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Abstract. Operational risk is an important, complex, and difficult, cri-
terion to consider during any form of organizational decision making. In
practice (1) complexity typically arises from: the use of a variety of risk
related indicators; the use of multiple heterogeneous measurement scales;
measurement uncertainty; varying levels of measurement precision; and,
the widespread effect of each measurement; (2) difficulties arise due to
the: time bound nature of the decision making process; and, the avail-
ability and interpretation of risk-related measurements. To help address
these issues, we propose a conceptual framework to support and minimize
the level of analyst involvement during the management of operational
risk specified in organizational models. This is achieved by propagat-
ing/analyzing risk-related evaluations across descriptions of distributed,
inter-dependant and mission critical work activities.
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1 Introduction

Ad-hoc risk analyses are common within operational decision making [1]. The
bounded nature of choice between alternatives requires time and information to
be rationalized. As such, conceptual tools that help make use of, collect and dis-
seminate available knowledge are critical. In many cases, precise risk assessment
based on well defined problem specifications or statistical data are infeasible (e.g.
in green-fields and time-bound projects). This may lead to increased levels of un-
certainty with respect to the conditions surrounding some decision to be made.
Efficient and effective techniques are required that allow for the combination of
precise and imprecise assessments when evaluating risk.

In this paper, we outline a novel framework for propagating measurements
(in a large class of measurement frameworks) across and between descriptions
of inter-dependant work activities specified using a language influenced by the
i* [2] notation and the c-semiring [3] constraint modeling paradigm. This from
of propagation allow us to: determine the effect of an evaluation across an or-
ganization; determine inferred bounds for improved analysis of organizational
models; and determine when and where evaluations are inconsistent and adjust
the evaluations or model to resolve an inconsistency. The examples we illustrate
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in this paper primarily refer to risk-related measurements, although the tech-
niques we describe can also be deployed to model and analyze many other forms
of measurements (e.g. cost, time, etc.). The theory outlined in this paper is im-
plemented in the ISORROPIA Service Mapping Software Toolkit available for
download at: http://www.isorropia.org/.

Section 2 provides a background and related work; Section 3 defines a risk
modeling scheme; Section 4 describes risk propagation; we then describe how
to deal with inconsistencies in Section 5; Section 6 describes some modes of
analysis; and, we conclude in Section 7.

Fig. 1. An Organizational Model of a Transport Organization

2 Background and Related Work

Risk has been studied within many fields including economic theory [1], social
science [4], project management [5], and software engineering [6]. In [7], risk is
defined as “...exposure to a proposition of which one is uncertain” [7], whereby
a self aware individual is uncertain of a proposition if they do not know it to
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be true or false, or it is unknown to them, and exposure is defined as the per-
sonal condition of that individual who would care (and has a preference toward)
whether the proposition is either true or false [7].

2.1 Organizational Risk

In organizations, “...governance and decision making are the cause, risk and
reward - the effect or outcome of those decisions” [8]; whereby, governance is
defined as “...finding ways to ensure that decisions are made effectively” [9]
by specifying “...the distribution of rights and responsibilities among different
participants in the corporation, such as the board, managers, shareholders, and
other stakeholders” [10]. Five core elements of risk include [11]: (1) Context, or
the “...environment in which the risk is being viewed” [11]. The context describes
the situation in which the conditions and consequences of a risk have some
bearing, as well as identifying the scope of actions that trigger and can mitigate
a risk. (2) Action, whose ramifications in certain conditions trigger a risk; (3)
Conditions, when in combination with an action trigger a risk; (4) Consequences,
or the potential effect of the action under certain conditions. These may lead to
losses across many diverse attributes ranging from the stability of tasks through
to the co-operation among work groups [12]; (5) Controls, to prevent, detect and
correct the consequences of risk.

Operational risk is “...associated with the expected outcome of a process”
[11], and is “enterprise-wide... endemic across the institution, affecting every
business activity” [13]. [11] states that increased work distributions “...by their
very nature increase risk”, indicating a structural relationship. In organizational
settings, risk becomes a key attribute for informing analysis and decision making
that should be analyzed and controlled during organizational design.

2.2 Organizational Modeling

Organizational modeling in notations such as the i* framework provide rich
anthropomorphic abstractions for modeling the social, intentional, and strate-
gic viewpoints of organizational actors. In i*, dependencies such as goals to be
satisfied, soft-goals to be satisficed, task to be performed, and resources to be
furnished can be represented to help reason about the optimal delegation of re-
sponsibilities among actors in some organizational context. An actors’ internal
motivations and capabilities are represented as an AND/OR goal graph. In this
mode, tasks may be decomposed and alternatives means for goals defined with
means-end relationships. In addition, directed links between actors signify that
a depender (i.e. source) actor depends on a dependee (i.e. target) actor for a
dependum (i.e. the node between dependency links).

Take for example, Figure 1 - An Organizational Model of a Transport Or-
ganization. This model represents the interdependencies between three actors: a
Bond Department; a Sort Facility; and a Regulatory Agency. Dependencies are
represented as goals (ovals) connected to other types of goals (or tasks) via links
labeled with a directional ‘D’. For example, the Bond Department depends on a



4 Proceedings of GRCIS 2009

Sort Facility to achieve the goal of “Forwarded[Bonded Packages]”. Within the
scope of an actor, goals (or tasks) are decomposed into sub-tasks and goals or
alternative tasks and goals (as represented in the legend in Figure 1).

In these types of models, risk and uncertainty are left implicit within the
structure of an organization, and can sometimes be catered for within the un-
derlying analysis framework - i.e. i* incorporates a qualitative argumentation
system for reasoning about levels of satisfaction towards soft-goals that has
been extended [14] to cater for certain types of cancelation (relevant to risk
mitigation).

2.3 Risk Modeling as Negative Preferences

Risk is measured by “...the probability of occurrence of loss/gain multiplied by
its respective magnitude” [5]. Within the constraint satisfaction literature, sim-
ilar issues relating to the uncertainty of a solution (or partial-solution) have
required the use of soft-constraints, ranked according to probabilistic, fuzzy or
weighted scales. In order to unify soft-constraint paradigms, [3] propose a ab-
stract c-semiring framework that generalizes the classical (i.e. boolean), fuzzy,
probabilistic and weighted approaches.

Definition 1 (Constraint-Semiring). A c-semiring (as in [3]) is defined as a
5-tuple 〈A,⊕,⊗, 0, 1〉 with the following properties: A is a set of abstract (nu-
meric, boolean, or symbolic) preference values and 0, 1 ∈ A; ⊕ is a binary opera-
tor used to compare preference values, which is closed (i.e. if a, b ∈ A, then a⊕b ∈
A), commutative (i.e. a⊕ b = b⊕ a), associative (i.e. a⊕ (b⊕ c) = (a⊕ b)⊕ c),
indempotent (i.e. if a ∈ A, then a ⊕ a = a), has a unit element of 0 (i.e.
a ⊕ 0 = a = 0 ⊕ a), and an absorbing element of 1 (i.e. a ⊕ 1 = 1 = 1 ⊕ a);
⊗ is a binary operator used to combine preference values, which is closed (i.e.
if a, b ∈ A, then a ⊗ b ∈ A), commutative (i.e. a ⊗ b = b ⊗ a), associative (i.e.
a⊗ (b⊗ c) = (a⊗ b)⊗ c), has a unit element of 1 (i.e. a⊗ 1 = a = 1⊗ a), and
an absorbing element of 0 (i.e. a ⊗ 0 = 0 = 0 ⊗ a); ⊗ distributes over ⊕ (i.e.
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)). In addition, the comparison operator induces a
partial ordering ≤s such that forall a, b ∈ A a ≤s b iff a⊕ b = b.

Risk measurement attempts to quantify the impact and uncertainty of some
meaningful event. Traditionally, probabilistic and/or qualitative scales can be
used. The c-semiring structure allows us to seamlessly describe and analyze pre-
cise and imprecise evaluations under the same unifying scheme. That is, qual-
itative evaluations do not need to be massaged into the same totally ordered
numeric scheme.

Take for instance the case where two or more c-semirings have been used
to model the problem at hand. In our instance, we would like to incorporate
multiple risk measures (e.g. one risk measured using a numeric scale R+ and
another measured using a symbolic scale {Low, Med,High}). This has been
briefly discussed in [15] and more deeply discussed in [16]. The simple approach
for combining two c-semiring instances produces another c-semiring instance
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(proved by [15]) that is the cartesian product of the abstract preference values,
comparison operators, combination operators, and inclusion of least and most
preferred values as respective tuples.

The c-semiring structure has been referred to as a negative preference struc-
ture in [17], used to compare and combine the values associated to tuples in the
constraints of constraint satisfaction problems. This structure is a natural candi-
date for modeling risk measurements, as the combination operator monotonically
decreases - i.e. the combination of two risks (occurring simultaneously) is worse
than either of them occurring on their own. The structure also permits a partial
ordering among values to allow for indecision among divergent evaluations.

Given the endemic nature of risk, the broad range of risk attributes (see [12]),
and the application of risk assessments across many inter-related areas within
an organization (e.g. financial, resource, project and software management), a
combined, general and more holistic scheme would help to unify these otherwise
independently structured and applied evaluations.

2.4 Related Work

It is surprising that little attention has been given to organizational risk anal-
ysis within the organizational modeling literature. For example, [2] discusses
techniques for evaluating and analyzing actor criticality and vulnerability within
organizations that may arguably attribute to both the impact and likelihood of
certain classifications of failure. In other work, [18] discuss obstacles and [19]
discuss hazards that may both obstruct the satisfaction of organizational goals,
thus requiring analysis and mitigation. In addition, [20] discuss how quantitative
risk evaluation and analysis can be incorporated into business process models to
help evaluate taxonomic risk.

In [14] and [21], a goal-oriented and qualitative framework for modeling and
reasoning about the consequences of risk (extending the formal framework of
[22]) is presented. Speculative, hazardous and mitigating risk events and their
contribution (positive and negative) towards organizational objectives can be
clearly modeled. In [23], a goal-oriented, quantitative/probabilistic method for
analyzing risks is presented. In their approach, risks are defined as fault-tree ex-
tensions to the existing NASA Defect Detection and Prevention (DDP) method.

The approach outlined in this paper aims to support mixed-mode and itera-
tive evaluation of organizational structures with respect to a variety of heteroge-
neous endogenous (i.e. structural) and exogenous (i.e. environmental) risk mea-
surements. As this task is knowledge intensive, we present a scheme to minimize
analyst involvement by propagating evaluations across evolving organizational
models. Our application is also primarily targeted toward risk analysis, although
it could also be used in other settings. This permits improved visibility for risk
related (and other) factors across an entire organizational model, even when the
model is only partially evaluated.
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3 Modeling Risk within Organizational Models

Risk evaluations are annotated to functional goal or task nodes on an organi-
zational model. These evaluations choose values from a combined instance of a
c-semiring risk scale. This evaluation provides a course grained measure of the
risk of a deviation to the annotated node.

Definition 2 (Risk Evaluation). Let R = 〈M,S, Slow, Supp〉 be a risk eval-
uation such that: M ∈ {Normative,Descriptive} indicates the mode of an
evaluation. S = 〈A,⊕,⊗, 0, 1〉 is a combined c-semiring scale we are using to
measure the risk of a functional deviation, and this scale may be a composition
of multiple scales/dimensions for each finer-grained deviation; Slow is a value
from S (possibly an n-tuple) that indicates the lower bound on some evaluation,
and states that the evaluation cannot get any worse than the designated value;
Supp is a value from S (also possibly an n-tuple) that indicates the upper bound
on some evaluation, and states that the evaluation cannot get any better than
the designated value; and, Slow ≤s Supp (under the partial ordering ≤s induced
by comparison operator ⊕).

3.1 Examples

The approach we have discussed for structuring risk evaluations can be used
to capture and analyze endogenous (i.e. structural) as well as exogenous (i.e.
environmental) risk under the same unifying scheme.

Exogenous risk exists outside the organizational model and is annotated (by
an analyst) to describe the risk of a functional deviation. For example, a common
scale attempts to measure risk as a real (R+) number. Let the risk indicator for
some undesirable event be 〈R+, min,max,∞, 0〉, where:

– a value from R+ signifies the risk of a functional deviation measured as a
positive real number;

– the better value when two risk values are compared (a⊕ b) is defined as the
min of those values;

– the result of a combination between the two risk values (a ⊗ b) is the max
risk between them;

– the least preferred value is ∞; and,
– the most preferred value is 0.

Such a risk indicator could effectively be used where statistical information
is available. For example, the risk of an untimely operation, where the timeli-
ness of a result has been previously monitored. Another instantiation could be
〈{Low, Med,High}, cpI , cbI , High, Low〉, where:

– a value from {Low, Med, High} signifies the risk of a functional deviation;
– a comparison between two values will result in the best value given the

ordering: High <s Med <s Low, where for any two a, b ∈ A, a <s b states
that b is strictly ‘better’ than a, and a <s b iff a cpI b = b;
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– the result of a combination operation cbI applied to two distinct values is
the least preferred of the two;

– the least preferred value is High; and,
– the most preferred value is Low.

Endogenous risk manifests itself within an organizational model. For exam-
ple, we could determine the vulnerability (or dependence) for a specific node as
the set of agents (a ∈ 2A) on whom the node depends. Let the vulnerability
measure of a node be 〈2A,⊇,∪, A, ∅〉, where:

– 2A is the powerset of A;
– the comparison operator (⊇) is based on the superset relation, where for any

two a, b ∈ 2A, a ≤s b iff a ⊇ b (the operator in this case would return the
least upper bound in the lattice produced by this partial ordering);

– the combination operation (∪) results in the union of the sets;
– the least preferred value is A; and,
– the most preferred value is ∅.

Another interesting endogenous indicator measures node criticality as the set
of agents (a ∈ 2A) that depend on a node. That is, if the node were to fail, the
agents in the criticality set would be adversely affected. As such, criticality uses
the same scheme as set forth for vulnerability. The difference lies in the local
evaluations that provide a basis for propagation (i.e. we consider depender actors
instead of dependees). The capability to capture and combine measurements
from various risk indicators such as these is important.

4 Propagating Risk Evaluations Across Organizational
Models

The evaluation of an element within an organizational model is situated within
the context of all related nodes. For example, the evaluation of a task partaking
within an AND decomposition (as a root or leaf node) also says something about
the other related tasks. In order to gain a fuller evaluation of risk across an
entire organizational model we provide some general techniques for propagating
bounded evaluations bi-directionally across links within an organizational model.

The following constraints can provide a basis for propagation, defined with
respect to alternative refinement patterns within organizational models:

1. AP ≤s AC1 ⊗ . . .⊗ACn
(parent AP AND decomposed into AC1 , . . . , ACn

);
2. OP ≤s OC1 ⊕ . . .⊕OCn (parent OP OR decomposed into OC1 , . . . , OCn);
3. D ≤s DE (dependency D related to dependee node DE).

Informally, the evaluation of: (1) the parent of an AND refinement can be no
better than the combined value of its children; (2) the parent of an OR refinement
can be no better than the best value among its children; and, (3) a dependency
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can be no better than the associated node realizing the dependency. These con-
straints, in combination with unary constraints for bounds, can provide a means
to deploy constraint solvers in pre-processing or solving mode. Although, some
types of operators and domains may not be completely catered to in traditional
solvers (e.g. the vulnerability measures). The discussion in the following sections
provide some lightweight heuristic guidance for adjusting bounds and resolving
conflicts during change. Please note that organizational models do not typically
include cycles.

4.1 Bottom-Up AND ↑ Propagation

Given the bounds Slow, Supp of a risk evaluation for some parent node, and a
set of bounds {Slow1 , Supp1 , . . . , Slown , Suppn} for its children, we compute an
AND ↑ propagated update of its upper (S′upp) and lower (S′low) bounds such
that: S′upp = Supp1 ⊗ . . .⊗Suppn

; and, S′low = Slow1 ⊗ . . .⊗Slown
; where ⊗ is the

combination operator of the associated c-semiring scale. Note that evaluations
of a dependency node from a dependee task propagate using this scheme.

4.2 Top-Down AND ↓ Propagation

Given the bounds Slow, Supp of a risk evaluation for some child node, and the
bounds of its parent SlowP

, SuppP
, we compute an AND ↓ propagated update of

its lower (S′low) bound such that: S′low = SlowP
if Slow ≤s SlowP

. Note that eval-
uations of a dependency node to a dependee task propagate using this scheme.

4.3 Bottom-Up OR ↑ Propagation

Given the bounds Slow, Supp of a risk evaluation for some parent node, and a
set of bounds {Slow1 , Supp1 , . . . , Slown

, Suppn
} for its children, we compute an

OR ↑ propagated update of its upper (S′upp) and lower (S′low) bounds such
that: S′upp = Supp1 ⊕ . . . ⊕ Suppn

; and, S′low = Slow1 ⊗ . . . ⊗ Slown
; where ⊕ is

the comparison operator, and ⊗ is the combination operator of the associated
c-semiring scale.

In this setting we treat the refinement as an inclusive evaluation of the parent
node. We apply the comparison operation to the upper bound of all the children
in order to determine the best possible value for the parent node. We then apply
the combination operation to all the lower bounds of each child to determine the
worst possible value for the parent node.

Alternatively, we could treat the refinement as exclusive and apply a pes-
simistic evaluation of each alternative. In this case, we apply a function to de-
termine the worst case lower bound of each refinement. The parent node then
inherits an evaluation of its upper and lower bounds from the child[ren] with
this property. That is, S′upp = Suppi and S′low = Slowi such that i ∈ {1, . . . , n}
and Slowi = min({Slow1 , . . . , Slown}).
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Finally, we could have treated the refinement as exclusive and applied an
optimistic evaluation of each alternative. In this strategy, we apply the com-
parison operator to the upper bounds of all child nodes and allow the parent
to inherit the upper and lower bounds of the child[ren] with the best upper
bound. Formally, S′upp = Suppi

and S′low = Slowi
such that i ∈ {1, . . . , n} and

Suppi
= Supp1 ⊕ . . .⊕ Slown

.

4.4 Top-Down OR ↓ Propagation

Given the bounds Slow, Supp of a risk evaluation for some child node, and the
bounds of its parent SlowP

, SuppP
, we compute an OR ↓ propagated update of its

upper (S′upp) and lower (S′low) bounds such that: S′upp = SuppP
if Supp ≥s SuppP

;
and, S′low = SlowP

if Slow ≤s SlowP
.

4.5 Dependee and Dependency Propagation

Given the bounds SlowD
, SuppD

of an evaluation for a dependency node, and
the bounds Slow, Supp of its dependee node, we compute a propagated update
of its upper (S′uppD

) and lower (S′lowD
) bounds such that: S′uppD

= Supp; and,
S′lowD

= Slow. Propagation (or matching) of this kind may also occur in the
opposite direction.

5 Dealing with Inconsistency During Propagation

Inconsistencies can be detected during value propagation. Given the current
bounds of a risk evaluation Slow, Supp, a propagation step (S′low, S′upp) can
result in three types of outcomes:

1. Bound Consistency. The updated bounds are consistent with the current
evaluation (i.e. S′upp ≤s Supp and S′low ≥s Slow). That is, a propagation
should respect the current lower and upper bounds of a node, i.e. the result
of a propagation should tighten an evaluation.

2. Bound Inconsistency. The updated bounds are inconsistent with the cur-
rent evaluation (i.e. S′upp >s Supp or S′low <s Slow). A relaxation is one type
of update that will inevitably be highlighted as an inconsistency. The prob-
lem here lies in accommodating the relaxation by resolving inconsistencies.

3. Bound Incomparability. One of the updated bounds is incomparable to a
current bound (i.e. S′upp⊕Supp /∈ {S′upp, Supp} or S′low⊕Slow /∈ {S′low, Slow}).
The result of the ⊕ operator on incomparable values is their least upper
bound (lub) in the c-semiring lattice.

Bound consistency does not necessarily mean that we can accept the update
in a straightforward manner. This is due to situations where the updated bound
is incomparable to the current bound. Dealing with these types of situations is
discussed below.
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5.1 Resolving Inconsistency

Inconsistency may be due to: mixed perspectives of multiple stakeholders / an-
alysts; the timeliness of each evaluation where the newer evaluation should suc-
ceed an older evaluation; or even, identified when two incomparable values are
provided. In any case, strategies are required to deal with such inconsistencies
during propagation. Below we provide a short-list of possible strategies that may
be applied, combined and/or integrated within the framework for risk analysis.

Cautious and Credulous. The cautious strategy selects the worst case for
propagation among the set of alternatives. We can intuitively determine the
worst case within our framework by applying the combination operator when
evaluating the alternative to select.

Given two sets of bounds Slow, Supp (current) and S′low, S′upp (updated)
that are inconsistent, we define S′′low, S′′upp as the cautious revision of these
inconsistent bounds such that: if S′low ≤s Slow, then S′′low = S′low ⊗ Slow, oth-
erwise S′′low = S′low; and if S′upp ≥s Supp, then S′′upp = S′upp ⊗ Supp, otherwise
S′′upp = S′upp; where ⊗ is the combination operator of the associated c-semiring.

The credulous approach is the inverse of the cautious approach. In this strat-
egy, the analyst will choose to take the best case alternative with the hope that
it will suffice. It is also just as simple to implement the credulous approach via
the use of the comparison operator for each risk evaluation.

Given two sets of bounds Slow, Supp (current) and S′low, S′upp (updated)
that are inconsistent, we define a S′′low, S′′upp as the credulous revision of these
inconsistent bounds such that: if S′low ≤s Slow, then S′′low = S′low ⊕ Slow, oth-
erwise S′′low = S′low; and if S′upp ≥s Supp, then S′′upp = S′upp ⊕ Supp, otherwise
S′′upp = S′upp; where ⊕ is the comparison operator of the associated c-semiring.

Model Re-Evaluation. Inconsistencies may reveal a need to re-evaluate an
organizational model. For example, a normative evaluation on a dependency
(e.g. any dependency in Figure 1) may become inconsistent with the descriptive
evaluation on that node. If the measurements provided are valid, either: an evalu-
ation may need to be relaxed; a goal, or goals, may need to be re-implemented (to
achieve an acceptable evaluation); or, the model may need to be re-configured.

6 Analysing Organizational Risk

Under this framework the organizational model becomes a persistent source
of knowledge that is required to bring together and combine distributed risk
analyses during organizational decision making.

6.1 Modes of Analysis

The scheme we have discussed allows us to conduct the two broad types of
analysis outlined below.
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Analyzing Modal Evaluations. A local risk evaluation for a node on an orga-
nizational model may be either: normative - indicating the acceptable threshold
for an evaluation (that may be propagated from another node); or, descriptive -
indicating a current or future risk state within the organization. Distinguishing
between normative and descriptive evaluations provides us with three important
levels of analysis: at the level of normative measurement expectations; between
descriptive and normative evaluations; and, between perceived descriptive eval-
uations. This is especially desirable when evaluating organizational models with
multi-modal elements (e.g. the normative nature of dependencies).

Ordering Model Elements. Propagation also provides us with a basis for or-
dering elements on an organizational model, based on their bounded evaluations.
Given two sets of bounds Slowi

, Suppi
and Slowj

, Suppj
for a specific risk, the

status of their ordering may be either: strictly better (Slowi
>s Suppj

); conceiv-
ably better (Suppi >s Suppj , Slowi ≥s Slowj ); incomparable, (Suppi ≥s Suppj and
Slowi ≤s Slowj ). Ordering model elements in this way can help to identify areas
of the model that are more prone to risk (i.e. a risk portfolio), and therefore
requiring specific attention.

6.2 Evaluation and Propagation

Below, we illustrate two examples of evaluation and propagation. In Tables 1
and 2, we will use “u|l” to signify the upper and lower bounds of an evaluation.

Propagating Precise Risk Measures in Figure 1. Table 2 summarizes the
local (L) and contextual (C) evaluations for one normative (i.e. L(N) and C(N))
and one descriptive (i.e. L(D) and C(D)) evaluation. The local evaluations de-
scribe the immediate evaluation of a node, prior to propagating the evaluation in
order to contextualize the evaluation of other nodes in a model. Contextualized
evaluations are inferred from the local evaluations, structure of the model and
propagation procedure used. In this example, an initial Normative evaluation
at the Manage[PackageRouting] node was provided, indicating that the afore-
mentioned risk should only ever have a risk value within the range [0, 0.01]. The
prominence of the node resulted in the evaluation being propagated to every
node in the model (i.e. for brevity we have only included interesting evaluations
in Table 1). Next, the Recieve[Package] node was evaluated with a descriptive
evaluation of 0.05, resulting in propagation to the Released[ClearedPackages]
and Release[Packages] nodes. As a result, the descriptive evaluations at these
nodes have been determined to be inconsistent with the normative evaluation,
requiring resolution.

Propagating Vulnerability Measures in Figure 1. The vulnerability of a
node is defined as the set of actors it depends on, including the owner of the
node. In the setting we have described, local evaluation, propagation, and in-
consistency resolution can be completely automated. Although the contextual
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Table 1. Failure Likelihood of Figure 1

Node L (N) C (N) L (D) C (D)

Release[Packages] 0|∞ 0|.01 0|∞ 0|.05
Manage[Package Routing] 0|.01 0|.01 0|∞ 0|∞
Receive[Package] 0|∞ 0|.01 .05|.05 .05|.05
Released[Cleared Packages] 0|∞ 0|.01 0|∞ 0|.05
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

evaluation of a node (as in the previous example) can be determined using other
mechanisms (e.g. simple graph traversal), we would like to illustrate how these
evaluations can be determined using the simple and general scheme for propa-
gating evaluations that we have described. We start by approximating bounds.
Naturally, the upper bound of each dependency (and related depender node)
receive a value consisting of the depender and dependee actors. This indicates
that these nodes are vulnerable to at least this degree. All other nodes receive an
upper bound value consisting of the actor who owns the node. The lower bound
on the other hand, may either: receive the entire domain of actors in the model
- limiting the possibility for further propagation; or, receive the value of the
upper bound as an strong approximation that is resolved using an inconsistency
resolution strategy (e.g. the cautious strategy). Table 2 summarizes the results
of the local evaluation and propagation of vulnerability across Figure 1 in the
case of a strong approximation. For brevity we have only included a subset of
the nodes and their evaluations.

Table 2. Vulnerability Analysis of Figure 1

Node Local Contextual

Handle[Bonding Duties] BD|BD BD,SF|BD,SF

Handled[Package] RA|RA RA|RA,BD

Manage[Package Routing] SF|SF SF|SF,RA,BD

Routed[Packages] SF|SF SF|SF,RA,BD

Sort[Package] SF,RA|SF,RA SF,RA,BD|SF,RA,BD

Received[Package] SF|SF SF|SF,BD

Handled[Package Clearance] SF,RA|SF,RA SF,RA,BD|SF,RA,BD

.

.

.
.
.
.

.

.

.

In this example, each node was assigned a crisp local evaluation indicating
the immediate vulnerability of that node with respect to outgoing dependencies.
For example, the Sort[Package] task was given an evaluation of “SF,RA|SF,RA”
since it is owned by the Sort Facility (SF) and depends on the Regulatory Author-
ity (RA). The result of the propagation finally indicated that the Sort[Package]
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and Handled[PackageClearance] nodes are the most vulnerable in our Trans-
port Organization.

7 Conclusion

Risk is an important consideration during organizational decision making, how-
ever there is little discussion of techniques to further support operational risk
analysis in this setting. We outline a general framework for supporting risk as-
sessment using rich organizational models. We provide an extensible means to
define and incorporate highly configurable risk metrics for evaluation. The prop-
agation schemes we have proposed, reduce analyst involvement over previous
approaches, and allow for iterative and distributed evaluation driven by the
detection of inconsistency. Furthermore, model elements can be ordered across
specific risk-related dimensions to help in focusing attention to specific problem
prone areas.
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