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Abstract. Keyword search is receiving a lot of attention not only in
Web contexts but also in the database area. It is an easy way to al-
low inexperienced user to query systems without the need of knowing
any specific language or how data is structured. As a matter of fact,
the amount of data available, in the Web as well as in other systems, is
constantly increasing. And, with the improvements and the simplifica-
tion of the technology, the amount of people accessing such information
is growing too. Providing simple, yet effective tools that allow inexpe-
rienced users to quickly discover desired information is a big challenge
in modern times. The prevalent approaches build on dedicated indexing
techniques as well as search algorithms aiming at finding substructures
that connect the data elements matching the keywords. In this paper, we
introduce a novel keyword search paradigm for graph-structured data,
focusing in particular on the RDF data model. While related techniques
search the best answer trees, we propose a novel algorithm for the ex-
ploration and computation of all matching subgraphs.
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1 Introduction

Keyword-based search approaches have the huge benefit that users can ignore
both the language and the structure of the data they are going to query. A
keyword based search engine returns a list of candidate pages, documents or set
of data that match keywords provided in input. Then a user has to dedicate
her time and efforts navigating each result returned from the engine in order
to discover the desired information, i.e. the answer she is looking for. Figure 1
illustrates the actual scenario of the Web. In a simple scenario the user’s desired
answer is contained in a single document or set of data. In a slightly more
complex scenario such an answer may not be confined to a single document: it
may reside on a logical connection between concepts in different documents. A
user has to explore the returned results in order to discover the connection, and
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Fig. 1. The Syntactic and Semantic Web

then the data, she is looking for. In general, the user has to face two issues: the
number of results to explore and the distance between the results containing
the concepts holding the desired connection. The first issue can be mitigated
by submitting a more selective query. However, it’s unlikely the case that not
expert users are able to submit a complex query with an high selectivity. The
second issue is rather hard to address.

Therefore, attention around searching and query processing of graph-structured
data continue to increase as the Web, XML documents and even relational
database can be represented as a graph. In particular many efforts focus on
RDF data querying, given the great momentum of Semantic Web in which Web
pages carry information that can be read and understood by machines in a sys-
tematic way. Current approaches rely on a combination of IR and tree/graph
exploration techniques whose goal is to rank results according to a relevance
criterion. Keyword search on tree-structured data counts a good number of ap-
proaches already [1–6]. Examples of approaches where relational database is
treated as data-structured graphs are presented in [7] and [8], while a generic
approach to similarity search is presented in [9]. Then there are a number of
works focusing on RDF storage and query efficiency issues like [10–12]. Simpli-
fying, a generic approach first identifies the parts of the data structure containing
the keywords of interest, possibly by using an indexing system, then explores the
data structure in order to discover a connection between such identified parts.
Candidate solutions, built out of found connections, are then associated with a
score and ranked. In many approaches [7, 8], an exact matching between key-
words and labels of data elements is performed to obtain the keyword elements.
For the exploration of the data graph, the so-called distinct root assumption is
employed (see [7–9]). Under this assumption, only substructures in the form of
trees with distinct roots are computed and the root element is assumed to be the
answer. The algorithms for finding these answer trees are backward search and
bidirectional search [8]. In order to guarantee that the computed answers indeed
have the best scores, both the lower bound of the computed substructures and
the upper bound of the remaining candidates have to be maintained. Since book-
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keeping this information is difficult and expensive, current algorithms compute
the best answers only in an approximate way. Moreover, approaches aiming at
returning the top-k best solutions implement pruning techniques to reduce the
list of candidate solutions down to those whose score is above a threshold. Prun-
ing techniques can have an sensible impact in both the quality of the solutions,
as low scoring results are not shown or even computed, as well as on efficiency,
as an early pruning reduces the space of candidate solutions to investigate.

In this paper, we propose a novel approach to keyword search in the graph-
structure data in an RDF representation. The approach aims to provide effective
answers in an efficient way. The main contribution of this paper relies in how
connections between identified parts of the structure containing keywords of in-
terest are combined together. We assume here that annotations in the graph
are generated out of a specific ontology domain. That means that data are in-
stances of concepts belonging to a knowledge base schema. Therefore, the idea
is to aggregate the parts of the data structures containing keywords in clusters,
according to their schemas, i.e. temporarily ignoring instance values. If two in-
stances come from a common schema then they share a template. Then the parts
in each cluster, and the clusters too, are ranked according to a function, taking
into account both structural and contextual features. Finally parts from the sev-
eral clusters are composed, when possible, starting with the most relevant one
in the most relevant cluster. As a result, most relevant solutions emerge early in
the process because the approach tries to compose the best candidates from each
cluster first. Moreover, the clustering technique allows avoiding the combination
(exploration) of overlapping solutions.

The paper is organized as follows: Section 2 introduces the preliminaries of the
problem and the data structures used. Section 3 describes the query processing
in details. Finally Section 4 presents the related works, and Section 5 sketches
conclusions and future works.

2 Overview

Problem Definition. Formally, the problem we are trying to solve may be
defined as follows. Similar to [8], given a directed graph G = (R, P ) where each
node (resource) r ∈ R and edge (predicate) p ∈ P has a label (URI) associated
with it, we are concerned with querying this graph using keywords. A keyword
search query q consists of a list of n keywords (k1, k2, ..., kn). The answer to
query q is the set of paths in G where the end point of each path is a node r ∈
R that matched a user keyword based on one of the following criteria:

– There exists some keyword k ∈ (k1, k2, ..., kn) that matches label of node r

either lexically or on semantic query expansion.
– Node r is the subject/object of the ontological triple whose predicate label

matches some keyword lexically or on semantic query expansion.

An example of reference. Let’s consider the example of Figure 2. It illustrates
an ontology about Universities composed into Departments where a Staff works.
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The figure shows both the schema and a corresponding instance. Now we would
process a query by submitting the keywords University, CIV, Department,
W1 that is ”all the information about the Staff W1 working in a Department
CIV into a University”.

Fig. 2. An example of reference

Preliminaries. We illustrate the basic data structures used by our approach.
We model the instances into RDF documents as informative paths as follows.

Definition 1 (Informative Path) Given an RDF graph G (R,P) and a set of
keywords k1, ..., kn, an informative path pt is a vector r1 − p1 − r2 − p2 − ... −
pn−1 − rn where each ri is a resource ∈ R, each pi is a predicate ∈ P , ri and/or
pi match one or more keywords ki, and r1 is a root node, i.e. a resource without
incoming edges (predicates).

For instance W1-Works-CIV is an informative path ptk. We use the notation
posptk

(ri) (posptk
(pj)) to indicate the position of the resource ri(pj) into the vec-

tor ptk. For example posptk
(W1) returns 1. We compute the informative paths

from root nodes because they allow to reach any node in the graph. In case a
root node is not present, a fictitious one can be added. Having the information
to navigate from the roots to nodes matching keywords is at the basis of our
approach to solutions discovery. Then we call template the schema associated to
an informative path.

Definition 2 (Template) Given an informative path pt, we associate a tem-
plate t to pt replacing each ri ∈ pt with the wild card #

For instance the template associated to ptk is #-Works-#. Then we introduce two
basic notions as follows.
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Definition 3 (Subsumption) Given two informative paths pt1 and pt2, we
say that pt1 is subsumed by pt2, denoted by pt1 C pt2, if ∀ri, pj ∈ pt1 then
∃rm, pn ∈ pt2 such that ri = rm and pj = pn, and pospt1(ri) = pospt2(rm) and
pospt1(pj) = pospt2(pn)

Definition 4 (Graft) Given two informative paths pt1 and pt2, there is a graft
between pt1 and pt2, denoted by pt1 ↔ pt2, if ∃ri ∈ pt1(pt2) such that ri ∈
pt2(pt1)

An Architecture of Reference. A flexible architecture of the system was
design, as shown in Figure 3. It serves as a logical view of how the system looks
like. This is a typical use scenario of the system:

1. The RDF Parser takes as input a collection of RDF Documents and parses
them into triples. Here we use the Jena framework (http://jena.sourceforge.
net/);

2. The Indexer builds an index on top of the triple collections to achieve
structural information useful for the query process. Here the indexing is
supported by Lucene (http://lucene.apache.org/) and WordNet (http://
wordnet.princeton.edu) to allow query expansion;

3. A user performs a query through a GUI helper, handling events and the
query itself;

4. The parsed query is given to the Searcher for processing;

5. The Searcher processes the query over the Indexed Resource Base and re-
turns the search result to the caller. It communicates with the Indexer to
extract the instances matching input keywords, group them into clusters and
compose elements from clusters into the final solutions (i.e. subgraph struc-
tures). Each structure (i.e. instance, cluster and solution) are ordered by
a ranking function. Here we adopt the exhaustivity of the result as scoring
function that is the number of matched keywords with respect to the number
of submitted keywords. Although a ranking function is a relevant aspect in
the framework, in this paper we focus on the composition of the solutions.

The approach is composed of two main phases: an off-line one where documents
of interest are indexed in order to have immediate access to nodes (steps 1 and
2), and an on-line one where the query evaluation takes place (steps 3 to 5). In
the next section we illustrate the query processing.

3 Query Processing

The approach is composed of two main phases: the off-line indexing where doc-
uments of interest are indexed in order to have immediate access to nodes, and
the keyword processing (on-the-fly) where the query evaluation takes place.
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Fig. 3. An Architecture of Reference

Off-line indexing During this phase, an index structure is built and incre-
mentally updated while documents of interest are loaded or modified. Here the
indexing is supported by Lucene (http://lucene.apache.org/) with WordNet
(http://wordnet.princeton.edu) for query expansion. With the indexing the in-
formation in the graph is augmented by: identifying root nodes in the graph and
storing in each node the paths to reach such node from the roots. Each path is
computed by implementing the breadth-first search (BFS) algorithm. Although
this process could be expensive, let us remark that: (i) it is an incremental pro-
cess, so its cost dramatically reduces once the system is loaded, and (ii) the index
drastically speeds up the on-the-fly query evaluation. We don’t have to navigate
the graph at runtime and we have immediate access to the path root-matching
node that is the basis for our clustering and combining techniques.

Keywords processing. Given a keyword the index structure allows immediate
access to the node with such a keyword. Lucene index returns all the informative
paths from roots to the nodes matching one of the specified keywords. So we
result a list of informative paths ordered by the length. Referring to our example
we obtain the following list:

c) [RM3-Composition-Bag-rdf:li-DIA-type-Department]
d) [RM3-Composition-Bag-rdf:li-AI-type-Department]

e) [RM3-Composition-Bag-rdf:li-MEC-type-Department]
f) [LaSap-Composition-Bag-rdf:li-CIV-type-Department]
z) [LaSap-Composition-Bag-rdf:li-CIV]

g) [W1-Works-CIV-type-Department]
a) [RM3-type-University]

b) [LaSap-type-University]
y) [W1-Works-CIV]

For instance y) is subsumed by g) and there is a graft between them in nodes
W1 and CIV . Now the goal is to “extract” the schema behind the paths so
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that we can cluster paths according to the discovered schema(s). A cluster is
represented by a template t. So it is a set of informative paths that share the
same template t. Such templates are the attempt of identifying and giving values
to a structure in the information graph that is not explicitly provided with the
query. Such a structure is a recurrent pattern in an anonymous path that we
refer to as schema. Therefore given the list of informative paths PT , the set of
clusters CL is computed in the following way

while PT is not empty, we extract pt from PT .
• if ∃CLi ∈ CL such that we can associate the representative template t

of CLi to pt, then
∗ if @pt′ ∈ CLi such that pt C pt′ then insert pt into CLi. We order

the elements of CLi with respect to the exhaustivity.
• else a new cluster CLj with the representative template associated to pt

is built and we insert pt into CLj , CLj into CL.

In this process we need to order both paths and clusters with respect to a scoring
function. So we define the rank of an element (path or cluster) with respect to
the query Q = k1, k2, . . . , kn as

R(e, Q) =
∑

k∈Q weight(k, Q) · weight(k, e) ; weight(k, e) = weightctx(k,e)
weightstr(k,e)

where weight(k, Q) is the weight associated with each keyword k with respect to
the query Q and where weight(k, e) is the weight associated with each keyword
k and e where is a path, when ranking paths, or a cluster, when ranking clusters.
We assume all the keywords in the input query have the same weight, i.e. from
the user point of view all the keywords have the same relevance. The weight
weight(k, e) is the ratio between the contextual and the structural weights of
k when considering e. When ranking paths the structural weight represents a
measure of the proximity of k with the other keywords whereas the contextual
weight represents the relevance of k with respect to the other keywords, according
to the following:

weightstr(k, pt) =

P

ki∈pt,ki 6=k dpt(k,ki)

dl
; weightctx(k, pt) = 1+ln(1+ln(tf))

(1−s)+s· dl
avg(dl)

· (1 + ln( N
df+1 ))

In the first formula, pt is a path, dpt(k, ki) is the distance between two keywords
and dl is the number of terms in the path pt. In the second formula, tf is the
number of times the keyword k occurs in the path pt, df is the number of paths
where k occurs, N is the number of path containings at least one of the input
keywords; dl has the same meaning as in the first formula and avg(dl) is the
mean of all the dl; finally, s is a constant, usually 0.2 [5]. The logarithm function
is used, twice in one case, to smooth the values in precense of large numbers
of terms and keywords. Last formula can be read as a trasposition of one of
the most widely used weighting method in IR , where: the first factor is the
normalized term frequency, the second factor is the so called inverse document
frequency and the denominator is the normilzed document lenght [13, 14].
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When ranking clusters we define the structural and contextual weights of a
keyword as the mean of its correspondent weights respect to the paths contained
in the cluster CL, as shown in the formulas below:

weightstr(k, CL) =
P

pt∈CL
weightstr(k,pt)

|CL| ; weightctx(k, CL) =
P

pt∈CL
weightctx(k,pt)

|CL|

In the following the resulting ordered clusters set computed respect to the ref-
erence example.

CL3: [#-Works-#-type-#] { (g) }

CL2: [#-Composition-#-rdf:li-#-type-#] { (f) , (c,d,e) }
CL1: [#-type-#] { (a,b) }

The final step is combining the paths from different clusters. A solution is a set
of informative paths that present a graft in pairs. So computing a solution an
informative path pt can be included into a solution S if ∃pt′ ∈ S such that pt

and pt′ present a graft. Paths in clusters are combined, when possible, starting
from the most relevant path in the most relevant cluster: we combine the best
candidate paths of each cluster to compose a single solution. Including an in-
formative path into a solution, we delete it from the starting cluster. Therefore
the solutions generation ends when the set CL is empty. Because of the rank-
ing on both the clusters and the paths in each cluster, solutions will come out
from the process starting with the most relevant one, then descending to the
least relevant. This allows for optimizations like: cutting the answering process
if relevance decrease under a specific threshold, or returning the user with an
initial set of answers she can start exploring while elaboration of remaining ones
is still undergoing. More important, the clustering and the combining techniques
guarantee the combination of paths only for instance data belonging to different
schemas, thus avoiding overlapping. Overlapping is undesired and time consum-
ing. At the end we result the following solutions (also depicted in Figure 4) over
the reference example: S1: { (g) , (f) } and S2: { (c,d,e) , (a,b) }.

Fig. 4. Final Solutions
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4 Related Works

There is a broad literature on information search. Natural language interfaces to
database systems have been investigated in several works. Approaches address-
ing relational database systems are: BANKS [7], DISCOVER [4], DBXplorer
[1] and Hristidis et al. [15]. Simplifying, a database is represented as a graph
where tuples are the nodes and foreign keys. Then they generate tuple trees
from multiple tables as answers. Finally, IR-style techniques are applied to re-
turned results in order to rank them according to a scoring function. Another
work on relational database is [5]. Here authors address that strictly focus on
search effectiveness while ignoring efficiency. Authors’ claim is that effective-
ness is as important as efficiency. Approaches have been proposed for keyword
search over XML in [2, 3, 16, 17]. With respect to search on RDF data, search
on XML data is a similar but simpler problem. The tree structure guarantee
each node to have a single incoming path: this allows the implementation of
a number of optimizations. And such optimization cannot be easily applied in
general graphs. For instance in XRANK [3] an indexing solution is defined that
allows the evaluation of a keyword query without requiring tree traversal. Then
there are works specifically addressing query processing efficiency over graph-
structured data and RDF storage [8, 10–12]. In BLINKS [8] a scoring function is
defined to find the top-k most relevant queries, a good part of the contribution
relies on the novel indexing structure. Authors present a bi-level indexing struc-
ture that allows for early pruning that accelerates the search. In [12] authors
propose a slightly different approach. While still addressing performance issues,
the approach first compute queries from keywords then asks the user to choose
the most appropriate query. Computation of queries is based on the exploration
of the top-k matching subgraphs, exploiting an off-line built index structure and
a variant of backward search where expansion (exploration) is driven by a cost
function.

5 Conclusion and Future Works

We presented a full-text search index for ontology triples that provides match-
ing capabilities based on semantic and morphological expansion of terms used
for indexing the triple. Given a set of text matches, we propose a method to
construct the set of answer paths by a template based clustering technique. In
this paper the paths retrieved by the system are ordered with respect to a trivial
measurement, that is the exhaustivity. Hence, it could potentially lead to infor-
mation overload. Semantic association ranking metrics could be used to present
only paths most relevant to users context. Future works concern a sophisticated
ranking function, and using it a set of experimental results over (very) large
datasets. DBpedia, Yago are recent efforts to generate semantic metadata by ex-
tracting structured information form the Web (Wikipedia). A keyword or natural
language search interface to such knowledge bases would prove immensely useful
as the end user need not be aware of the structure of the information. It will be
worthwhile to build a search interface that accepts queries in natural language.
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