
A Framework for Understanding
Web Publishing Applications

Sonia Guéhis

Paris-Dauphine University,
Place du Marechal de Lattre de Tassigny, 75775 Paris, France

sonia.guehis@dauphine.fr

Abstract. We address in this paper the reverse engineering issue in the
Web applications. The maintenance process of this kind of applications is
often hardly performed due to the lack of documentation. In most cases,
the documentation associated to the Web application does not exist or
rarely complete and up-to-date. We aim to present a solution which
describes the structure of Web application in order to gain their better
understanding and so facilitate their maintenance. We describe a method
to infer Web publishing programs, specifically defined as database-driven
programs producing dynamic documents. We address a typical reverse
engineering situation where the program is a “black box” that takes a
database instance (the input) and produces a dynamic document (the
output). Our method attempts to understand and describe the program.

Keywords: reverse engineering, Web publishing programs, dynamic doc-
uments, canonical instances

1 Introduction

1.1 Context and motivations

The production of dynamic (X)HTML documents from relational databases is
probably one of the most common techniques used in Web applications devel-
opment. Such documents combine static parts that correspond to free text and
(X)HTML rendering instructions (e.g., tags), and dynamic parts which are re-
trieved at run time from a relational instance. Many specialized languages (i.e.,
Java/JSP, PHP, ASP) and development frameworks (Struts, .NET, PHP/MVC)
make the production of dynamic Web sites a relatively easy task, and this con-
tributes to the richness and accessibility of the Web. A downside is that pub-
lishing programs are often poorly written, and tend to be quite difficult to un-
derstand and maintain. The situation even degrades as the application evolves
through maintenance and evolutions.

In the present paper we describe the main aspects of a method to address
this situation. Our goal is to derive useful information on the structure and
behavior of publishing programs without having to delve into the source code.
The main idea is that we can infer how a program P accesses the underlying
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Fig. 1. Overview of the reverse engineering process

database and merges the dynamic and static parts by just examining the input
and output. Moreover this re-ingeneering process needs only an access to the
database schema and the right to run P on instances of this schema. We do not
require an access to the actual database instance, nor do we need the code of
the application. This preserves the privacy of business data, and allows to cope
with situations where the source code is no longer available.

1.2 Process overview

Basically our method produces carefully chosen instances of the database, runs
P, and makes some inferences of the program behavior by analysing the dynamic
document produced as output. Figure 1 illustrates the main components involved
in the process. Let us briefly describe their role before entering into details.

We apply P to canonical instances of the database schema and obtain dy-
namic documents. The concept of canonical instance denotes both complete and
unambiguous instances [1]. Intuitively, a canonical instance enjoys suitable prop-
erties for the analysis of the dynamic document produced by a program. For
instance, given a set of values, one can determine without ambiguity the set of
tuples (if such a set exists) of the instance that contain these values, as well as
their dependencies. In order to model conveniently such structured sets of tu-
ples, we view the relational instance as a data graph where tuples and values are
nodes, and edges represent dependencies. The data graph model and canonical
instances are presented in Section 2.

Next, dynamic documents are analysed in order to distinguish the static parts
from the dynamic ones. This is done through an iteration of program executions
that produce dynamic documents from as many canonical instances as necessary.
The dynamic part is modeled as a graph of values, constructed from both the
document structure and the database schema. This analysis process is described
in Section 3.
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Finally, we construct a mapping between the graph of values of a document
Di and a subgraph of the canonical instance Ii. This mapping constitutes an
interpretation of the program P that carries out a navigation in Ii, retrieves
some values and merge these values with static text to create Di. We can then
produce a description of P at a suitable abstraction level independent from
specific details such as, for instance, the programming language. This final step
is presented in Section 4.

The rest of the paper develops this brief overview, and discusses the perspec-
tive of the approach, as well as related work (Section 5). Due to space limitations,
the presentation is mostly driven by examples based on a simple database that
represents movies with their (unique) director and their (many) actors (Fig-
ure 2). The interested reader is referred to[1] and [2] for formal definitions and
technical details on the DocQL language and our concept of complete instance.
(see http://www.lamsade.dauphine.fr/∼guehis/Protos.htm).

title year id_director genre
Unforgiven 1992 20 Western
Van Gogh 1990 29 Drama
Kagemusha 1980 68 Drama
Absolute Power 1997 20 Crime

Movie

id last_name first_name
20 Eastwood Clint
21 Hackman Gene
29 Pialat Maurice
30 Dutronc Jacques
68 Kurosawa Akira

Artist

title id_actor character
Unforgiven 20 William Munny
Unforgiven 21 Little Bill Dagget
Van Gogh 30 Van Gogh
Absolute Power 21 President Allen Richmond

Cast

Fig. 2. An instance of the Movies database

2 Modeling the input: canonical instances

As mentioned previously, we model a database instance as a labeled directed
graph GI , and rely on a query language on this graph which constitutes a syntax-
neutral (declarative) specification of a publishing program written in Java/JSP
or in any other programming framework.

Data model and query language.
Our reverse-engineering process operates on a view of the relational instance

where tuples are seen as internal nodes, values as leaf nodes, and edges represent
either tuple-to-tuple dependencies or tuple-to-attribute dependencies. Figure 3
shows the data graph of the instance of Figure 2. We distinguish functional
dependencies between nodes (e.g., between a movie node and its director node)
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Fig. 3. A subset of the data graph of our sample instance

and multivalued dependencies (e.g., between a movie node and its actor nodes).
The former are shown with white-headed arrows, the latter with black ones.

We associate to this model a query language, called DocQL, which com-
bines navigation in the data graph with instantiation of the textual fragments
that contribute to the final document. A DocQL query is essentially a tree of
path expressions which denote the part of the graph that must be visited in
order to retrieve the data to include in the final document. Path expressions
use an XPath-like syntax. An expression p is interpreted with respect to an
initial node Ni (unless it begins with db which plays the role of / in XPath),
and delivers a set of nodes, called the terminal nodes of p (with respect to
Ni). Each path is associated to a fragment which is instantiated for each termi-
nal node. Path and fragments are syntactically organized in rules of the form
@path[condition]{fragment}, with a path expression, a node condition and
fragment is the fragment instantiated for each instance of path.

The following example shows a DocQL query over our Movies database.
It produces a (rough) document showing the movie Unforgiven along with its
director and actors.

@db.Movie[title=’Unforgiven’]{
@title{}, @year{}, directed by

@director.first_name{} @director.last_name{}
Featuring: @Cast{

- @artist.first_name{} @artist.last_name{}as @character{}
}

}
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The semantics of the language corresponds to nested loops that explore the
data graph, one loop per rule. Looking at the previous example, we first search
for the node Movie with title Unforgiven. Taking this node as an initial one, the
value of each (unique) path title, year, etc., is evaluated. The multiple path
Cast leads to all the nodes that represent one of the characters of Unforgiven.
Applied to the data graph of Figure 3, one obtains the following document as
result of the previous example:

Unforgiven, 1992, directed by Clint Eastwood, Featuring:
- Clint Eastwood as William Munny
- Gene Hackman as Little Bill Dagget

Aggregation and negation cannot be directly expressed in DocQL, but ag-
gregated values can be obtained via the mapping that transforms the relational
instance to the virtual data graph (an even simpler solution is to define SQL
views with group by clauses, which can then be exported in the data graph).
We shall discuss these limitations in Section 5.

Canonical instances.
Our method relies on the creation of specific instances satisfying two condi-

tions: completeness and non-ambiguity. In short, the first condition ensures that
the program always finds query results during its navigation in the database.
The second condition is meant to allow the identification of a unique subgraph
of the instance, isomorphic to the set of values found in the dynamic document.
Completeness. An instance is said complete if, for each one-to-many depen-
dency E 1 →∗ E′ and each tuple e instance of E, there exists an instance e′

of E′ associated to e. Let us take the example of the dependency directed by
that links a director and its movies. In terms of the relational schema, there
is an integrity constraint that ensures that each movie refers to a director (see
Figure 2). The completeness constraint states, in addition, that each tuple in
table Artist is referred to by a tuple in table Movie.

Therefore, in a complete instance of our schema, each artist is the director
of a movie. This is by no way a realistic constraint. It is only intended to ensure
that a publishing program that wishes to show a film, its actors, and for each
actor, the list of films possibly directed by this actor, will produce the most
complete result document. In other words a complete instance allows to obtain
complete documents, and thus a complete view of the program output.

The instance of Figure 3 is not complete. If we remove the node squared
with dashed lines (and the corresponding Artist subgraph), the instance be-
comes complete, because the only remaining artist is Clint Eastwood who turns
out to be both an actor and a director. Note the cycle in the data graph that
corresponds to a cyclic dependency in the graph schema.
Non-ambiguity. The non-ambiguity condition can be informally stated as fol-
lows: if N and N ′ are two nodes in the data graph, then the path that links
N to N ′ can be uniquely determined. The instance on Figure 3 is ambiguous,
even after removal of the node that corresponds to Gene Hackman. Indeed, if
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Director

a. Minimal cycle (2 edges)

Fig. 4. Generating cycles in a canonical instance

we are given the values ’Eastwood’ and ’Unforgiven’ found in a dynamic docu-
ment, there is an ambiguity on the meaning of the Artist node, which can be
interpreted either as the director or an actor of the film.

Ambiguity is a consequence either of two distinct nodes sharing the same
value, or of cycles in the database instance. The first problem can easily be
avoided by generating distinct values. The second problem is trickier because
simply removing cycles would contradict the completeness property. As men-
tioned above, the database needs to represent by cycles in the instance the
cycles of the schema in order to obtain a solution for any path chosen by the
program from any node in the graph.

A trade-off is here necessary. Note first that the cycle size in the instance is
proportional to the cycle size in the schema. Figure 4.a shows a minimal cycle
in our sample instance, of size 2, and Figure 4.b its generalization to a cycle
of length 2 × k, with k > 1. The value of k is a parameter of the instance
construction which represents the upper-bound on the number of tables joined
by a single SQL query of the program (or equivalently, k is the longuest path
used by the program during its navigation in the data graph). k must be chosen
large enough so that no ambiguity can arise when a link must be created between
two values extracted from a dynamic document.

In the following we call a complete and non-ambiguous instance a canonical
instance. An algorithm to create canonical instances is given in[1].

3 Modeling the output: dynamic documents

Assume now that we obtain a document D from the execution of the program
P on a canonical instance I. We need to distinguish static parts from dynamic
parts. From the dynamic part we will be able to construct the mapping that
associates the document structure to a database subgraph. For the sake of clarity,
we illustrate the mechanism with the following document D, obtained by running
P on a canonical instance I.

Unforgiven, 1992, directed by Clint Eastwood, Featuring:
<ol>

<li> Gene Hackman, as Little Bill Dagget</li>
</ol>
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Some words (e.g., “Featuring”) are part of the static content, while others
(e.g., “Eastwood”) come from the database. Let L(D) be the list of words consti-
tuting the document and L(I) be the list of words from the canonical instance.
A first approximation is to consider that W = L(D) ∩L(I) is the dynamic con-
tent of the document. We can then perform a full-text search in the canonical
instance for each word in W , identifying the tuples which have been retrieved
by the program, and the position of dynamic data in the document. Note how-
ever that the latter information may be a superset of the dynamic list, due to
the presence of words in the static part which also appear in the instance. This
would be the case for instance if the static content contains the word “little”
which is found as well in our canonical instance.

This problem can be solved by using two canonical instances I and I ′ such
that L(I)∩L(I ′) = ∅, i.e., the instances are fully distinct (recall that we control
the content of our canonical instance). Assume for instance that I ′ contains
a description of the movie Husbands and Wives. The dynamic document D′,
resulting from the execution of the program over the canonical instance I ′, is:

Husbands and Wives, 1991, directed by Woody Allen, Featuring:
<ol>

<li> Sidney Pollack as Jack</li>
</ol>

The list of words of the static content can be obtained as Y = (L(D) ∩
L(D′)). In our example, words like “directed”, ”by”, ”Featuring” are commons
words between D and D′ and are parts of the static content of the publishing
program.

Dynamic part of the program can be now inferred from instance I as L(D)−
Y , whereas the list for I ′ is L(D′)− Y . It remains to “mark” the dynamic part
in one of the dynamic documents. Here is the marking for D:

@{Unforgiven}, @{1992}, directed by @{Clint} @{Eastwood}, Featuring:
<ol>

<li> @{Gene} @{Hackman}, as @{Little} @{Bill} @{Dagget}</li>
</ol>

Each word w enclosed in the @{} tag is known to come from the instance.
Moreover, since this instance is complete, we can identify the nodes in the data
graph and compute the subgraph that associates these nodes, as explained below.

4 Producing the publishing program

Several algorithms for keyword-based searches in relational databases have been
proposed recently, like Discover[3], DBXplorer[4] and Banks[5]. Banks seems an
appropriate choice. It relies on a graph representation of the instance similar
to our data graph and returns, given a set of keywords, a set of tree of tuples.
The root node is called an information node and the tree a connection tree. In
our case, the Banks process returns a unique tree connection, since we search



Proceedings of WISM 2009

Block 2

Unforgiven      1992          20               Western

Title             year       id_director    genre

N0

N1

N3

Artist

id     last_name     first_name

id     last_name     first_name

20      Eastwood        Clint

2&      Hackman        Gene

N2

Movie

Artist

Cast

Block 1

Fig. 5. Connection tree and its mapping to the associated DocQL query

keywords over a canonical instance. Banks actually represents the mapping that
associates the structure of the dynamic document to the subgraph of the canon-
ical instance. The result of this association is illustrated on Figure 5.

Four tuples have been found by the Banks algorithm, which correspond to
four nodes N0, N1, N2, N3. N0 is a Movie tuple, N1 an Artist tuple represent-
ing the director of the movie, N2 and N3 are respectively the Cast and Artist
representing an actor of the movie. Each edge in the graph is labeled by the
table name. Recall that black-headed arrows represent one-to-many relations,
whereas white-headed arrows represent one-to-one relation (i.e., a referential in-
tegrity constraint).

In order to produce the DocQL query, we group nodes in blocks. A block
consists of a context node and of satellite nodes, containing all the nodes which
have a one-to-one dependency with the context node. Figure 5 shows two blocks.
The first one has for a context node N0, and a satellite node, N1. The second
block is composed of N2 (context node) and N3 (satellite node). The intuition
behind the block structure is that, during its navigation in the database, the
program “stops” on some node N , and produces a dynamic fragment whose
dynamic part consists of all the values which are monovalued with respect to N .
These values consist of (i) the attributes of the context node (e.g., the title of the
movie N0) and (ii) attributes of the nodes which have a one-to-one dependency
with N (e.g., the name of the director, attribute of N1).

A DocQL query is a tree of rules of the form @path[condition]{fragment}.
One rule is constructed for each block, and the edge labels yields the structure
of the query:

@Movie{
@title{}, @year{}, directed by

@artist.first_name{} @artist.last_name{}
Featuring:
<ol> @Cast{
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<li> @artist.first_name{} @artist.last_name{} as @character{}</li>
} </ol>

}

This ends the part of the reingeneering process which can be carried out inde-
pendently from human expertise. Running the query on the canonical instances
I and I ′ should produce documents D and D′, respectively. Although this works
well on this simple example, in most cases the DocQL query produced by this
process will be a more or less complete approximation of the program. In the
next Section we discuss how this approximation can be refined and completed
by an expert user.

5 Discussion and related work

We believe that the method constitutes a good basis for a further refinement of
the program description. However it is limited in many respects. A first of these
limits is the expressive power of the target language. It models conjunctive SQL
queries with natural joins (i.e., joins that map primary keys with foreign keys).
From our experience, it is extremely rare to express non-natural joins, so we
claim that this is hardly a restriction.

A second limit is a small indeterminacy in the exact limit of the blocks
fragments. Looking back at the example above, there is no well-founded reason
to include or exclude the tags <ol>...</ol> from the fragment of the block 2.
This limits seems harmless, since it appears quite easy for a user to see that the
<ol> tag occurrences are independent from the number of tuples found in the
Cast table. An automatic recognition is probably possible in that case.

A third limit is the inability of our method to cope with constant values used
in the program queries. These values can be either hardcoded in the SQL expres-
sions in the source code, or, equivalently, provided as parameters to the program
which dynamically introduce them in query expressions. The only solution is to
elaborate with an expert user a list of the database fields which are subject to
selection predicates in the program.

Web engineering community proposed several languages, methods and pro-
cesses for the development of Web applications like WebML[6], UWE[7], Hera[8]
and OO-H[9]. But, all those solutions don’t address the problem of reverse en-
gineering as we define it (namely: a known database, a known output, but an
unknown program). Vaquista[10] proposes a solution to infer the presentation
model of a Web page and considers only the modeling how the “static part”. A
proposal of interest is WARE (Web Application Reverse Engineering) tool[11]
which attempts to describe an application in terms of UML diagrams.These di-
agrams are helpful to understand the Web application structure. Revangie[12] is
oriented toward an analysis of the user interface model, through the exploration
of the Web forms of an application. proposals deal are useful for high level struc-
tures description, e.g., the graph of pages in a Web site. They can be considered
as complementary of our framework which aims at giving a detailed description
of a specific module.
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6 Conclusion

We outlined in this paper the main principles of a reverse-engineering method
devoted to Web publishing applications. The method relies on a few concepts
which help to construct an interpretation of publishing programs which is both
precise and language-independent. As mentioned in the discussion part, a fully
automatic analysis seems impossible to achieve, but we consider the ideas pre-
sented here as a sound and promising framework for building a semi-interactive
analysis tool where an expert user drives the reconstitution of a program seman-
tic. We are currently working on an implementation of such a tool.
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