

An Agent-based Semantic Search Engine for Scalable
Enterprise Applications*

Andrea Passadore1, Alberto Grosso1, Antonio Boccalatte1

1 University of Genova, DIST, Via Opera Pia 13, 16145 Genova, Italy
{passa, agrosso, nino}dist.unige.it

Abstract. In this paper we present AgentSeeker: a multi-agent platform aimed
to index local or online documents, with the support of ontologies which de-
scribe the application domain and the competences the user is referring to, dur-
ing his query session. AgentSeeker is a flexible and scalable solution mainly
devoted to enterprise applications where electronic knowledge bases are par-
ticularly important for their business activity. An Ontology Agent is devoted to
manage semantic representations of the enterprise domain, organizing the re-
sults of a user’s query, according to the concepts which represent the relevant
entities in the company business.

Keywords: ontology, search engine, multi-agent system, web site, document.

1 Introduction

The Information Age leads to us various benefits and comforts, encouraging our thirst
for knowledge, helping us at work, and gladdening us during our leisure time. On the
other hand, the bits which encode the information are so much that we are lost in a sea
of electronic data. The orientation is so hard that oftentimes we lose documents both
in the little pond of our personal hard disks and in the boundless ocean of Internet.

Search engines represent a saving compass which enables us to find an Internet
page winnowing the whole network or to find a personal document through a desktop
application which parses private files.

Usual search engines denote an intuitive behaviour: they store the textual content
of the parsed documents in a database and they return an ordered list of files contain-
ing the keywords suggested through a user’s query. Proper algorithms calculate the
rank for every hit and, according to this evaluation, the search engines display first the
most relevant pages. In spite of this solution, it is a user’s experience that sometimes
the search engine gives a completely wrong page link due to a misunderstanding of
the meaning of the keyword or neglects a page link which does not explicitly contain
the given term but it is anyway relevant.

The aim of AgentSeeker, the search engine presented in this paper, is to make the
document retrieval a more intelligent process, finding texts which are semantically
bind to the user’s query. In order to achieve this goal, two aspects of AgentSeeker are

* AgentSeeker is partially based on the Master Thesis of Fabrizio Scaglione. Thank you Fabri-

zio for your accurate work.

Proceedings of ONTOSE 2009

83

relevant: software agents and ontologies. Based on a multi-agent platform, Agent-
Seeker is a scalable and flexible solution which can be adapted to different contexts.
AgentSeeker agents are able to manage ontologies in order to constitute a semantic
tool for helping users to not lose their course during a search session in the electronic
ocean.

Even if AgentSeeker is not designed for competing with the giant search engines as
Google or Yahoo, it is aimed both to index Internet pages and local files and it is
especially focused to enterprise contexts where the value of the digital information is
particularly high. Enterprises entrust more and more often their documents to digital
storage devices and base their knowledge on electronic sources. AgentSeeker helps
users to retrieve these documents, tuning the response on the basis of the company’s
application domain or the user’s skills, through the definition or the import of a spe-
cific ontology. A particular kind of agent is able to manage these ontologies, integrat-
ing the user’s queries with semantically related words, discovered through the analy-
sis of concepts relations, specializations, and synonyms.

AgentSeeker is able to manage different amount of textual documents: from a little
corpus on a single file server, to a big collection scattered on a network. The agent
roles involved in AgentSeeker are designed in order to operate in a variable amount of
instances and to interact with peers in a circumscribed environment (a single PC)
alike a distributed platform federation.

After a brief survey on the state-of-the-art in the search engines field (section 2),
the multi-agent platform is shown in details (section 3). Section 4 is then completely
aimed to the semantic layer of the application, showing how ontologies support the
user’s interactions with the system. Conclusions and future works will follow.

2 Search engines: the state-of-the-art

To google is a neologism born to specify the act of performing a web search on a
search engine named Google. Considering its indisputable supremacy in respect with
the direct competitors, we introduce Google, in order to briefly explain the traditional
search engines. Since AgentSeeker is both an online and an offline search engine, this
state-of-the-art survey distinguishes between online applications and offline tools
(aimed to the indexing of local documents).

Google is now a pharaonic effort to index not only textual documents on the web,
but also images, videos, papers, news, etc. Founded in the 1998 by two researchers of
the Stanford University, Google bases its architecture on few and very clear ideas:
scalability, redundancy, and pragmatism. A distributed environment (named Google
File System (GFS) [1]) of 450000 computers grouped in clusters ensures scalability
and redundancy in order to follow the constant growth of online web pages. A large
amount of data is processed by applications developed following the MapReduce
paradigm [2]. This model consists in two functions map and reduce and a tree of
computational nodes. Map and reduce respectively allow a node to split a problem
into sub-problems submitted to child nodes and to collect the results.

If we recall the aforementioned distinction between the ocean of Internet and the
local pond represented by our hard disks, Google provides also an offline engine

Proceedings of ONTOSE 2009

84

(named Google Desktop) which indexes local files as pdf, textual files, and e-mails. It
stores them in a local index which is constantly updated.

Another horizon for an offline search engine is to operate in an intranet context,
like the computers of an enterprise: in this scenario the document corpus can be scat-
tered on several file servers or shared folders of employees’ hard disks. There exist
several industrial solutions (generally called enterprise search engines, or intranet
search engines) aimed to address the functionalities of the usual online search engines
to the internal network. Vivisimo is an interesting tool also for its innovative architec-
ture (see paragraph 2.1) which represents a significant improvement in the search
engines panorama. Other significant tools are Northern Light, which includes also a
sort of document classification based on taxonomies; Search Engine Studio; Noemat-
ics Reflexion; etc.

All things considered, they are standard applications with well consolidated tech-
nologies and they do not represent (apart Vivisimo) particular efforts to refine the
behaviour of search engines. On the other hand, they show the clear evidence that the
problem of managing collections of textual documents is a sensible aspect which
involves not only Internet surfers, but also entire enterprises.

2.1 Towards smart search engines

Oftentimes, computer users clash with the efficient but sometimes not very intelligent
behaviour of machines. Also search engines can show disappointing behaviours fur-
nishing results which are not in line with user’s expectations.

For this reason there exist several studies with the main goal to increase search en-
gine performances. As introduced before, Vivisimo [3] is a significant example of an
offline enterprise search engine (used by big enterprises as Airbus, Cisco, P&G)
which introduces a form of intelligence, by providing results automatically classified
in hierarchical clusters.

Other mature solutions available online are iBoogie, SnakeT, KWMAP, and Ex-
alead.

2.2 Ontological search engines and agent-based solutions

Since AgentSeeker is an application based on the multi-agent paradigm and on onto-
logical representations, before to show its architecture we proceed with an evaluation
of similar existing solutions. At now, these solutions are essentially proposed by the
research community, with no contributions from the industrial world.

Regarding multi-agent solutions, a very common approach is to use a multi-agent
platform as a meta-search engine, namely an interface among the user and a set of
well-known online engines. For example, ProFusion [4] executes agents able to con-
nect to AltaVista, Yahoo, and Excite; other agents are responsible of merging the
results or monitoring the status of the aforementioned search engines. Another meta-
search engine is MAGI [5] which differs from ProFusion for its re-ranking technique
exploited in order to sort the results coming from the different sources.

Proceedings of ONTOSE 2009

85

Regarding meta-search engines, another proposal is done in [6] and it seems the
closest to AgentSeeker because it uses ontologies in order to represent the query
through a concept network, instead of a mere string. Then, dedicated agents parse the
pages suggested by Google and construct the relative concept networks, analyzing the
extracted text. Finally, the meta search engine returns first the pages the engine con-
siders significant, namely those pages which have a concept network compatible with
the query one. MAIQS [7] is the only known multi-agent platform which implements
an enterprise search engine, limited to small teams composed of 10-20 employees.
Every user can share his documents hosting on his machine an indexing agent that
builds a local index. A mechanism of query propagation ensures that a search session
is extended to the whole knowledge base of the team. [6] is the only example of pro-
ductive cooperation among agents and ontologies in the search engine field. Never-
theless, there exist some proposals of advanced search engines which exploit the
powerfulness of the Semantic Web and in particular of ontologies. EKOSS [8] is a
project aimed to the sharing of knowledge in form of deliverables containing papers,
lecture materials, computational models, or multi-media files. Every peer user of
EKOSS classifies these resources by using a sort of ontological tags, coming from
conceptual representations which can be explored by the user in order to access the
knowledge in a semantic way. MOSSE [9] is a proposed solution which supports
document classification based on the first 15 categories of the directory DMOZ
(www.dmoz.org) and a sort of query expansion based on first senses and hypernyms
of WordNet. Although MOSSE is an ambitious solution, it has been implemented
only in a minimal part. [10] is focused on cataloguing of wide video archives with
meta-tags derived from ontologies. The system is essentially based on two main fea-
tures: the retrieval of videos on the basis of meta-tags and the analysis of frames, in
order to extract basic patterns which allow the comparison of two images.

Meta-tagging seems to be a very common approach, in order to add semantics to
textual and multi-media files (see also [11] or [12]), but some considerations suggest
to us to pursue another way, as described in the following section.

3 AgentSeeker: a federation of multi-agent platforms

AgentSeeker has been developed by following few basic principles: scalability, flexi-
bility, and careful management of textual documents. As seen in the previous section
there is a concrete interest in enterprise search engines and a trend of increasing their
performances with a smart management of the results.

In order to consider documents not only as mere aggregates of characters and
numbers but also as knowledge with a precise meaning, several solutions use meta-
tags in order to semantically describe their content. Nevertheless, if we consider as
source of information Internet or large local document corpi, the tagging of these
resources become very complicated due to the impossibility of modifying a file or to
the objective difficulty to manually catalogue thousands of documents. For this prac-
tical reason AgentSeeker has only the textual content available, and the ontologies are
used to describe the knowledge of the user, his skills, and his expectations in order to
apply them during the document search.

Proceedings of ONTOSE 2009

86

Fig. 1. the agent roles in AgentSeeker

3.1 Implementing AgentSeeker with AgentService

AgentSeeker is essentially based on AgentService [13], a framework for the devel-
opment and execution of multi-agent systems implemented in the C# programming
language and using the Microsoft .NET libraries.

AgentService was born in order to offer the possibility of developing software
agents in an industrial context, where the .NET framework and C# are appreciated.
Anyway, AgentService is compatible with the open source libraries of the Mono
Project and it is successfully ported on Linux-based platforms.

We avoid a full introduction of the AgentService framework (for further details see
[13] or [14]) and we focus only on few concepts which will be useful in order to com-
prehend the AgentSeeker architecture. AgentService is a framework inspired by the
FIPA specification [15] for multi-agent systems. Following this specification, Agent-
Service supports software agents furnishing a runtime environment which manages
the whole life-cycle of an agent, schedules its activities, dispatches its messages
transporting them to the destination, and publishes its services in order to share them
with peers (a sort of yellow pages service). Moreover, AgentService is a modular
architecture highly customizable in order to meet user’s requirements; for example the
user can customize the scheduling system, the messaging module, or create his own
module for a new kind of service.

An AgentService platform can be placed in an ecosystem where its agents can in-
teract in an easy and transparent way with peers resident in platforms running on
remote computers or on mobile devices connected through a wireless network; they
can also interact with external applications masked as agents through a web service.
In this distributed context, agents can share their services by using a distributed yel-
low pages service which comprises all the federation. The services of agents are es-
sentially their capabilities and are implemented as concurrent behaviours. The behav-
iour, together with the knowledge object, is a constitutional element of the AgentSer-
vice agent model. Behaviours can be implemented as concurrent threads and embody
the business logic of the agent. Knowledge objects are fully customizable data struc-
tures which represent the knowledge base of the agent. They are shared and accessed
concurrently by the running agent behaviours. Both behaviours and knowledge ob-
jects can be instanced in multiple copies, also in the same agent.

Proceedings of ONTOSE 2009

87

3.2 The AgentSeeker architecture

AgentSeeker is a community of agents which are specialized in specific roles interact-
ing in a coordinated way. Fig 1 shows the different roles and their interactions. There
are two kinds of agents: internal agents which are usual AgentService entities
equipped with behaviours and knowledge objects, and external agents, namely exter-
nal programs in form of web applications or desktop client applications which act like
AgentService agents in order to easily interact with the rest of the platform.

The indexing agent

The Indexing Agent (IA) is the core of the system. It is the agent able to download
files from the web or from intranet repositories and to extract the textual content. At
now, the IA is able to parse files of the following types: html, pdf, doc, ppt (power-
point), and xls (excel). Parsing hypertexts, the agent extracts also the hyperlinks and
distinguishes from internal links (namely pages which belongs to the same site) and
external links (pages of other sites). In case of external page, the IA collects the link
in a list which will be sent to the manager agent (its features are described below).

When an IA has been created, it advertises its competence (namely the indexing
ability) through the yellow pages service. When the agent receives a job (a web site
link to visit), it deregisters itself from the yellow pages in order to receive no other
jobs. Once the current indexing session is finished, the IA registers itself again.

For each indexing session, the agent maintains its own database where stores in-
formation extracted from the parsed files (path, content, title, etc.). The local database
is based on .NET Lucene: the C# porting of a well-known Apache Foundation java
project named Apache Lucene [16]. Essentially developed to store textual contents
and to operate queries on them, Lucene is a scalable solution that allows the imple-
mentation of large architectures. To confirm the quality of the Lucene solution, it has
been used in many famous projects as mediaWiki (the engine of Wikipedia), Beagle
(based on the .NET porting of Lucene), DPSpace (a project managed by MIT and HP
labs), LjFind (an indexing engine for 110.000.000 blogs), Eclipse (the development
framework for Java uses Lucene to index its guide), and DMOZ (an open directory
for web sites).

The session index is then shared with the merger agent, which is aimed to manage
a central index where are merged the various session indexes coming from IA in-
stances.

Merging the indexing agents results

The task of the Merger Agent (MA) is to collect the results of IAs and to merge them
in a central index (based on Lucene). Exploiting the features of the Apache Founda-
tion’s project it is possible to merge partial indexes avoiding the replication of records
and applying an optimization of the database, through data compression. The MA is
also devoted to practically execute a query coming from the rest of the platform, in
particular from the query agent.

Proceedings of ONTOSE 2009

88

The Query Agent

The Query Agent (QA) receives from the outside a textual query. Possible senders
could be the Web Interface Agent or the Administration Console Agent, two external
agents which directly interact with a user. The QA maintains the list of MAs and
submits the query to each of them; once every reply has been received, the QA col-
lects and orders the results on the basis of the ranking expressed by Lucene.

An important interaction of the QA is the conversation with the Ontology Agent in
order to enrich the query with related words (see section 4). The agent sends the us-
er’s query to the Ontology Agent and receives an expanded query which will be sub-
mitted to the mergers.

The Ontology Agent: a repository for semantic representations

The Ontology Agent (OA) is the keeper of the knowledge of the system. Its function-
alities will be fully described in the next section but, as an introduction, the OA is
essentially able to read ontologies in the OWL language, thanks to the libraries Sem-
Web and Linq to RDF. The OA extracts the described concepts and finds the relations
among them. On the basis of this information, the OA extends the query sent by the
QA, during a user’s session.

Another feature of the OA is the classification of the document content. As de-
scribed in section 4, the ontologies contained in the repository are considered as sim-
ple taxonomies and used to classify documents on the basis of the term occurrences.
This particular service is used by the IA during its indexing sessions, which then
receives an estimate of the arguments dealt in the examined text.

An external agent managing user’s interactions

From the user’s point of view, AgentSeeker is a simple web application with a look-
and-feel similar to the usual search engines. Developed as an ASP.NET application,
the web form hides, in reality, a sort of agent which, through a web service interface,
contacts the remote AgentSeeker installation in order to submit a query. The life-cycle
of this agent is tied with the user’s session; every user has his own agent which helps
him to interact with the platform. The choice of implementing the web application as
an agent simplifies the development of the whole system and integrates the user’s
interface with the rest of the platform. In order to exploit all the features of Agent-
Seeker, the user has only to submit a query and select the ontology (namely the argu-
ment) he wants. Furthermore, he can import an ontology from the web suggesting its
URI. This feature makes AgentSeeker a very flexible system, because it is not cali-
brated only on built-in ontologies, but it is open to every OWL-based file. Finally,
the user can select the policy for query extension (see Section 4).

Administration console

Similar to the previous one, another pseudo-agent runs behind an administration con-
sole which allows administrators to manage AgentSeeker. For example, an Adminis-
trator can submit a new web site to index, set the standby time for the platform, or he

Proceedings of ONTOSE 2009

89

can directly shoot down the platform, stopping safely every agent instance. He can
also monitor the status of the platform, namely the agent health, the progression of the
indexing tasks, etc.

The manager role: a platform orchestrator

The manager agent is a sort of supervisor which coordinates the activity of the other
agents. In particular the manager has a knowledge object containing the list of web
sites (on shared folders) to parse. This list can be increased by adding new sites re-
ceived from the external agent representing the administration console and by receiv-
ing new links discovered by the IAs. In presence of new links to visit, the manager
searches for a free IA, consulting the yellow pages. Due to the fact that the yellow
pages are distributed across the whole federation, the manager is able to find free
agents running also on remote computers. The computational load is then naturally
balanced on every machine and every agent.

The manager is also responsible of the standby of the whole federation, following
up the specific user’s command or an expired timeout.

3.3 The AgentSeeker federation

The simplest deployment of AgentSeeker consists in a single platform (in execution
on a single computer) with single instances of each agent role. A manager sends jobs
to the unique IA, which parses each web site (or folder), classifying every page with
the help of the OA. The MA collects the results of the IA, while the QA directly
speaks with the external agent behind the web application and with the OA in order to
extend the query. A console agent manages the platform.

If the computer has enough resources, the platform administrator could create dif-
ferent instances of the IA in order to process in parallel several jobs. This is particu-
larly useful if the CPU is multi-core, considering also that every IA alternates proc-
essing time and downloading of documents.

In case of large amount of textual documents to index, it could be useful to add fur-
ther computational resources. A new computer is then connected to the first one, a
new AgentService platform is installed and new IAs are instanced. The unique man-
ager agent has now at its disposal new IAs which can be contacted through the dis-
tributed yellow pages, in a completely transparent way with no complications due to
the distributed environment.

Now, with different instances of IAs, only one MA could be not enough. In this
case, a new MA can be instanced and the IAs can be instructed in order to refer to a
particular MA. With multiple MAs, the QA can submit the query in parallel and then
compose the incoming results.

If the catchment area is wide, the federation could be integrated with several in-
stances of query and ontology agents in order to serve different users at the same
time.

At this point the scenario can be configured in various ways, with resources totally
dedicated to a single type of agent, and mixed platforms with various agent roles. The
single computer platform is now spread on a distributed network, in a totally transpar-

Proceedings of ONTOSE 2009

90

ent way from the point of view of the AgentSeeker developer and especially of the
system administrator. Furthermore, new computational resources and agent instances
can be added or removed dynamically during the AgentSeeker execution.

4 The semantic layer of AgentSeeker

AgentSeeker tries to propose a contribution to the improvement of search engine
techniques by introducing the use of ontologies among its agents. As introduced in
advance, we use ontologies in order to simply model the discourse domain to which
the user is referring during the query submission. AgentSeeker is designed in order to
support every kind of ontology expressed in OWL.

 Considering that AgentSeeker is, at the present moment, a functioning prototype,
we have implemented different policies which drive the user during his searching
sessions.

A priori classification

A first policy is to classify documents on the basis of the distinctions made by the IA
with the help of the OA. During the indexing session, for each extracted text, the
ontology agent estimates its affinity with the topics described in the ontologies stored
in the AgentSeeker repository. Every record stored in Lucene has a field where are
included the URIs of the ontologies directly supported by AgentSeeker and a measure
of the affinity, in term of percentage of words of the document which are also con-
tained in the ontology. In order to solve the problem of plurals, gerundive web form,
and in general of suffixes, we use the Porter Stemmer [17] to extract the root for
every term (both for document words and ontological terms) using these truncated
words for the matching.

Moreover, once done the classification the user can see all the documents classified
by arguments and ranked by the affinity measure. The user can also submit a query on
a particular cluster of documents.

Conceptual classification

Several search engines offer the possibility to classify documents thanks to clustering
algorithms which organize in topics the interrelated documents. From our point of
view, is the ontology which suggests the classification for the document corpus. The
user has only to select the discourse domain and specify the depth of sub-clusters in
order to avoid a too detailed classification. The sub-cluster hierarchy reflects the
structure of the ontology, maintaining the relations of specialization.

By using this policy, the QA asks the OA which reads the ontology (potentially
imported by the user) and replies sending the suggested queries, in a hierarchical
structure.

The QA then submits the query to the merger agents and, after collecting the re-
sults, composes the clusters deleting the possible empty categories.

Proceedings of ONTOSE 2009

91

Query expansion

Query expansion is focused on the user’s query. Every word is parsed by the OA in
order to suggest alternatives. The user can select three types of integration which can
be also applied at the same time. The first one integrates each word which is also
included in the selected ontology with specialized concepts. For example, if the user’s
query is car retailer and car is an automobile ontology concept which is specialized
in station wagon, coupe, and convertible, the query is rewritten in this manner: (sta-
tion wagon retailer) OR (compact retailer) OR (coupe retailer) OR (convertible re-
tailer), allowing the user to access also these pages where the term car is not explic-
itly cited. Another type of integration similarly extends the query to those terms
which are related to the query keywords through properties (owl:ObjectProperty).

Furthermore, each keyword can be integrated by suggesting possible synonyms
specified in the given ontology. For this reason we use the owl constructs owl:sameAs
and owl:equivalentClass. Incidentally, this third type allows, potentially, the multi-
language support, if the concepts are translated in several languages.

4.1 Constructing ontologies

A possible objection to the use of ontologies for expanding the abilities of Agent-
Seeker is that the explicit construction of an ontology is a complex and time consum-
ing task which makes onerous the document retrieval process, in term of work re-
sources involved in the system setup.

Fortunately, the reuse of ontological representations is now relatively simple, if we
consider, for example, the fact that Swoogle indexes about 10000 online ontologies.

Another scenario which makes the ontological support more profitable is an addi-
tional tool we are developing: a sort of Wikipedia for ontologies (a similar project is
Ontowiki [18]). The goal is to build an ontology with the help of the components of a
social group. For example, being AgentSeeker aimed to the industry, every employee
could contribute adding or enriching concepts. In this way, the union of the single
competences allows the formal definition of the company’s knowledge, helping
AgentSeeker to provide results in line with the users’ skills.

This social framework for constructing ontologies manages also user’s accounts
and rights, and maintains a versioning system and a module for changes tracing.

4.2 A simple case study

In order to illustrate the potentialities of AgentSeeker, we deployed a federation of
multi-agent platforms to monitor web sites and local documents pertaining to 7th
Framework Programme of the European Union and in general European projects.
Starting from a list of four web sites (cordis.europa.eu, ec.europa.eu
www.welcomeurope.com, and www.esf.org) and a local repository, we cumulated
information on approximately 304000 documents stored in two indexes of about 1
GB. Five computers are involved (an Intel XEON dual core 2 GHz and 1.5 GB of
RAM, three AMD Athlon 2 GHz and 960 MB of RAM, and a Intel Pentium 4 2 GHz

Proceedings of ONTOSE 2009

92

with 512 GB of RAM). They host two merger agents which serve ten indexing agents.
The Xeon PC hosts a manager, the two mergers, two indexers, a query agent and the
ontology one. With a rate of about 6000 pages per hour, in two days we indexed 1000
web sites and a local repository of 100 documents. We have built also an ontology
describing the relevant concepts of the European projects domain (Fig 2 shows a
fragment of this ontology) and some little ontologies describing the research fields we
are interested in. In this way, every user can choose its domain in order to refine the
research.

Fig. 2. a fragment of the European Projects Ontology

Although an evaluation of this deployment of AgentSeeker is mainly subjective,
we report some evidences which illustrate the performances of the platform in an
exemplificative way. For example, by using the ontology representing concepts in the
domain of European projects and searching for project call, the ontology agent classi-
fies the page http://cordis.europa.eu/fp6/ projects_call.htm with a high rating of
0,02309, also http://www.sos112.lt/index/en/front?page=2&/ has a good rating
0,01385 because is a European funded project. http://www.apache.org/foundation
/how-it-works.html has instead a low rating because does not match with the given
ontology: 0,00477. By using this classification, the retrieved documents are listed in
order to privilege the most relevant ones, according to the aforementioned rating.
From this point of view the end-user is facilitated because the risk to examine a false-
positive, consistently decreases. Another demonstration regards the query extension.
If the user searches for project proposal and project is a concept specialized in the
typical sectors (ICT, EURATOM, Transport, Space, etc.), the query is extended by the
Ontology Agent in this way: (project proposal) OR (ICT proposal) OR (EURATOM
proposal) OR… and we notice an increasing of the found documents equal to 258%.
Most of the new entries are enlisted in the first positions, so against the sensible
growth of listed pages which could make the research more difficult, the user finds
first the potentially relevant documents. Also without a priori classification (in case
the ontology is dynamically imported by the user and it is not directly supported by
AgentSeeker) the performances are encouraging: in the first 60 hits only 7 pages are
completely off topic, while with no query expansion the erroneous documents are 21.

Considering the achievements presented above, we can states that the result of a
single AgentSeeker query often corresponds, if we use a common search engine, to a
tedious/time consuming user query process which involves the submission of some
queries and the manual integration and ranking process of the obtained results.

The usability of AgentSeeker cannot be significantly proved through objective pa-
rameters because its effectiveness is evaluated by the end-user on the basis of its ex-
perience and skills. Nonetheless, we can state that in general the users appreciate a
domain-oriented classification which helps them to not lose bearings, also against a

Proceedings of ONTOSE 2009

93

growth of the found pages due to the query expansion; a growth which, anyhow, does
not affect the quality of results because the unimportant documents are relegated in
the last positions by the ranking algorithms (both a priori classification and Lucene
internal ranking).

5 Conclusions and future works

Although AgentSeeker is a functioning prototype, we consider it an on-going project
and a base for further improvements and experiments. The multi-agent system war-
rants a solid platform on which to develop Semantic Web applications related to the
management of large amount of documents. Intrinsic scalability and adaptability of
agent-oriented architectures make AgentSeeker able to tune itself to different scenar-
ios and contexts: from a little academic laboratory which wants to manage its collec-
tion of papers, to the large enterprise which wants to keep the lid on its document
corpus.

We use ontologies in order to formally describe the domains where AgentSeeker is
called to operate. Presently, the ontology utilization can be considered basic and sub-
ject to further improvements. For example we could develop a behaviour for our on-
tology agent able to reason about the concepts and their relations, in order to find
implicit associations and properties. Moreover, explicit properties are now considered
as simple links between two concepts; a future improvement will enable the ontology
agent to consider, in some way, the meaning of the property.

We plan to introduce also the possibility to explore the web, indexing only those
sites which are relevant considering the ontologies included in the AgentSeeker re-
pository. An indexing agent will visit few pages and then asks the ontology agent to
determine if the web site is relevant.

To index coherent documents and pages will allow users to add an upper layer to
the application (for example, federating a new platform with new types of agent roles)
in order to do market researches, business intelligence processes, learning-from-text
techniques, etc.

In conclusion, we think that AgentSeeker contributes to the improvement of search
engine performances, combining a multi-agent system with ontological representa-
tions. By using Lucene.NET and homemade spiders, AgentSeeker covers the whole
process, from the document parsing to the storage of extracted data. This feature as-
sures full control of every aspect, in respect to other solutions which implement meta-
search engines leaning on results of online search engines operations. Also the com-
parison with [6] follows this criterion. In [6] the use of ontologies seems rather fine
and elegant. On the other hand, it fully depends on Google for the research of docu-
ments and requires that the user formulates a detailed query on which the system
constructs the concept network. The solution we propose is then more pragmatic and
voted to limit the user’s efforts in order to develop a system which could be used in
the everyday work (or life) activity.

Proceedings of ONTOSE 2009

94

References

1. Ghemawat, S., Gobioff, H., Leung, Sh.: The Google File System. In: 19th ACM Sympo-
sium on Operating Systems Principles, pp. 20--43, New York (2003)

2. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. In
Communications of the ACM, vol. 51, no. 1, pp. 107--113 (2008)

3. Koshman, S., Spink, A., Jansen, B.: Using clusters on the vivisimo web search engine. In:
HCI International. Lawrence Erlbaum Associates, Mahwah, Las Vegas (2005)

4. Gauch, S. and Wang, G., Gomez, M.: ProFusion: Intelligent Fusion from Multiple, Dis-
tributed Search Engines. In: Journal of Universal Computer Science, vol. 2, pp. 637--649,
(1996)

5. Hu, M.: MAGI: Multi-AGent-Indexing A Fusion Re-Ranking Meta-Search Engine.
Technical Report, University of Waterloo.

6. Kanteev, M., Minakov, I., Rzevski, G., Skobelev, P., Volman, S.: Multi-agent Meta-
search Engine Based on Domain Ontology. In: Autonomous Intelligent Systems: Multi-
Agents and Data Mining, vol. 4476/2007, pp. 269--274, Springer Berlin / Heidelberg,
(2007).

7. Linn, C. N.: A multi-agent system for cooperative document indexing and querying in
distributed networked environments. In: International Workshops on Parallel Processing,
IEEE Computer Society, Wakamatsu, Japan (1999)

8. Kraines, S. and Guo, W. and Kemper, B. and Nakamura, Y.: EKOSS: A Knowledge-User
Centered Approach to Knowledge Sharing, Discovery, and Integration on the Semantic
Web. In: Journal of information processing and management, vol. 50, pp 322, Springer,
(2007)

9. Esmaili, K.S., Abolhassani, H., Neshati, M., Hariri, B.B.: MOSSE: A Multi Ontological
Semantic Search Engine. In: ASWC2006 Workshop on Web Search Technology, Beijing,
China (2006)

10. Doulaverakis, C., Nidelkou, E., Gounaris, A., Kompatsiaris, Y.: An Ontology and Con-
tent-Based Search Engine for Multimedia Retrieval. In: 10th East-European Conference
on Advances in Databases and Information Systems, ADBIS, Thessaloniki (2006)

11. Chiba. E., Ogura. K., Kameyama. W., Nakano, M., Kodo, y., Tsutsui, E.: Asia Broadband
Experiment on Ontology-based Search Engine. In: distance learning and the Internet con-
ference, Tokyo (2008)

12. Passadore, A., Incao, G., Pezzuto, G. De Laurentiis, R.: Smart Search: a Tool Supporting
Knowledge Extraction and Automatic Classification of Documents. In: WCC08, 20th
World Computer Congress 2008, Milano (2008)

13. Vecchiola, C., Grosso, A., Passadore, A., Boccalatte, A.: AgentService: A Framework for
Distributed Multi-agent System Development, accepted for publication on International
Journal of Computers and Applications, ACTA Press (2009)

14. Vecchiola, C., Grosso, A., Boccalatte, A.: AgentService: a framework to develop distrib-
uted multi-agent systems. In: International Journal of Agent-Oriented Software Engineer-
ing, vol. 2, no.3 pp. 290 -- 323, (2008)

15. Foundation of Intelligent Physical Agents (FIPA), http://www.fipa.org.
16. Apache Foundation, http://lucene.apache.org.
17. van Rijsbergen, C.J., Robertson, S.E., Porter M.F.: New models in probabilistic informa-

tion retrieval. British Library, chap. 6, London (1980)
18. Auer, S., Dietzold, S., Riechert, T.: OntoWiki-A Tool for Social, Semantic Collaboration.

In: Lecture notes in computer science, vol. 4273, Springer (2006)

