

Software Process as a Service? Bridging Service Design
and the Software Process

Miltiadis Lytras1 and Miguel-Ángel Sicilia2

1American College of Greece
Gravias 6 St., Aghia Paraskevi (Greece)

mlytras@acgmail.gr
2Information Engineering Research Unit

Computer Science Dept., University of Alcalá
Ctra. Barcelona km. 33.6 – 28871 Alcalá de Henares (Madrid), Spain

msicilia@uah.es

Abstract. Software has become an essential component in many service sys-
tems, either as an enabler of a more efficient and cost-effective interaction or
becoming part of the value co-creation activities themselves. However, soft-
ware processes that result in the development or evolution of service-support
systems do not provide explicit elements or considerations that link with the
models and design processes of the services they are intended to support. Since
the arrangement, change and improvement of services determine how support-
ing software should be developed and changed, there is a need to bridge soft-
ware process models and service design models. In a radical position this would
entail that the software process itself becomes a service for the design and evo-
lution of services. This paper conceptualizes a preliminary approach for that
purpose. .

Keywords. Software process, service design, service systems, process model-
ing.

1 Introduction

The importance of the service sector has increased in industrialized economies, ac-
counting for a higher portion of national GDPs than in the last years (Wölf, 2005).
Consequently, the interest in services has grown rapidly and it has led to the emerging
concept of a service science (Chesbrough and Spohrer, 2006). As services are perva-
sive as the “front stage” in economic activities of any kind (Teboul, 2006), the role of
software systems adequately supporting services is also becoming more important
with the widespread use of the Internet for e-commerce (Feigenbaum, Parkes and
Pennock, 2009; Chen & Tsou, 2007). This raises several questions, including how
software supporting services differentiate from other kinds of software, how software
that better supports service design can be developed, and in general, how the software
process can be adapted to the service design process.

Proceedings of ONTOSE 2009 122

Different kinds of services1 require different kinds and intensities of human interac-
tion, from completely automated services (e.g. those provided by a software system
that acts on behalf of the provider) to services in which software support mediates the
relationship only to some extent, and they also diverge in the extent to which these
systems support more customized or more standardized services. We consider here
customer interaction-intensive service systems with a high degree of customization
and that evolve driven by interdisciplinary service innovation (Beirne, and Cromack,
2009). For that case, good service-supporting software needs to be highly configur-
able to better adapt to the different needs and profiles of the users. Examples of such
high configurability can be found in the field of mass customization (Berger et al.,
2005). Further, services need to be constantly re-designed to face changes in cus-
tomer needs and behavior, and also as a way to achieve competitiveness through
innovation (Berry et al., 2006). Then, software supporting services need to be highly
evolvable. This view affects both some quality attributes related to the internal struc-
ture of software, and also to the software process itself, that needs to be reconsidered
to face the cross-boundary collaboration and joint analysis that is critical to bring
together the perspectives of social science and engineering. This suggests a change in
the traditional role of Software Engineers to a more proactively involved one that
mixes service design techniques with agile software development methods.

This paper discusses some conceptual aspects of bridging software process models
and interaction-intensive service design requirements, speculating about some possi-
ble directions for a new understanding of software and service co-design. The re-
search problem can be stated as: how (highly interactive and customizable) service
design can be better integrated with the software process? The paper sketches some
preliminary directions resulting from ongoing work in a new integrated service-
software co-design process.

The rest of this paper is structured as follows. Section 2 approaches the problem of
combining service design and the software process. Then, Section 3 discusses how
service evolution can be translated into attributes of the software product. Finally,
conclusions and outlook are provided in Section 4.

2 Introducing service design in the software process

A service can be defined as “a non physical product manufactured by suppliers and
consumers at the point of delivery”. This definition emphasizes value co-creation and
recognizes that services are assemblies of previously designed components such as
people, processes, prior information, knowledge and skills and tools for the service,
including information technology. Ideally, software design should follow service
design, so that the software is built to support the front stage interaction, and this
determines the required attributes of the software to be built. This leads to a first
important aspect that is related to the richness and intensity of interaction. A high

1 Here we use the term “software service” to differentiate services as computer-based artifacts

from the general notion of service as a process of co-creation of value involving customers
and providers.

Proceedings of ONTOSE 2009 123

level of interaction will lead to a requirement for software to be more customizable to
the service needs. Figure 1 shows a service-intensity matrix adapted from Teboul
(2006), depicting the relation of software configurability needs in relation to higher
levels of interaction that lead to more customized services (as opposed to standard-
ized ones).

customization

high-level
interaction Expected correlation

Software configurability

standardization

low-level
interaction

Fig. 1. Relationship of software configurability and the service intensity matrix.

As service innovation is related to change and experimentation with customer in-

teraction, we consider here software in the upper left extreme of Figure 1. Configura-
bility entails delaying the composition of particular product features to a later moment
in the software development or deployment process, and this is known to impact
testing, as integration testing is also delayed (Jaring, Krikhaar and Bosch, 2008). For
practical purposes we define here configurability as an internal software attribute
related to the capabilities of the software design to accommodate changes in the way
its parts are aligned with user interaction with a low effort2. For example, Yang and
Hsiao (2009) describe a process of service innovation in the healthcare domain using
action research to analyze service design. Teamwork produced changes in service
design requirement impacting the supporting software, for example, requiring the re-
configuration of the process of delivering medicine to patient’s homes or the addition
of preservation condition information for some medicines.

The service design process (Goldstein et al., 2002) requires first a concept of the
service to be developed, which usually comes from marketing studies. Then, the en-
gineering of the service can be approached methodically (Bullinger, Fahnrich, and
Meiren, 2003), considering the structural, process and outcome aspects. Process
models describe how the outcomes of a service are achieved, as services are intangi-
ble in nature, the process aspect takes a prominent relevance. The various processes
are documented from the concept phase onwards to ensure process efficiency. The
objective is always to eliminate non-value-adding activities at the earliest possible
stage and to remove unnecessary interfaces and media discontinuities. Then, the ser-
vice design model can be process-centric, and notations as the Business Process
Modeling Notation (BPMN) (White and Miers, 2008) can be used for expressing it,

2 Note this definition may be conflicting with other senses of “configurability” in the Software

Engineering literature.

Proceedings of ONTOSE 2009 124

enriched with meta-information about the service concept. In the case of rich and
customized interaction, the process models can be expressed as a set of models.

Service process specifications (SPS) then become the main input of the develop-
ment process, and SPS breakdown becomes the natural breakdown for software de-
velopment. It can be argued that use-case techniques for requirements analysis actu-
ally can be used to specify processes as scenarios. However, use cases are descrip-
tions of a system’s behavior as it responds to a request that originates from outside of
that system. In contrast, SPS focuses on service activities composed to create value.
Configurability is supported by a fine-grained detail and maximum decoupling of
service activities, so that they can be reused and reconfigured in an inexpensive way.

The consideration of the service design process leads to some potential new values
and changes in the software process, aligned with the idea of agile process models.
These are discussed in the rest of this section, using the OpenUP model3 as a frame-
work. OpenUP builds on existing widely used process models and it is openly docu-
mented, so it provide a good vehicle to express emphasis for particular design proc-
esses.

Defining the use cases as service encounters

Use cases are defined in terms of main and alternative courses of action for a given
functionality. Service supporting use cases can be considered a subset of the func-
tionality of the application that critically determines value and it is informed by mar-
keting and customer behavior studies. This need to be accounted for in the “Find
and Outline Requirements” task, so that the customer concept and value can
be traced from the development artifacts through the requirements.
The use of BPNM models allow for a more flexible modeling of this kind of interac-
tions and could constitute a good option as a technique for the task Detail Re-
quirements.

Planning the increments and releases based on service value

Agile methods emphasize incremental negotiation of the next requisites to be build
and the quick establishment of a functional release. This fits well with service design,
but need to be reconsidered, as full customer interactions should be the unit for defin-
ing the iterations. This has to be accounted for in the Plan Project and Plan
Iteration tasks. Also, the overall project management approach needs to be
aligned with both external users and the service-providing organization. Bygstad and
Lanestedt (2009) concluded that “successful ICT based service innovation is not
associated with a tightly run project (focused on cost, time and quality) or a profes-
sional project manager. Rather, successful service innovation is found in projects
with a strong integration with the service providing organization and the external

3 http://epf.eclipse.org/wikis/openup/

Proceedings of ONTOSE 2009 125

users of the services.” This requires flexible planning and tracking based on strong
user and customer involvement.

Develop an architecture based on the principle of configurability and flexibility

As discussed above, configurability is a main required attribute for changing services.
This needs to be considered early in the architecture as the main building block. Ap-
proaches to software product line development provide a good source of techniques
and ideas for such approach to delayed reuse.

Test early against real interaction

The Create Test Cases task in OpenUP takes place early in the Inception
phase. However, these cases are mostly intended for correctness testing, while in the
context of service design, it is user (customer) validation that has the emphasis. This
requires early customer validation of the interaction (even if incomplete) ideally via
experimental approaches as those that are common in usability testing, but with a
marketing target. Also, the business model of the service-providing organization must
be an objective of test cases. The economic nature of service interaction can be ap-
proached by using the dual modeling structure present in the REA ontology (Geerts
and McCarthy, 1999).

3 How to introduce service evolution in the software process?

The challenge of change in software services has been recognized elsewhere (Pa-
paglozou, 2008) but more is required to understand the nature of software supporting
services and their evolution patterns. Service innovation processes make even more
important the process of software evolution.

Configurability in an extreme leads to reduce the needs for software evolution, as
easy configuration should allow make some changes become inexpensive or even
user-configurable. However, configurability entails in general increased software
complexity so software supporting services require a careful consideration of process
models allowing for evolvable and configurable product construction. Also, in many
cases service innovation requires some form of technological support that was not
anticipated, or even the innovation process can be considered to be limited by the
degree of knowledge on the possibilities and costs of technology of the participants in
the service design process.

Software as a Service (SaaS) is a model of software deployment where an applica-
tion is licensed for use as a service provided to customers on demand. That idea can
be used for service design, as it might be that third parties provide the software sup-
port for the interaction, so that the service company does not need to invest in infra-
structure. However, the notion of configurable software services conflicts with the

Proceedings of ONTOSE 2009 126

need for differentiation as a competitive advantage. Thus, it is in the flexibility for
evolution of the software where the key advantage lies.

If service evolution comes from service innovation, the software process needs to
be fitted to the innovation activities. For that purpose, the software process needs a
redefinition that makes some software development activities part of a service of
value co-creation with the service providing organizations. Service design is con-
strained by technology costs and feasibility, and also new technologies are a main
driver of service innovation. Then, software process can be understood as a support-
ing and enabling “service for service design”, requiring a profound knowledge of the
technical structure, costs of evolution and architectural constraints of the existing
software infrastructure. This requires a redefinition of the software engineer or soft-
ware manager, which needs to transition to a role with mixed skills and becomes a
facilitator of the service innovation process within a flexible project structure
(Bygstad and Lanestedt, 2009). In a radical approach, the Inception phase of OpenUP
can then be merged completely with service design methods, with the last activity,
Agree on the Technical Approach, as the only activity that is the sole
responsibility of the software engineering team.

This “Software Process as a Service” (SPaaS) concept represents a radical merging
of service design and software engineering and profoundly affects the contractual
relations of software development staff with other stakeholders. However, the main
ingredients for this mix (e.g. flexibility in planning, customer involvement, value-
orientation) were already available in agile methods.

4 Conclusions and outlook

Highly intense services that are continuously reconsidered as part of innovation proc-
esses place specific demands on the role of Software Engineers and the software
process itself. The idea of agile software processes can be adapted to better fit the
service design process. This paper has explored some possible values for a service-
design aware software process, pointing to some possible directions for further in-
quiry. A more radical view of the process would be that of more tightly merging the
service design and innovation process with the software process, so that the latter
becomes actually a service for the former. This idea fits the emerging paradigm of
service science as a interdisciplinary mixture of management and engineering.

All the ideas presented in this paper are obviously highly speculative, so that they
are intended to stimulate discussion and as a previous step for a thorough integration
of service design processes with software processes. Future work should progress in
proposing new software-service co-design processes and contrasting them in practical
cases or experiential reports.

Proceedings of ONTOSE 2009 127

References

Beirne, M., Cromack, C. (2009) Managing creative coalitions: Reflections on the social side of
services innovation, European Management Journal, 27(2), pp. 83-89

Berger, C., Moeslein, K., Piller, F. and Reichwald, R. (2005) Co-designing the customer inter-
face for customer-centric strategies: Learning from exploratory research, European Man-
agement Review, 2 (2005) 3: 70-87.

Bullinger, H.J., Fahnrich, K.P., Meiren, T. (2003) Service engineering--methodical develop-
ment of new service products, International Journal of Production Economics, 85(3), pp.
275-287.

Bygstad, B. and Lanestedt, G. (2009) ICT based service innovation - A challenge for project
management, International Journal of Project Management, 27(3), pp. 234-242

Chen, J.S. & Tsou, H.T. (2007). Information technology adoption for service innovation prac-
tices and competitive advantage: the case of financial firms" Information Research, 12(3)
paper 314.

Chesbrough, H. and Spohrer, J. (2006). A research manifesto for services science. Communica-
tions of the ACM. 7, pp. 35-40.

Eriksson, M., Borstler, J., Borg, K. (2009) Managing requirements specifications for product
lines - An approach and industry case study, Journal of Systems and Software, 82(3), pp.
435-447

Feigenbaum, J., Parkes, D. C., and Pennock, D. M. (2009). Computational challenges in e-
commerce. Commun. ACM 52, 1 (Jan. 2009), 70-74.

Geerts, G. and McCarthy (1999). An Accounting Object Infrastructure For Knowledge-Based
Enterprise Models. IEEE Intelligent Systems & Their Applications (July/August 1999), pp.
89-94.

Goldstein, S.M., Johnston, R., Duffy, J.A. and Rao, J. (2002) The service concept: the missing
link in service design research?, Journal of Operations Management, 20(2), pp. 121-134

Jaring, M., Krikhaar, R.L., Bosch, J. (2008) Modeling Variability and Testability Interaction in
Software Product Line Engineering,. Seventh International Conference on Composition-
Based Software Systems, 2008. ICCBSS 2008, pp.120-129.

Papazoglou, M.P. (2008) The Challenges of Service Evolution", Keynote address, In Procs.
Advanced Information Systems Engineering Conf.: CAISE 2008, Springer-Verlag, Lecture
Notes in Computer Science, Montpellier, France.

Teboul, J. (2006). Service Is Front Stage: Positioning Services for Value Advantage. Insead
Business Press. Palgrave Macmillan.

White, S.A and Miers, D. (2008). BPMN Modeling and Reference Guide. Future Strategies
Inc..

Wölfl, A. (2005), The Service Economy in OECD Countries, STI Working Paper, 2005/03,
OECD, Paris.

Yang, H.L., Hsiao, S.L. (2009) Mechanisms of developing innovative IT-enabled services: A
case study of Taiwanese healthcare service, Technovation, 29(5), pp. 327-337

