution we intend to demonstrate an alternative formal approach
how we can compose a user interface model scheme as a result of transformations
from the conceptual data model scheme. Our method is based on formal descrip-
tions of user interface and conceptual data models and set of rules describing
how to set up the resulting GUI with relevant and valid data. This approach
allows constructing only the correct graphics user interfaces. This is the main
advantage of herein presented method. Furthermore, the approach presented in



2 Proceedings of EOMAS 2009

our article is a very important for the design of sophisticated web based infor-
mation systems in consideration the fact that quality of this kind of applications
is strongly joined with the well-designed user interface working in cooperation
with a complex database system. The issues addressed in this article, inter alia,
include:

� The description of our method.
� The de�nition of conceptual data model.
� The de�nition of logical data model.
� The de�nition of user interface model.
� The description of the transformations between the models.

This paper is structured as follows: Section 2 discusses alternate approaches to
formal speci�cations of user interface with reference to the utilization of graph
transformations method. Subsequently, Section 3 introduces our approach and
sections 4, 5 and 6 are concerned with the formalization of conceptual, logi-
cal and user interface model, respectively. Section 7 introduces the suggested
transformation, i.e., the essential part of our work. Section 8 brie�y describes
an AGG, i.e., the open graph transformation tool we use to realize and test the
proposed graph transformations. Finally, section 9 proposes some conclusions
and an overview of possible future works.

2 Related works

Up till now only some few works has been made on the formalisation of the
user interface. However, they do not result from the idea of feasibility to derive
the user interface model from the underlying conceptual data model. The au-
thor method proposed in this paper is based on his prior works [1,2]. The former
work, published only in Czech, is not based on the utilization of the graph trans-
formations yet. Notwithstanding, the principal idea of the possibility to derive
a user interface model from the underlying data model was introduced therein.
The latter one is an immediate predecessor of the herein presented contribution.

Another approach of the user interface formal speci�cation and design has
been published in [3,4]. The de�ciency of this approach consists of the fact that
any context between the user interface elements and the underlying database is
not taken under consideration.

Further, the graph transformations utilization has been inspired by the works
[5,6]. However the aim of these works consists in the application of the graph
transformations into another area of the �eld of informatics engineering. But,
many concepts introduced therein were adopted in our work.

Furthermore, our work is closely joined with approaches engaged in the web
site development as well. Almost all web methods propose a technique for the
user interface design. The insu�ciency of this approaches consist in the unsat-
isfactory interconnection between the user interface model and the underlying
data model. The majority of these web methods only focus in deriving of the
navigational model from the underlying data model, but that methods usually
are not concerned with the type of the derivation proposed in our contribution.



Proceedings of EOMAS 2009 3

3 Overview

The proposed approach by us is a very intuitive. Almost all GUI developers have
a sense that there is a strong connection between the particular components of
GUI and the data from the database system represented by these components.
The way of interconnectivity of the data in a database system predestines the
interconnectivity of the relevant components of GUI as well. The underlying
database scheme determines not only the interconnectivity of GUI components,
but their mutual behaviour and style, with respect of possibility to display single-
valued or multi-valued data, as well.

Figure 1. The illustration of an idea of herein presented method.

The interconnectivity between the components of GUI may be express by a
model. Regrettably, there do not exists any generally accepted model yet. The
proposed model used in this work is based on the graph theory. The model of
GUI is not only a segment of data model of the underlying data, not even a model
of GUI components separated from them. The model proposed by us is a model
both independently designed by developer and derived from the underlying data
as well. In other words, at developing GUI, the developer is restricted as well as
conducted by underlying data. Our idea is symbolically illustrated by Fig. 1.



4 Proceedings of EOMAS 2009

The general concept of our approach consists in the following three basic
steps:

� The transformation of UML conceptual data model into the relevant graph
representation.

� The simpli�cation of conceptual data model into the logical data model.
� The interactive and incremental construction of the GUI model.

The resulting model of GUI may be used for the smart generation of GUI com-
ponents by means of developer IDE or for a construction of SQL or other DML
commands for the GUI components data �lling eventually.

Reason for the utilization of the graph based model approach consists in the
possibility to use the graph transformation method in order to transform them.
This method is very advantageous for us by the reason that provides a powerful
tool for the construction of transformation grammars with the respect to the
inspectional and comprehensible visual view of the generated transformation
rules. Eventually, the graph transformation method has a robust and con�rmed
fundamentals based on the graph theory[7].

Indeed, in subsequent chapters �rstly we made de�nitions of the conceptual
and logical graph based models and the graph transformation between them.
Secondly, we de�ne the proposed GUI graph based model as well. And �nally,
we describe our algorithm for the construction of the GUI model from the logical
model based on the graph transformations rules.

4 Formalization of conceptual data model

This section gives a brief description of the conceptual data model (CDM ) we
used in our method. The CDM considered in this work is composed of fol-
lowing concepts: class, attribute and association (generalization-specialisation,
part-whole and relationship) in the usual sense and compliance with the object
oriented modelling paradigm.

(a) Type graph of CDM. (b) Type
graph of
LDM.

(c) Type graph of UIM.

Figure 2. The type graphs of CDM, LDM and UIM.

The Fig. 2(a) shows the type graph used to describe our CDM. In this type
graph each node represent a class or attribute and each edge represents one of



Proceedings of EOMAS 2009 5

the three types of possible associations (generalisation-specialisation, part-whole
and relationship). This particular type graph contains nodes of type c and a;
and edges of type gs, pw, rs and ao. Nodes of type c represent classes and
nodes of type a represent attributes. Edges of type gs represent generalisation-
specialisation associations, edges of type pw represent part-whole associations,
edges of type rs represent relationship associations and edges of type ao represent
attribute ownerships between the class and its attributes. However, we do not
use the concept of attribute temporarily. The type graph represents a condition
which must be ful�lled by all correct graphs that could be constructed.

(a) UML class diagram. (b) CDM graph

Figure 3. The example 1, the university information system.

As an illustration, we demonstrate our ideas by a simple example representing
a part of the real world. Our problem domain forms a part of a university in-
formation system consisting of courses, time-tables, students, lecturers, teaching
rooms etc. The corresponding conceptual data model scheme in UML notation is
shown in Fig. 3(a) and the corresponding graph representation in Fig. 3(b). It is
evident; we use a directed, typed, attributed and labelled graph. A shorthanded
name of the particular class in the corresponding UML diagram is written into
the circle representing a node in the resulting graph diagram. The letter c rep-
resents a course, t represents a timetable, r represents a room, s represents a
student, p represents a person and l represents a lecturer. All nodes in our result-
ing graph represent only one type allowed in the corresponding type graph � the
class. The edges are marked by its type and we use the following shorthands: gs
represents a generalisation-specialisation type, pw represents a part-whole type



6 Proceedings of EOMAS 2009

and rs represents a relationship type. The nodes joined by relationship type
may have a di�erent cardinality (a participation in the relationship) and we
mark these edges by cardinality value as well. The cardinality of the relationship
edge means a count of possible occurrences of the instances of both classes from
either sides of the particular edge. The possible values of relationship cardinality
are de�ned by the set: (1, 1), (1, M), (M, 1), (M,N). The letters M and N are
used as a symbolical count with denotative meaning many.

(a) CDM to LDM (b) change of cardinality (c) LDM to UIM

Figure 4. The graph transformation rules.

5 Formalisation of logical data model

For a proper design of GUI we only need to know the cardinality of associations.
Because of the simple reason that various meaning of di�erent types of associa-
tions disappears in the context of GUI, i.e., we do not need a precise distinction
between them in subsequent text. Class attributes can be omitted temporarily
from our model as well, due to the fact that the described transformation pro-
ceeds only at the level of classes and associations between them. In other words,
we do not need to transform attributes. Thus, the type graph for our logical
data model is shown in Fig. 2(b). It is evident that we use only one type of
labelled nodes � the class and one type of edges marked by cardinality � the
general association. The transformation rules for the transition from CDM to
LDM (Logical Data Model) in commonly used notation are shown in Fig. 4(a).



Proceedings of EOMAS 2009 7

It is evident that all semantic information about the di�erent types of asso-
ciations is lost. But, this fact is not too restrictive, because in herein presented
method we do not use this semantic information; it is our intent at this moment.
In our subsequent work, we intend to propose a more complex transformation
method without a loss of the type information. Thus, in our method we omit the
type information from the resulting graph and mark edges only with its cardi-
nality by reason that all edges possess only one relationship type � the general
association.

(a) LDM graph (b) UIM graph

Figure 5. The example 2, the university information system.

The resulting graph of our example is shown in Fig. 5(a). It is apparent that
original and resulting graphs can be a cyclic and doesn't create a tree. Also,
the value of cardinality depends on the selected direction we choose. Finally, we
can change orientation of edge cardinality by a simple transformation de�ned in
Fig. 4(b).

6 Formalisation of user interface model

The main idea embedded in this work jointly involves the formalisation of the
user interface model (UIM) and the de�nition of the graph transformations rules
in order to derive UIM from LDM. Now, we may de�ne the UIM by means of
the following rules.

� Only the components of user interface which correlate to the data model
(modelled by LDM, respectively CDM) are relevant.

� All components of user interface can display only one value or a list of values.



8 Proceedings of EOMAS 2009

� All associations between the user interface components are derived from the
underlying LDM.

Further, we explain the attributes of the user interface model (UIM) related to
our method. First of all, we need to de�ne a few new concepts needed in the
subsequent work.

� Data Model Dependent Area (or Data Area for short). The concept of Data
Model Dependent Area presents a set of user interface components bounded
together by a conjunctive dependency on underlying data. Change of data
focus of one component can change a data focus of other components. Our
work concerns about a proper design of just one Data Area.

� User Interface Component (or Component for short). The concept of User
Interface Component presents a visual component of user interface which has
a visual representation on the screen. User can change the visual presentation
of such component, but not its data content.

� User Interface Data Component (or Data Component for short). The con-
cept of User Interface Data Component presents a subset of User Interface
Components bounded to underlying data. The set of such Data Components
forms a Data Area that was hereinbefore de�ned. Our work concerns only
such data components.

� Data Component Class Area (or Class Area for short). The concept of
Data Component Class Area presents a speci�c subset of Data Components
bounded to exactly one entity in the underlying data model.

� Data Component Same Multiplicity Area (or Multiplicity Area for short).
The concept of Data Component Same Multiplicity Area presents a speci�c
subset of Data Components having the same multiplicity. We will discuss
this concept as well as concept of multiplicity in detail later in this article.

Let us use the following labels for hereinbefore de�ned concepts; DA for data
area, C for component, DC for data component, CA for class area andMA for
multiplicity area. We may express the concept relations between them as1:

C,DC ⊂MA ⊂ CA ⊂ DA (1)

DC . C (2)

Let's consider the following de�nitions of subsequent concepts.

� Multiplicity of data component (or Multiplicity for short) is a capability to
display a single value or list of values or list of list of values and so on.
We will denote a multiplicity by count as a superscript associated with the
particular data component. The multiplicity equates to 0 means possibility
to display a single value, equates to 1 means possibility to display a list of
values and so on.

1 We used a symbol . for concept of inheritance or generalization - specialization. The
term A . B we read as A is inherited from B or A is a specialization of B.



Proceedings of EOMAS 2009 9

� Dependency of data components means an abstract association between the
data components laid within the particular data area. Changing the data
focus of one component changes the data foci of other components. Every
data component in the particular data area can be mapped to the single
entity attribute in the underlying data model2.

� Dependency of class areas means an abstract association between class areas
corresponding to the data relationships between entities in underlying model.
Changing the data focus of one class area changes the data foci of other class
areas. Every class area in the particular data area can be mapped to the
single entity in the underlying data model.

� Multiplicity of dependency of data components or class areas (or Multiplicity
of dependency for short) is de�ned as an ordered pairs of numbers denota-
tive the multiplicity of corresponding data components. It is evident, that
multiplicity of dependency may take the value from the set: {(1, 1), (1, M)}.
Multiplicity of dependency between the data components from a particular
class area will always equate to the value of (1, 1). This is the reason why
dependencies of data components from the particular class areas are not so
important for us and so we can only deal with the dependencies between
a di�erent class areas. By reason that all data components from a partic-
ular class area have the same multiplicity, we can de�ne a multiplicity of
particular class area as follows.

� Multiplicity of class area equates to multiplicity of its data components.

The type graph of our UIM is shown in Fig. 2(c). The type graph contents the
nodes of type ca i and ca i+1 and edges with multiplicity of (1, 1) and (1, M).
The nodes of type ca i and ca i+1 represent the class areas of multiplicity i and
i+1 respectively. The edges of type (1, 1) and (1, M) represent the dependencies
of class areas with the multiplicity of dependency equates to (1, 1) and (1,
M) respectively. Further, the type graph represents a condition, which must be
ful�lled by all correct graphs that could be constructed. It is good to note that
for any LDM can be constructed as many UIM as you like.

7 Transformation from LDM to UIM

The last phase of our method deals with the generating of UIM from LDM.
We must to note that our utilization of the graph transformations is done by a
somewhat di�erent way as is customary. The graph transformations are usually
used to transform a particular graph from the source form to the target form.
We use the graph transformations to build the UIM graph by inference from the
LDM graph.

2 In this contribution we do not consider derived (calculated) data components. This
concept will be a subject of our future work.



10 Proceedings of EOMAS 2009

Figure 6. The example 3, the graph transformations from LDM to UIM, step by step.



Proceedings of EOMAS 2009 11

The transformations may be described by the following pseudo algorithm:

1. Select the initial node in the LDM graph.
2. Add the selected node as the initial node in the new built UIM graph.
3. Mark the selected node as a new starting point in the UIM graph and simul-

taneously as already used node in the LDM graph.
4. REPEAT

(a) Select another node in the LDM graph, which is in an incidence rela-
tionship with an arbitrary node marked before as used.

(b) Change the direction of a relevant edge by using the appropriate graph
transformation rule (Fig. 4(b)) if necessary it is.

(c) Transform the just selected node and the corresponding edge by using
the relevant graph transformations rule (Fig. 4(c)) and insert this node
and relevant edge to the new-created UIM graph.

(d) Mark the last selected node and the edge from preceding step as already
used in the LDM graph.

5. UNTIL you need.

The key part of hereinbefore presented transformation lie in the step �4-c� and
can be expressed by means of the following simple rules:

� If the direction of the edge is from the node of multiplicity i to the node of
identical multiplicity we use the upper transformation rule shown in Fig. 4(c).

� If the direction of the edge is from the node of multiplicity i to the node of
multiplicity of i+1 we use the bottom transformation rule shown in Fig. 4(c).

Further, we may demonstrate the presented approach by a simple example shown
in Fig. 6 as an explication of the algorithm described hereinbefore. The example
is broken down to the single steps, labelled from 1 to 4. Furthermore, the result-
ing UIM graph of a little bit more complex example is shown in Fig. 5(b). Finally,
another illustrations of the presented approach, the corresponding graphical rep-
resentations of the user interface screens of these two demonstrated examples are
shown in Fig. 7 and Fig. 8. The concepts of class area and multiplicity area are
outlined in these examples as well. We need to note that an arbitrary node or an
edge can be used in the step �4-a� a number of time in the course of utilization of
our algorithm. We break up cycling of the algorithm in the case when all nodes
we required to process acording to our demand will be placed into the resulting
UIM graph as we need.

8 AGG3 - the used graph transformation tool

One of several improvements that have been achieved over the last year has been
selection and utilization of the particular graph transformation tool. In order to
continue our work we need a good tool facilitate experiments with ideas proposed
in our work. Foremost we stipulate a few requirements.

3 The AGG is an acronym for �Attributed Graph Grammar�.



12 Proceedings of EOMAS 2009

Figure 7. The example 4, the GUI presentation.

� The support of attributed graph grammar.
� The support of graph transformations in wide range.
� The platform independence.
� The open license.
� The user friendly use .

We have chosen one of the following tools:

� AGG � �The Attributed Graph Grammar System� a simple and powerful
tool developed at the Department of Software Engineering and Theoretical
Computer Science in the Technische Universität Berlin[8].

� AToM3 � �A Tool for Multi-formalism and Meta-Modelling� another pow-
erful tool developed at the Modelling, Simulation and Design Lab (MSDL)
in the School of Computer Science of McGill University[9].

� Groove � �GRaphs for Object-Oriented VEri�cation�, a simple and modern
modelling tool developed at Department of Computer Science, University of
Twente[10].

� Fujuba - A large Eclipse based project developed at the Software Engineering
Group in the University of Paderborn[11].

At present time we elaborate with the AGG tool we have chose because ful�ls
our conditions mentioned hereinbefore. We may demonstrate this excellent tool



Proceedings of EOMAS 2009 13

Figure 8. The example 5, the GUI presentation.

by a few �gures from our last work. A scheme of the example used in this
article is shown in Fig. 9 and the graph transformation corresponding to the
transformation from Fig. 4 is shown in Fig 10.

It is evident that in Fig. 9 is shown the same situation as in Fig. 3(b) only
with some di�erences. The name of the node corresponding to the name of the
class in the source UML class diagram is added as a node attribute �name� into
the diagram. The attribute of edge named �cardinality� is added as well. These
attributes are used by the AGG tool in subsequent graph transformation steps.

The Fig. 10 illustrate an example of one graph transformation as it is de�ned
by the AGG tool. The left side of the �gure shows the graph pattern searched in
the source diagram and the right side shows the graph pattern replacing the just
found pattern in the source diagram. In course of the transformation the relevant
node and edge attributes are transformed as well. It is evident that the AGG
tool provides all needed features, e.g., types, attributes and calculations, for the
next development of our method.The AGG tool o�er an easy and comfort way
for the graph transformation handling. At the present time it is our favourite
tool, though our searching for an appropriate tool is not de�nitely �nished.



14 Proceedings of EOMAS 2009

Figure 9. The example of AGG, CDM.

9 Conclusion and further work

The proposed formalization is based on the graph transformations theory [7].
We are convinced that this formalization has many advantages:

� A good theoretical foundation based on graph transformations.
� The possibility to verify correctness of the resulting user interface scheme.

However, this work is not a �nished yet and we used the very basic model of
possible user interface. Thus, for now, we must consider following disadvantages
as well.

� We work only with a few basic elements of user interface.
� We must do a lot of work on the development of an appropriate graph
transformation tool.

In conclusion, our lightweight formal method intended for deriving the user in-
terface schemes by graph transformations from the conceptual data model spec-
i�cations is not fairly good yet. We are convinced that the algorithm described
in the preceding section has to be more detailed, formally and purely speci�ed.

Consequently, our future objectives consist in an improvement of our formal-
ization concept and transforming algorithm. Subsequently, we want to use all



Proceedings of EOMAS 2009 15

Figure 10. The example of AGG, the graph transformation.

semantic information from the source conceptual graph for the construction of
proper user interface. Next, we must a complete a software tool supporting here-
inbefore proposed transformation. Finally, we intent to work on the speci�cation
of the rules for the construction of relational algebra queries or in other words,
on the construction of the SQL select statement in order to automate the code
generation of corresponding applications.

Acknowledgement

This research (work) has been supported by Ministry of Education, Youth and
Sports of Czech Republic under research program MSM6840770017.

References

1. Molhanec, M.: Typologie uºivatelského rozhraní (Typology of user interface). In:
Tvorba software'97, pp. 88�97. Tanger, Ostrava (1997)

2. Molhanec, M. User Interface Modelling Based on the Graph Transformations of
Conceptual Data Model In: CEUR workshop proceedings. 2008, vol. 2008, no. vol-
338, p. 79-91. ISSN 1613-0073.

3. Alencar, P.S.C., Cowan, D.D., Lucena, C.J.P.: Abstract Data Views as a formal Ap-
proach to Adaptable Software. In: OOPSLA Workshop On Adaptable And Adap-
tive Software, Proceedings. Austin (1995)

4. Rossel, P., Contreras, R., Bastarrica, M. C.: Graphic Speci�cation of Abstract
Data Types. In: Rev. Fac. Ing. - Univ. Tarapacá, vol.12, no.1, pp. 15�23. Tarapacá
(2004)

5. Koch, M., Mancini, L.V., Parisi-Presicce, F.: A Graph-Based Formalism for RBAC.
In: ACM Transaction on Information ans System Security, Vol. 5, No. 3, pp. 332�
365. (2002)

6. Koch, M., Mancini, L.V., Parisi-Presicce, F.: Administrative Scope in the Graph-
based Framework. In: SACMAT'04, June 2-4. Yorktown Heights, New York, USA
(2004)

7. Rozenberg, G., editor: Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. World Scienti�c (1997)

8. AGG � home page, Online: <http://tfs.cs.tu-berlin.de/agg>
9. AToM3 � home page, Online: <http://atom3.cs.mcgill.ca>
10. Groove � home page, Online: <http://groove.cs.utwente.nl>
11. Fujuba � home page, Online: <http://wwwcs.upb.de/cs/fujaba>


