
SwTOI (Software Test Ontology Integrated) and
its Application in Linux Test

Daniella Bezerra1, Afonso Costa2 and Karla Okada2

1 Paulo Feitoza Foundation - FPF, Manaus - Brazil
daniella.bezerra@fpf.br

2 Nokia Institute of Technology - INdT, Manaus - Brazil
afonso.costa@indt.org.br
karla.gomes@indt.org.br

Abstract. This paper encompasses a elements study of knowledge re-
presentation founded on ontologies that have Linux test as target do-
main. The study aims demonstrating that once knowledge is formalised,
it is possible to reuse, to perform inference, to process it through compu-
ters, and, what is more relevant, it becames enable to be communicated
between people and software. Towards that, three ontologies have been
developed: OSOnto (Operating System Ontology) which represents con-
cepts of the operating system domain, SwTO (Software Test Ontology)
which deals with the software testing domain, and SwTOI (SwTO Inte-
grated) which represents concepts of both domains in an integrated way.
For implementing the ontologies, OWL DL as ontology specification lan-
guage, Protégé as ontology editor and Racer as the main reasoner, have
been used. A quantitative and qualitative evaluation of the SwTOI on-
tology has been performed as well.

Key words: knowledge representation, ontologies, linux test, evaluation

1 Introduction

One of the most challenges that the Software Engineering faces is: who does
build software in a good quality with the reduced cost, time and effort? Several
technological solutions are aimed as answers for this asks. One of them is the
Free Software that seeks to contribute with its collaborative projects substan-
tiated in the knowledge liberty and the intellectual property. Among the several
free software projects, the Linux3 is detached to have been one of the pioneers
and for grouping a significant number of collaborators and users. The project
maturity and the technical group, formed by people that participate actively,
are interesting points to be observed. However, the quality of the Linux is much
more observed and felt by users than actually verified by scientific procedures.
Linux has been inserted in the business domain, then its quality needs to be ac-
tually verified. This fact results in a union between communities and interested

3 http://www.linux.org



26 Proceedings of ONTOSE 2009

companies, giving rise to the Linux Test Project (LTP)4. The objective of this
project is assurance the Linux quality through systematic tests. This project be-
haves as a repository with scripts, tools and more of 3.000 test cases. The LTP
documentation is deficient and there is not an efficient record of the designers
knowledge in the tests elaborations. These difficulties inside the Linux test com-
munity is common in many others projects and this has motivated the research
and it has awakened the interest to offer an ontological contribution based in
Description Logic, at least reducing these difficulties of the Linux test knowl-
edge, which is maintained and recorded in a formality scarce approach, such as
e-mail lists, source-code documentation and web forums. Towards that, three
ontologies have been developed: OSOnto (Operating System Ontology) which
represents concepts of the operating system domain, SwTO (Software Test On-
tology) which deals with the software testing domain, and SwTOI (SwTO Inte-
grated) which represents concepts of both the above domains in an integrated
way. For implementing the ontologies, OWL DL as ontology specification lan-
guage, Protégé as ontology editor and Racer as the main reasoner, have been
used. SwTOI is used by TeSG (Test Sequence Generator) Tool to create some
tests for LTP. An evaluation of the SwTOI has been performed and some results
has been included in this paper.

2 Related Domain Ontologies

A research of existing ontologies for the identified domains was carried out with
the objective to reuse knowledge. For the operating system domain, the more
significant ontology found was BLO (Basic Linux Ontology)5, which includes
concepts of a Linux introductory course of the Leeds University [3]. Already in
the software test domain, the ontology more significant was SWEBOK (Software
Engineering Body of Knowledge) proposal by a big technical IEEE committee,
search supply definitions and terminology for the several knowledge areas of
the software engineering and among them is the software test [7]. From the
formal ontology BLO, it was possible to extract and reuse knowledge in the
form of classes, properties and instances. From the informal ontology SWEBOK,
it was possible to extract the knowledge of the text in natural language and
transcribe it for the OWL DL language, giving rise to a formal ontology, SwTO.
The activity of capturing concepts includes the identification, description and
choice of concepts names associated to operating system domain and software
test, as well as the identification of the relationships among them.

3 LTP and the selected scope

Linux has several subsystems, like network, memory, file system, etc. The re-
search was delimited in a deliberate sample of the Virtual File System (VFS)
4 http://www.ltp.sourceforge.net/
5 Basic Linux Ontology was built by a specialist of the domain utilizing the language

OWL-Lite and the Protégé. This ontology is part of a bigger project called SWALE.



Proceedings of ONTOSE 2009 27

because the LTP contains several test cases for those subsystems and the VFS is
strategic for the Linux kernel6. Nevertheless, the VFS has four objects that can
be investigated (inode, superblock, dentry and file) among the which we have
selected file. The initial analysis of the Linux test domain was deed through bi-
bliographical researches and meeting with specialists. Through the elaboration
of a diagram of the conceptual model was possible to visualize the presence of
two distinct domains, software test and the operating system. By a decision of
project, we opted by developing an ontology for each one of the identified do-
mains, permitting in this way modulate them. The OSOnto (Operating System
Ontology) concentrates in the domain of operating system, the SwTO (Software
Testing Ontology) concentrates in the software test domain. However, those do-
mains are able to be integrated, what gave rise to the SwTOI (Software Test
Ontology Integrated)7. In this way, the knowledge about the Linux test forms a
possible one ABox for the SwTOI , which is discussed in the following section.

4 SwTOI Kernel used by TeSG to generate test sequences

The software test method proposed in [1] contemplates TeSG (Test Sequence
Generator) and offers a solution that identifies critical fails in the software. For
so much, TeSG uses the knowledge represented by the SwTOI . But why an
ontology is used by TeSG? Why SwTOI was chosen?

The use cases are textual documents, described in natural language. For they
can be interpreted and processed computationaly, it is necessary to describe them
formally. Transcribing use cases of a natural language for a computational lan-
guage is not sufficient. Generating test sequences with probability to find errors
or software bugs, it is necessary to unite the designer knowledge about the soft-
ware test theory and associate it with test cases elaboration. This union between
knowledge representation and its instanciation can be obtained through formal
ontologies. This benefit did with TeSG considered ontologies as an adequate
formality to be utilized in the problem solution.

The research carried out in [1] aims SwTOI as the formal ontology more
prominent for the TeSG application domain, for this, SwTOI was chosen. But
how this ontology is used by TeSG?

The first stage consists in representing narrative uses cases to formal use
cases as instances of SwTOI . In this case we have part of UseCase formalization
illustrated subsequently in Figures 1 and 2:

UseCase: it is a documentation, which each use case has one or more set-
tings to define how the system should interact with its actors for attending an
objective or a task realization.

Sufficient and Necessary Condition:

(i) Individuals are inferred like a UseCase instances if they will be instances of Ex-
panded class or HighLevel class since the subclasses are disjoin.

UseCase ≡ Expanded t HighLevel (1)

6 http://www.kernel.org
7 A complete specification about the three ontologies are available in [2]



28 Proceedings of ONTOSE 2009

Among several Necessary Condition of this class we have:

(i) UseCase is subclass of DesignDocumentation.

UseCase v DesignDocumentation (2)

(ii) Individuals of the UseCase class relate itself through hasActor property with in-
dividuals of the Actor class.

UseCase v ∀ hasActor.Actor (3)

(iii) Individuals of the UseCase class relate itself through hasActor property with at
least one individual of the class Actor.

UseCase v ∃ hasActor.Actor (4)

Properties:

(i) hasActor is an inverse object property of the isActorOf, whose domain is UseCase
and range is Actor.

hasActor ∈ PO (5)

hasActor ≡ isActorOf
−> v ∀ hasActor . UseCase (6)

> v ∀

(
hasActor− .

Actor

)
(7)

(ii) hasRanking is a functional object property, whose domain is UseCase and range
is ImportanceRanking.

hasRanking ∈ PO (8)

> v (≤ 1 hasRanking) (9)

> v ∀ hasRanking . UseCase (10)

> v ∀

(
hasRanking− .

ImportanceRanking

)
(11)

(iii) A use case has priority. The functional data type property hasUseCasePriority
represents this priority (Equation 12), whose domain is UseCase (Equation 14)
and range is XMLSchema:int (Equation 15).

hasUseCasePriority ∈ PD (12)

> v (≤ 1 hasUseCasePriority) (13)

> v ∀ hasUseCasePriority . UseCase (UseCase 6= ⊥) (14)

> v ∀

(
hasUseCasePriority− . XMLSchema : int

(XMLSchema : int 6= ⊥)

)
(15)

This property has integer values defined by owl:oneOf constructor. It can have
priority from 1 until 5, where 1 means lower priority and 5 high priority.

{ 1, 2, 3, 4, 5 } v hasUseCasePriority (16)



Proceedings of ONTOSE 2009 29

Disjoin:

(i) UseCase class is disjoin of the EventSequence, Actor, ImportanceRanking,
ExternalBehavior, SoftwareRequirement, Event and Frontier. These classes
do not share instances.

Event v



¬ EventSequence,
¬ Actor,

¬ ImportanceRanking,
¬ ExternalBehavior,
¬ SoftwareRequirement,

¬ Event,
¬ Frontier,


Instances of the Use Case:

isGeneratedBy(ftest01, IBM TestCaseGenerationProcess)
isTestDocumentationOf(ftest01, LinuxTestProcess)

hasInputSpecification(ftest01, lseek)
hasInputSpecification(ftest01, read)
hasInputSpecification(ftest01, write)

hasInputSpecification(ftest01, truncate)
hasInputSpecification(ftest01, ftruncate)
hasInputSpecification(ftest01, fsync)
hasInputSpecification(ftest01, sync)
hasInputSpecification(ftest01, fstat)

hasOutputSpecification(ftest01, flag 0 for unexpected exit)

hasPurpose(ftest01,
(

Testing file input
output operations

)
)

hasProcedure(ftest01, read)
hasProcedure(ftest01, write)
hasProcedure(ftest01, remove)

canBeMappedInto(ftest01, ReadFile)
canBeMappedInto(ftest01, WriteFile)
canBeMappedInto(ftest01, RemoveFile)

The second stage consists in, using Jena8 Framework, manipulate the source
code of SwTOI with all specifications and instances to generate a schema. The
TeSG uses this schema to manipulate TBox and ABox of SwTOI .

Developed in Java, TeSG uses a genetic algorithm as an heuristic approach to
combine events between related use cases. SwTOI concentrates this knowledge
about “Who has relation with” and “What is the use case priority”. The Figure
1, extracted from Protégé, presents logical conditions of UseCase class.

The Figure 2 presents the properties that describes UseCase class. For this
description is possible to observe:

– The properties hasGoal, hasPostCondition, hasUseCaseIdNumber, hasUseCaseName,
hasUseCasePriority and hasDocumentationVersion are datatype properties.

8 http://jena.sourceforge.net



30 Proceedings of ONTOSE 2009

Fig. 1. Logical Description of the UseCase class

Fig. 2. UseCase properties

– The properties hasActor, hasRanking, isRelatedTo, isStartedBy and documents are
object properties.

– The properties hasPostCondition and hasPreCondition are very important for test
sequence generation. TeSG evaluates if a test case has pre or post conditions. If it
has, this knowledge will compose a test sequence.

– The domain especialist is the person who defines the priority of use case through
hasUseCasePriority property where 5 is the maximum priority and 1 is the mini-
mum priority.

The third stage is generating a test sequence according to [1]. After this, the test
sequence contemplates steps that can be executed like a black box test or can
be implemented in an automated test case language.

5 SwTOI Evaluation

The evaluation’s purpose aims the quality of an ontology. Some works concen-
trate in the development and approaches studies, for so much, there are some
proposed tools to support this activity, but they are not much utilized [6].

The SwTOI evaluation was based on two strategies in parallel: quantitative
and qualitative evaluations.

The quantitative evaluation was based on the approach described in [5], and
it was also enriched with new criteria as class of bigger rank and levels of the



Proceedings of ONTOSE 2009 31

ontology. The qualitative evaluation was based on the approach described in [8],
and it was enriched with the racer and metric utilization. Both strategies are
complete and they are described in the next sections.

5.1 Quantitative Evaluation

The ontologies are used to represent knowledge of the most varied domains.
They can present components in common as concepts, instances, attributes (of
concepts or instances), relations that can be hierarchical (all-part and is-a) or
not and restraints about concepts and relations in the form of axioms. The ana-
lysis of those components of an ontology can reveal information and important
characteristics , such as, the level of ontology formality according to the explicit
specification. Informal ontologies contemplates concepts, instances, relations and
attributes. Formal ontologies, beyond contemplate the same components of the
informal ontologies, also represent restrictions about concepts and relations in
the form of axioms.

The approach proposed in [5] suggests an evaluation based on the ontology
structure. This approach presents the ontology’s components quantitatively and
uses the graph’s theory and statistical indicators. The approach also seeks to
aim the level of ontology structure. An ontology well organized can easily sup-
ply the comprension of the represented domain and this is a good indicator of
applicability, integrability and reusability. The approach also makes feasible the
analysis and comparison among ontologies even though they represent distinct
domains fairly by concentrate in ontological components.

In OWL DL a property is a binary relation. In this work we have considered
two kinds of properties: object properties(PO) and datatype properties(PD). The
quantitative evaluation was based on five indicators: (i) quantity of classes nomi-
nated, (ii) Medium of the properties PO, (iii) is-a relation levels of the Ontology,
(iv) class bigger rank of the is-a relation and (v) class bigger rank of the all-part
relation. The isolated analysis of each one of those indicators does not lead to
conclusive results. It is necessary to observe them together. The indicators will
be detailed bellow.
Quantity of Nominated Classes - The quantity of nominated classes can
supply an indicator of the ontology size and domain represented. SwTOI has
194 nominated classes. However, this indicator is not conclusive. To evaluate
the detail level of an ontology it is necessary other indicators. Average of the
Properties PO - An object properties reflects a relation between instances of
two classes. The reasoners carry out inferences about object properties like the
verification of restrictions about properties and the verification in domain/range
axiom. A datatype properties reflects a relation between an instance and a
XMLSchema type. The datatype properties are treated separately by the reason-
ers. Generally, ther is an inference machine separated for kinds of datatypes. Due
to “open world assumption” logical premise of the reasoners utilized in OWL,
the average analysis of the object properties regarding the total of nominated
classes gives an idea of the representative distribution among the instances of
the classes. SwTOI has 142 PO and 51 PD.



32 Proceedings of ONTOSE 2009

In the following equation, MPO means the average of the ontology object
properties; PO is the total object properties; n is the total of ontology nominated
classes.

MPO =
PO

n

The average of SwTOI in relation of the nominated classes total is 0,73. This
indicator can help the ontology engineers evaluates the abundance of relations
among classes. Is-a Relation Levels of the Ontology - Upon observing the
ontology structure, it is possible do an analogy with the graph’s theory where
a class corresponds to a node and the relation between classes (is-a or all-part)
corresponds to an edge. The graphs are rich in properties and many information
can be extracted from its analysis. From only one ontology, several graphs can
be generated. If we consider the relation is-a between the classes, we have a
tree and if an ontology imports another one, we have a forest. From this kind
of graphs, it is possible to identify the ontology depth level, starting from the
concept of the highest level or root concept until arrive the leaf concepts.

The Figure 3 generated by Jambalaya plug-in illustrates the classes tree and
relations is-a of the SwTOI . By this tree, it is possible to observe that this on-
tology has seven levels since the root to the leafs being that the fifth level of
the root for the leafs has more density, with bigger quantity of classes. This in-

Fig. 3. SwTOI tree and relation is-a between classes

dicator contributed with the ontology size evaluation, revealing the proportions
of the root/leafs and the ontology depth through its hierarquical structure. The
table 1 presents the total of classes by level and detaches the fifth one as the
common level that concentrates the biggest quantity of classes. Class Rank
of the is-a Relation - From the graph discussed in the previous section, it is
possible to extract the class rank of the ontology. This indicator can reveal the



Proceedings of ONTOSE 2009 33

Level SwTOI

1 1

2 2

3 17

4 48

5 70

6 38

7 18

Classes Total 194

Table 1. SwTOI Classes Total

classes that possess bigger connection (IS-A) with other and contribute to the
project decisions as much as for the SwTOI improvement and for other appli-
cation that have the intention of reuse it. SwTOI has SoftwareTest as a class
with 11 IS-A relation. The SwTOI ’s domain is the software test, then it is ex-
pected that an important class for domain has the greatest number of relations
is-a. Class Rank of the all-part Relation - The relation all-part also estab-
lishes a kind of hierarch among the individuals of a class. As an example for
this kind of relation, suppose that a car is instance of the class vehicle and the
car is composed by the following parts: motor, chassis, etc. This kind of rela-
tion enrich a representation sets out of a domain informing the part of an all.
For elaborating a graph of the relation all-part, it is important to consider the
characteristics assumed by the properties like inverse, for example. SwTOI has
SoftwareTestProcess as a class with 20 ALL-PART relation. The Table 2 sum-
marizes the indicator discussed in this Section and presents the results found
for the SwTOI . The SwTOI ’s expressivity was identified by Protégé Metrics

Indicators SwTOI

Total of the nominated classes 194

PO Total 142

PD Total 51

PO Average 0,73

Levels (is-a relation) 7

Class Rank (is-a relation) SoftwareTest(11)

Class Rank (all-part relation) SoftwareTestProcess(20)
Table 2. Results of the quantitative evaluation

as SHOIQ(D). This means that ontology contemplate transitive rules, inter-
section between classes, negation (complement of a class), full universal and
existential quantification, and disjunction between classes. Also there is hierarch
of properties, value restriction, inverse properties, symmetrical properties, well
like cardinality restrictions.



34 Proceedings of ONTOSE 2009

5.2 Qualitative Evaluation

The qualitative evaluation was based on three criterias: consistency, complete-
ness and conciseness.

In the purpose of an ontology, a determined definition is consistent if there
is not contradictory knowledge inferred from axioms. The consistency criteria
aims results of inferences carried out by a racer about the theory represented by
the ontology.

If all of the concepts of a determined domain will be represented by an on-
tology and such representation will be verified by a test of completeness, this
ontology is dictated complete. An ontology is an explicit specification of a con-
ceptualization, that is going to offer an abstract and simplified vision of the
world that it desires represent for some purpose. Represent all concepts can be-
come impracticable for certain domains. The completeness criteria evaluates the
explicit representation of the concepts and it aims an analysis of the ontology
completeness.

An ontology is considered concise when: (i) does not store unnecessary def-
initions, (ii) does not exist redundancy between terms definitions , (iii) redun-
dancies are not inferred of other definitions. The conciseness criteria evaluates
each one of those points and aims an analysis of the conciseness of the ontology.

RacerPro supports the consistency and conciseness criteria only. Inferences
were carried out in the ontology through the interface DIG (Description Logic
Implementers Group), which works like a protocol of communication, allowing
the reasoner interacts with the environment Protégé and consequently, with the
source code of the ontology. Consistency Criteria - The reasoners help the con-
sistency verification in three forms: (i) verifying some definite condition results
in contradictory conclusions, (ii) inferring hierarchy of classes and subclasses
and (iii) computing the instances inferred. The Protégé, used in partnership
with a reasoner also helps this verification showing the hierarchy defined by the
ontology engineer (asserted hierarchy) and after execution of the reasoner, the
Protégé shows inferred hierarchy. If some class was reclassified, i. e., if super-
class changes, the editor will detach in blue the hierarchy inferred. If the class
is unstable, will be detached in red. The computation of the inferred instances,
carried out by the reasoner, also can be visualized by the Protégé, which shows
the instances associated to each class.

The RacerPro concluded that SwTOI is consistent since no definite condition
resulted in contradictory conclusions. This same consistency verification was
carried out for the OSOnto and SwTO. Both also they are consistent. Right
away was carried out the verification of the taxonomia.

The class Agent is subclass of the union between OSOnto:Person and OS-
Onto:Software. This specification results in a reclassification of class Agent like
subclass of OSOnto:OperatingSystemDomainConcept. The class GrayBox is a
software test technique equivalent the union of other two test techniques dis-
join among themselves, to BlackBox and to WhiteBox. In the definite hierar-
chy those three classes are sisters, but in the inferred hierarchy, BlackBox and
WhiteBox are subclasses of textitGrayBox. The class GrayBox is equivalent to



Proceedings of ONTOSE 2009 35

a cover axiom, defined that all instances belong also to one of its subclasses, i.
e., all technical GrayBox will be exclusively BlackBox or WhiteBox. The Figure
4 presents an alert of the Protégé for the inferred reclassification. The Racer

Fig. 4. Protégé result for SwTOI classification

also contributed with the instances classification of each class. All the presented
instances in the ontology were classified correctly. Completeness Criteria -
The classes can be classified as primitive or defined. A primitive or partial class
is one which has only necessary conditions. The defined or complete classes are
those which have at least a sufficient and necessary condition. All class that is
not defined as primitive since all class will have at least a necessary condition
(all class will be subclass of some class, neither that be of owl:Thing). Evaluating
the quantity of classes in an ontology that do not possess definitions beyond its
position in the hierarchy, it is possible to observe the level of incompleteness of
each class and arrive to a conclusion about the completeness criteria.

The second criteria of the qualitative evaluation, completeness, was based
on total of primitive classes, considered of simple descriptions, without detailed
axioms. From 194 classes nominated, 166 are primitives. This corresponds to 85%
of the classes in the ontology. Those 194 classes, only 57 classes are really vague
in its description, representing 30% of the total of classes of the SwTOI . The
Table 3 presents this analysis. All of SwTOI , 30% of the classes can be better

Classes Characteristics Total

Nominated Classes 194

Primitive Classes 166 85%

Primitive Classes with vagueness description 57 30%
Table 3. Classes with vagueness description

represented. They are classes like TestPattern, OSOnto:UserDocumentation and
OSOnto:TechnicalDocumentation, which were not detailed due to the initial work
delimitation. However, those classes are subject to detailment.

Conciseness Criteria - The conciseness criteria of the ontology was an-
alyzed of subjective form, considering the revisions, observations detached by
the specialists of the research group and the reasoner conclusion concerning in
redundancy verification between definitions terms and redundancies that can be
inferred of others axioms.



36 Proceedings of ONTOSE 2009

To verify if the ontology had unnecessary definitions, the specialists of the
research group carried out several revisions and detected some definitions as
class Author, that represented the creators of a software, hardware or virtual
community. Second the evaluation of the specialists, the creators of a hardware
or virtual community are outside of the ontology purpose. During the develop-
ment of the SwTOI , SwTO and OSOnto the unnecessary definitions aimed by
the specialists represented a total of 33% regarding all the definitions of the on-
tologies that properly were removed and in the final version, these unnecessary
definitions are not present any more.

6 Conclusions

A formal representation of the knowledge supported by an ontology can aggre-
gate many benefits for the Linux development process that is found in continu-
ous evolution. Three important benefits can be noticeable. The first one is going
to supply a formal domain vocabulary of the Linux test that represents the
group consensus. The second one is the semantic record of the systematic tests
elaboration criteria. The third one is the semantic record of the test designers
knowledge. The benefits cited are aligned with the present needs of the Linux
test community, which waits for contributions to optimize this process.

References

1. Costa, A.: Software Test Sequence Generation with the aid of Ontology, Master’s
Thesis, (2007), Federal University of Amazonas - UFAM,

2. Bezerra, D.: SwTOI (Software Test Ontology Integrated): an Ontology with apli-
cation in Linux Test, Master’s Thesis, (2008), Federal University of Amazonas -
UFAM,

3. Denaux, R.: Ontology-based Interactive User Modeling for Adaptative Web Infor-
mation Systems Master’s Thesis, (2005), Technische Universiteit Eindhoven

4. Horridge, M., Knublauch, H., Rector, A., Stevens, R., Wroe, C.: A Practical Guide
to Building OWL Ontologies using the Protégé-OWL Plugin and CO-0DE Tools
Edition 1.0, (2004), University of Manchester.

5. Huang, N., Diao, S.: Structure-Based Ontology Evaluation. IAT ’06: Proceedings
of the IEEE/WIC/ACM international conference on Intelligent Agent Technology
(2006) 211-217 IEEE Computer Society Washington, DC, USA

6. Staab, S., Studer, R.: Handbook on Ontologies. Berlin: Springer-Verlag (2004)
7. Abran, A., Moore, J., Bourque, P., Dupuis, R., Tripp, L.: Guide to the Software

Engineering Body of Knowledge - SWEBOK (2004) 1-202 IEEE Press Piscataway,
NJ, USA

8. Uschold, M., Grüninger, M.: Ontologies: principles, methods, and applications
(1996) 93-155 Jornal of Knowledge Engineering Review v.11, number 2.


