
FESINC: Facial Expression Sculpturing with INterval
Constraints

Zsófia Ruttkay
Centrum for Mathematics and Computer Science

POBox 94079

1090 GB Amsterdam, The Netherlands

Zsofia.Ruttkay@cwi.nl

Han Noot
Centrum for Mathematics and Computer Science

POBox 94079

1090 GB Amsterdam, The Netherlands

Han.Noot@cwi.nl

ABSTRACT
The animation of synthetic faces is still a low-level process
requiring much human expertise and hw/sw resources. The
constraint-based facial animation editor system, FESINC,
provides two kinds of support: allows the a-priory, declarative
definition of dynamical expressions and requirements, and assures
that while making the animation, these requirements are fulfilled.
The novelty of the approach is that it makes possible the
intensional definition and manipulation of (facial) animations.

Keywords
Facial animation, constraints, interval propagation.

1. INTRODUCTION
Facial expressions are characteristic and effective ways of
communication between humans. In man-to-man communication,
a great variety of non-verbal facial signals are produced, which
fulfill different functions [9]. Mouth shapes increase the eligibility
of spoken text. Emotional and cognitive expressions help to
understand the state of a situation and the speaker in a concise
way. Other signals punctuate and structure spoken text or indicate
state of discourse. There are facial signals - some of them with
biological functions - which indicate the idle but alive/ awake
state of a person. Last but not least, to a great extent we
(unconsciously) identify individuals and enjoy their diversity on
the basis of the look and dynamism of their faces.

During the 25 years history of computer facial animation,
different models and deformation techniques have been proposed,
see [8] for an overview. The importance of facial expressions is
reflected in recent research on and applications of avatars [2, 6].
Avatars are human-like synthetic representatives of a complex
computer systems or of a human in interactive or multi-user
applications. Preceded by extensive study of analysis and coding
of facial emotional expressions, we witness the first commercial
applications of synthetic characters with affective talking heads,
and software packages to design and animate synthetic faces [4,5].

Analyzing carefully the at first sight impressive applications,
however, some common shortcomings can be identified:

• The facial expressions of a specific type are identical, due to
the fact that single (tracked or synthetic) expressions are
wired-in the system.

• The blending and concatenation of expressions is based on
simple principles, often resulting in unnatural facial
movement. While for visual speech the co-articulation and
concatenation has been studies extensively, little attention
has been paid on developing principles and methods to
superimpose and blend facial expressions in time.

• The production of a subtle facial animation of a synthetic
character is a tedious, low-level process which requires much
professional skill and time, as there is neither enough
available knowledge on the dynamism of human facial
expressions, nor appropriate paradigms and tools to animate
synthetic faces.

• The ‘look’ of a synthetic head is often non-photorealistic, but
the expressions are realistic. That is, no facial animation
framework is available to exploit the possibilities of the
traditional animation, which uses exaggeration, special
effects non-existing on realistic faces and some of the general
‘Disney-rules of animation’. Such ‘beyond-realism’
animation effects could increase the effectiveness and appeal
of the non-verbal communication repertoire of a character.

We have designed and implemented a facial animation editing
system which overcomes several of the above shortcomings. The
system allows the animator to define and re-use animation
building blocks, as well as express general (e.g. all the pair of
features move symmetrically, except eyebrows) or time-related
(e.g. synchronization) requirements the animation has to fulfill, all
expressed in the form of constraints.

In Chapter 2 we introduce the concept of ‘expression sculpturing’.
In Chapter 3 the issues of constraint processing are addressed. We
explain how an interval constraint propagation mechanism is used
in an interactive graphical editor setting. In Chapter 4, the
currently implemented system is discussed. In the closing chapter,
issues of further research are addressed.

2. THE DECLARATIVE ROLE OF
CONSTRAINTS
2.1 Sculpturing dynamical facial expressions
We introduce the idea by an example. Let’s assume that there is a
perfect physically-based facial model [8] at our disposal. In order
to simplify our discussion, we restrict the task to defining the

contraction of the most important muscle pair involved (in the real
face, and thus in the facial model as well), the Zygomatic major
muscles, pulling up diagonally the corners of the mouth. We will
use the common, but unrealistic [3] further simplifying hypothe-
sis, namely that the muscle activation happens in three, linear
stages: application, release and relaxation as given in Figure 1.

Figure 1. Stages of contraction of a muscle (based on simplifying assumption)

One can define infinitely many pairs of trapezoid-shaped muscle
contraction functions — which ones produce an acceptable
smile? How short or long a smile can be? How are the duration
of application, release and relaxation related? What are the
absolute and relative limits on the contraction at the start and
end of the release? What is a typical generic smile like? In what
ways and to what extent can a smile be specific? What is the
total effect of co-existing expressions (e.g. smile and speech)?

The questions above, unfortunately, still cannot be answered by
analyzing a huge sample of real smiles. In spite of the
achievements of face tracking hw/sw, it is difficult to get enough
real, spontaneous facial expression samples recorded under
circumstances needed for analysis.

A tool which allows the animator to declare answers (albeit
invented ones) for the above questions can be considered as a
tool to sculpture facial motion. With such a tool, before starting
to work on the detailed animation, the animator decides about
the typical dynamical facial expressions of the character. When
making a particular animation for the face in question, the
animator inserts random or default examples of the character’s
smile. This he can modify either by directly adjusting parameter
values, but only in such a way that the modification does not
violate the declared characteristics of the facial expression, or by
modifying some of the declared characteristics or adding new
ones (e.g. a symmetrical smile can be made asymmetrical by
lifting the general requirements of symmetry.)

When working on an animation, the system enforces that the
animation meets the requirements, by re-adjusting certain
parameters. In this way the animator’s work becomes easier and
faster, and is lifted to a higher, conceptual level.

The animator is supported in two (may be interwoven) stages of
facial animation:

• to sculpture the dynamism and mimic repertoire of a face to
be animated;

• to make animations for a face with a given mimic
repertoire, meeting certain further requirements set for the
particular animation.

2.2 Definition of facial expressions by
constraints
We assume that the head to be animated can be deformed by
specifying a fixed number N of facial deformation parameter
values. Each parameter (e.g. muscle contraction, FAP,...) may
take its value from a domain of a closed and finite interval of
reals. One specific value of the domain is the neutral value, that
is the value of the parameter in case of a neutral face. An
animation is the evolution of the deformation along time. An
animation is given by the vector of functions (F1(t),...FN(t)),
where Fi: T-->Di gives the value of the i-th parameter for each
time moment in T, where T is the duration of the animation.

The parameter values are given explicitly for some time
moments only, and for the rest of the time the value is computed
on the basis of the given defining values. We use piece-wise
linear interpolation on the intervals between the time moments
with given parameter values, but other, smooth interpolation
could be used too.

As introduced above, for the i-th parameter, a number of
Pi

j = (ti
j, vi

j) control points (CPs) are given which define the
parameter curve for the parameter. The number of control points
may differ from parameter to parameter, and control points for
different parameters need not be aligned along time. We assume
that control points of one parameter are indexed according to
increasing time, that is ti

j < ti
j+1. If for a certain parameter no

control points are given, then the value of the parameter is
assumed to be the neutral value (which is the value of the
parameter at neutral expression).

muscle

contraction

relaxation

release

application

time

Usually the task of making/modifying a facial animation is given
in terms of certain requirements. E.g. how long the animation
should be, what expressions should the face show at certain time
moments or intervals, blinks should be slow, etc. To specify an
animation requires specifying a sufficient number of control
points, at proper times with proper parameter values, namely so
that the resulting F1(t),...FN(t) functions together produce an
animation with the requested characteristics.

As opposed to the traditional computer animation tools where
most (if not all) of the envisioned characteristics are only

present in the head of the animator, our system allows to express
these characteristics in terms of certain types of constraints on
co-ordinates of control points. The animator can use a given set
of types of constraints, the so-called basic types, to express
desired characteristics. The constraints are listed and explained
in Figure 2. Besides the listed types, the user may use any linear
constraints. All the allowed types of constraints limit the value
of a linear function of co-ordinates of certain control points. In
order to get used to the notation and meaning of constraints, the
reader is asked to define his/her own ‘smile’ with the help of
constraints.

(Ia) ti
j ∈ I*

time range (Ib) vi
j ∈ I*

value range

(IIa) ti
j - t

n
m ∈ I time duration (IIb) vi

j - v
n

m ∈ I*
value change

(III) ∈ I relative time duration

(IV) ∈ I relative parameter value, where p and q are reals (typically, neutral values), and either I does not

contain 0 or is vi
j– q always positive.

(V) ∈ I parameter change speed

Figure 2. The types of basic facial animation constraints. and stand for the time and value of the j-th CP in the i-th parameter.
I denotes a finite or infinite, I* a finite interval. Inequalities and equalities are expressed in the form of membership in an interval.

E.g. x-y >= 20 would be expressed as x-y ∈ [20, + ∞].

3. CONSTRAINT PROCESSING
3.1 Interaction between the user and the
solver
Editing an animation takes place by a sequence of two kinds of
primitive editing operations:. The user may change the time and
value of a CP (or groups of CPs), and add/delete (groups of)
CPs. These operations can be performed by directly
manipulating a graphical representation of the control points of
the parameter functions.

Interwoven with the manipulation of control points, the
animator may also change (add/delete/modify) interactively the
set of constraints which have to be satisfied. These operations

may result in some violated constraints (e.g. he drags along time
a CP, and a constraints prescribing that another parameter’s
certain CP should have the same time is then violated).

The basic engine behind the editor is the constraint solver,
which assures that all the constraints get again satisfied. The
solver achieves this by fulfilling two tasks:

• provides for the animator the intervals for possible
times/values for each CP (and the editor then forces the
animator to select only from these values);

• updates the animation in such a way that the constraints
remain satisfied.

ti
j – tik

t i
r – tis

vi
j – p

vn
m – q

vi
j+1 – vi

j

t i
j+1 – tij

Because of the first service, the solver can always accomplish
the second task: as an answer for the animator modifying CPs, it
can always adjust some part of the animation such that all the
constraints are satisfied again. However, the user may
add/modify a constraint in such a way that it contradicts the rest
of the constraints, that is, the problem has no solution.

If this is the case, the constraint addition/modification proposed
by the animator is not accepted. Otherwise the animation is
updated in such a way that the modified constraint gets also
satisfied. The interplay of the animator and the constraint solver
is illustrated in figure 3.

Figure 3. The interplay of animator and the constraint solver

3.2 Interval propagation

At each moment of editing an animation, the quadruple
 <S, C, A, D> is maintained, where:

C is the set of constraints to be fulfilled;

A is the animation, given in terms of value/time of CPs (some
of these variables are constrained by elements of C);

D is the list of allowed domains for the value/time of CPs;

S is the strategy to be used to generate an animation;

The domains of values, D are such that whenever the user
selects a value for a variable from its domain, it is possible to
modify A in such a way that C gets fulfilled. Note that not only
A, but D changes too: D is decided by C and the assignment
done by the user. Moreover, usually there are many ways to
update A, that is, there are many solutions of C to choose from.
The user-defined strategy S defines an unique way to generate a
solution.

In general, it is a difficult task to find a single solution for a
CSP. It is an additional and comparably difficult task to
compute the possible domains for each variable. In our case,
because of the linearity of the used constraints and a few extra
requirements, the solution set is always convex, and hence the
domains are always closed intervals. Moreover, these intervals
can be computed efficiently by interval propagation [10]. In a
nutshell, interval propagation is an iterative process, which
narrows an interval, if it can be done, based on the constraint
referring to the variable having the interval in question as

domain and the domains of the other constrained variables.
Because of the special characteristics of the types of allowed
constraints, the iterative process produces (finite or infinite)
intervals which are exactly the projections of the solution set. If
a variable gets a new or modified value (specified by the user or
automatically, see below), then the same interval propagation
mechanism is used to narrow further or update the domains.

Any solution can be generated by using the information gained
on the domains by interval propagation, by iteratively selecting a
not yet instantiated variable, assigning a value to it from its
domain and updating the other domains. This scheme does not
specify in which order variables should be considered, and
which of the possible values should be selected for them. The
user may specify different strategies to make these choices. E.g.
if he wishes to keep the timing of the animation, then he should
use the strategy ‘consider time variables first, and select a new
value as close as possible to earlier value’. Further alternatives
for value selection are: minimum/ maximum/middle of or a
random value from the domain;

Note that the order of time variables to be dealt with is not
specified yet. He may consider them ‘from left to right’, in order
to keep the ‘beginning’ of the animation well-timed.

Often the animator wants to limit the effect of his move to a
portion of the animation. He can achieve this by freezing the rest
of the animation. If a part of the animation is frozen, then the
domains, D, have to be recomputed, by propagating the ‘frozen’
variable values.

CAnimation

 Editor

Constraint

 Solver

S strategy

C constraint

A animation

D domain

Figure 4. A snapshot of a session when different smiles were produced by re-using an earlier defined ‘generic smile’ (first instance)
by modifying constraints and choosing different solution strategies. The three connected lines in black correspond to 3 of the 4
parameter curves which define the left and right mouth corner x/y positions, the black dots are the CPs which define the functions.
The horizontal and vertical lines in grey indicate the possible values for the time and value of the corresponding CP.

4. IMPLEMENTATION
The first version of the constraint-based facial animation editing
system has been implemented. It consists of 3 parts:

• Animation Editor: a graphical editor to load/save/edit
animations (see [7] for details);

• the Constraint Manipulator to maintain strategies, store and
visualize constraints and domains;

• the Solver, to generate domains and animations.

Animation Editor is our earlier made, non-constraint based tool,
which was integrated with the Constraint Manipulator (taking
care of all constraint-related features) under the name
CAnimation Editor. The first two parts are written in Java 1.3
and integrated under a common user interface. The Constraint
Manipulator supports the following functionalities (see Figure
4):

• add new constraints, delete/modify old ones;

• show the possible domains for each CP;

• freeze/free CPs;

• specify strategy;

• save and load animations with constraints and strategy;

• insert a piece of animation (with constraints) at a given
time;

• specify new types of constraints (other than the provided
basic ones).

The Solver consists of the OpAC solver, developed at Nancy
[1] and an extra layer, both written in C++. The extra layer
communicates with the Constraint Manipulator, implements the
execution of the strategy and enforces all kinds of implicit
requirements, all by generating constraints for OpAC and
sending results back to the Constraint Manipulator. OpAC is a
general interval constraint solver. It has been optimized to deal
with the special set of basic animation constraints.

5. DISCUSSION
The novelty of our FESINC system lies in the application of
constraints to define dynamical facial expressions in an abstract,
declarative way, and provide support to generate and use
different instances of those expressions. The current
implementation already speeds up the process of making a facial
animation, and allows the generation of different ‘instances’ of a
dynamical expression defined in terms of constraints. (A session
as shown in Figure 4 as well as the resulting animations will be

demonstrated during the talk.) However, several extensions can
be thought of, both of conceptual and of technical nature.

The ‘building blocks’ are not treated in the editor as a unit, the
CPs are connected only by constraints. Hence one may delete
CPs from a ‘smile’, possibly destroying by this its intended
characteristics. In the next version, the building blocks will be
registered. The information will be used not only for improving
the technicality of editing, but also as a basis for higher-level,
script-based but (but not necessarily deterministic) animation.

Once building blocks can be selected, it would be very useful
and interesting to change (several) constraints by intuitive, user-
friendly parameters like exaggerate; increase
intensity/length/deviation from ‘default’. A research issue is to
find out how to handle blending and concatenation in the
constraint-based framework.

Constraints can be used to express requirements on the general
motion characteristics of the face (e.g. symmetrical motion, slow
movements). In a next version it will be possible to express such
requirements, and the ConstraintManager will generate the
appropriate constraints automatically.

It should be tested if real animators find the current set
expressive enough. It is also a question if the idea of abstract,
constraint-based animation is a maintainable paradigm for
animators.

Though facial animation is very different from body animation,
some experiments with hand gesture and body animation makes
us believe that our framework could be used for them too.
Further experiments should be conducted.

6. ACKNOWLEDGMENT
We thank Frederic Goualard for making the OpAC solver
available for us, and also for his insightful remarks on our way
of using it.

7. REFERENCES
[1] Benhamou, F. Goualard, F. The OpACSolver,

University of Nantes, personal communication, 1999-
2001.

[2] Cassell, J., Sullivan, J., Prevost, S., Churchill, E.
Embodied Conversational Agents, MIT Press,
Cambridge, MA, 2000.

[3] Essa, I. Analysis, Interpretationa nd Synthesis of
Facial Expressions, MIT Media Lab Perc. Comp.
tech. Rep. 272, 1994.

[4] FaceWorks http://www.interface.digital.com/
overview/default.html

[5] famous3D http://www.famous3d.com/solutions/
production/producer.html

[6] Noma, T., Zhao, L., Badler, N. Design of a virtual
human presenter, IEEE Computer Graphics and
Applications, Vol. 20. No. 4. 2000, pp. 79-85.

[7] Noot, H. Ruttkay, Zs. CharToon 2.0 Manual, CWI
Report INS-R0004, Amsterdam, 2000. Available
from http:// www.cwi.nl/FASE/

[8] Parke, F., Waters, K. Computer Facial Animation,
AK Peters, Wellesley, MA, 1996.

[9] Poggi, I., Pelachaud, C., De Rosis, F. Eye
communication in a conversational 3D synthetic
agent, AI Communications, 2000.

[10] Ruttkay, Zs. Constraint-based facial animation, Int.
Journal of Constraints, Vol. 6. pp. 85-113, 2001.

