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Abstract. In this paper, we are presenting a retrospective approach to 
evaluating user models by utilizing previously collected learning logs rather 
than setting up a new experiment. This approach is applied in a novel way to 
modeling heterogeneous types of user activity – problem solving, and browsing 
annotated examples. We are blending the two types of activity in the user model 
in an attempt to increase the accuracy of the composite model. Obtained results 
suggest that such blending, in fact, does make a difference both for users 
individually and on a global scale. 
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1   Introduction 

The best way to determine the quality of an adaptive system is through a carefully 
planned empirical evaluation with human subjects. The evaluation design can vary 
from a short-term controlled experiment to a longitudinal study, but before the system 
is put into use its value is rather unknown. The system under evaluation is usually 
considered as a black box, that influences the depended variable as a whole. However, 
it is not always clear what do we really measure when evaluating the quality of an 
adaptive system. The effect or the value of adaptation observed in such experiments 
can be attributed to several things: the accuracy of user modeling, the effectiveness of 
adaptation strategies, or the quality of the content. 

One of the known alternatives to the holistic view on adaptive system studies is 
layered evaluation [1, 2]. It implies that the user modeling component and the 
adaptation component of an adaptive system are assessed independently. The 
evaluation of a user modeling component is based on its accuracy, or predictive 
validity, which defines how well the model represents the actual state of the user and 
how reliably it can predict user’s next action [3]. In the context of adaptive education, 
it can be interpreted as the model’s ability to predict the result of the student’s next 
attempt to apply a concept or answer a problem. 

An interesting opportunity that this approach opens for experimenters is the 
implementation of several modeling algorithms operating on the stored log of users’ 
activity and comparative evaluation of these algorithms based on their predictive 
validity. Such retrospective analysis allows the reuse of once collected data for 



multiple evaluation experiments based on “what-if” scenarios aimed at pre-selection 
of an optimal user modeling approach [13]. Naturally the optimality of such pre-
selection is limited to the user modeling layer. The presence of adaptation that is 
based on the values supplied by the user model, would add an additional factor. An 
overall cross-layer empirical evaluation would be necessary to make a final 
assessment. 

In this paper, we apply retrospective evaluation to choose the best value for a singe 
parameter in the modeling formula. The data set is the log of students’ learning 
activity with two types of education content. The user modeling algorithm used this 
log to populate overlay models of students’ knowledge. However, different types of 
activity were processed independently to compute parallel student models on two 
different cognitive levels: comprehension level (corresponding to example-browsing 
activity) and application level (problem-solving activity). Our main goal is to find 
whether a blending of the user models that correspond to the two cognitive layers can 
result in a better composite model with higher predictive validity. 

The rest of the paper is organized as follows. Section 2 talks about the original 
approach to building user models from cognitively heterogeneous educational 
activity. Section 3 discusses user modeling without blending. Section 4 proposes a 
modification to the modeling approach and introduces blended user modeling. Section 
5 outlines the hypotheses and goals of this experiment, which is presented in Section 
6. Finally, section 7 concludes the paper with an extended discussion of the obtained 
results. 

2   Modeling From Heterogeneous Student Activity 

Many e-learning environments provide students with various types of educational 
content (learning problems, examples, tutorials, interactive simulations, etc.) that 
contribute to different levels of material understanding. Several adaptive systems 
integrate or provide means for integrating such components (e.g. [4, 5]). One of the 
problems for these systems is to incorporate evidence coming from heterogeneous 
sources into a student model that would help to deliver viable adaptation. Our 
previous solution was not to fuse these activities, essentially, maintaining a set of 
parallel models of student knowledge, each populated by a specific kind of learning 
activity. The levels of student modeling where taken from the Bloom’s taxonomy of 
educational objectives [6]. For example, reading a textbook would contribute to the 
“knowledge” level of the Bloom’s taxonomy; exploring examples – “comprehension” 
level; answering problems and quizzes – “application” level, etc. However this 
approach does not take into account the transfer between the categories of the 
Bloom’s taxonomy: mastering a lower level of activity should also influence the 
higher level(s). 

Over the last several years, we have accumulated a rich collection of user activity 
logs from student of several undergraduate and graduate level courses using a set of 
our systems in a number of learning domains. A tangible portion of the logs covers 
problem solving and browsing annotated examples that correspond to the application 
and comprehension levels of Bloom’s taxonomy. A question for this study is whether 



modeling the transfer between different cognitive levels of the user model (in this 
case, the comprehension and application levels) can be quantitatively detected, i.e. 
whether this transfer would improve the accuracy of our user models. We try to 
explore this effect by combining or blending different tiers of the user model 
retrospectively and re-evaluating each blend by computing the prediction validity of 
the composite user model. 

3   User Modeling Without Blending 

There is an abundance of approaches to user modeling. A great number of them 
follow the overlay paradigm, when a user model is calculated with respect to a set of 
concepts, skills, or preferences. The user modeling component processes evidence of 
a user’s interaction with a content item and updates relevant portions of the overlay 
vector, spanning the domain. One such approach has been implemented in the user 
modeling server CUMULATE [7]. 

CUMULATE builds several types of user models resulting from different types of 
user activity. The ones that are of interest to our discussion here are: the model of 
example browsing (the comprehension level of Bloom’s taxonomy), and the model of 
problem solving (the application level of Bloom’s taxonomy). For each of the models, 
CUMULATE uses a different technique to compute knowledge levels. In the case of 
example browsing, CUMULATE tracks percent of example lines explored. When that 
percentage reaches 80%, all of the concepts relevant to this example are considered 
known (on the comprehension level).  

Modeling problem solving in CUMULATE is done in a more complicated way. 
Each of the concepts with which a problem is indexed, has a weight. This weight is 
produced during indexing and denotes the importance of that concept in mastering the 
problem. Concept weights are used in distributing the total amount of updates a user 
model receives. CUMULATE also has a safety mechanism discouraging users from 
over-practicing one particular exercise. This over-practicing gradually decreases the 
knowledge updates when users solve one particular problem correctly more that one 
time. Thus users are motivated to attempt solve a diverse set of problems in order for 
their user models to grow. Refer to equations (1) and (2) for details. 
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The initial value of a concepts knowledge k0 is 0. With every correct solution of the 

problem (where res=1 in (1)), all of the related concepts receive an update. This 
update is directly related to: a) the amount of knowledge this concept can grow by 



squared ( (1  –kn)2 in (1) ), and b) to a special weighting factor (2). This weighting 
factor is composed of weights ratio and over-practicing penalty. Weights ratio is the 
weight of the currently updated concept in the problem (wc,p in (2)) over the sum of all 
weights involved in the problem (Σi wc,p). The problem’s over-practicing penalty is 
one over number of successful solutions to this specific problem by a particular user 
plus one (succattp + 1). When the prior knowledge level is below 50% the weighting 
factor is halved (1). This is done to prevent initial leaps in knowledge level. 

4   Blending Problem-Solving And Example Exploration 

Over several years we collected user activity and modeling user knowledge in 
CUMULATE. We noticed that, while practicing problem solving does provide a 
faster way to acquire knowledge, users do spend significant time reviewing annotated 
examples. This suggests that examples are in fact an important part of learning and 
that there may be a better way to incorporate example browsing into computing the 
user model than the one we have described in the previous section. 

Intuitively there should be some form of transfer between comprehension and 
application tiers of the user model. There might not be direct impact, of course, as 
problem solving requires deeper understanding of the domain than mere clicking and 
looking could hope to achieve. However, a limited influence of example browsing is 
not at all impossible. 

We have modified equation (1) to reflect the possible comprehension-to-
application level transfer. Refer to equation (3). The only difference is a B weight. 
This weight is 1 for problem solving, making equation (3) identical to equation (1). In 
the case of example browsing, B would constitute a blending coefficient: value from 0 
to 1. 0 – meaning no blending whatsoever – without considering example browsing, 
and 1 – meaning example browsing is as important as problem solving. Other than the 
B weight, the updates to the knowledge level of the concepts are done in the same 
manner on the unified problem- and example-related user model. 
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After some experimentation, we found that in addition to blending coefficient we 

should take into account the amount to which the example was explored. Truly, we 
cannot equally consider user activity in case the example is fully explored and when 
only say 1 out of ten lines were reviewed. To take that into account, for examples-
related activity modeling we have decided to define B in equation (3) as a product of 
blending coefficient and percentage of example lines explored. 



5   Hypotheses And Goals 

Our hypotheses regarding blending comprehension and application layers of user 
mode are the following. 
1. In general, blending example activity (evidence of concepts’ comprehension) and 

problem solving (evidence of concepts’ application) increases the accuracy of user 
modeling. 

2. Different users benefit from different blends. 
 
The goals that we are trying to reach in this study are. 

1. Find a universally optimal blend of comprehension and application levels in the 
user model, if such exists. 

2. If possible, determine and describe groups of users that can benefit from different 
blending conditions. 

6   Experiment 

6.1   Experimental Setup 

To evaluate our hypotheses and meet our goals regarding blending layers of the user 
model belonging to different levels of Bloom’s taxonomy, we have set up a 
computational experiment. We used student activity logs that were collected during 
Fall 2007 and Spring 2008 semesters from 4 database design courses offered at both 
the University of Pittsburgh (1 graduate and 2 undergraduate courses), and Dublin 
City University (1 undergraduate). All 4 courses, although slightly different in 
structure, were roughly identical with respect to the content. Each course consisted of 
a set of topics. Every topic had a set of SQL writing problems provided by SQL KnoT 
system [8] and a set of annotated SQL code examples supplied by the system WebEx 
[9]. Both SQL KnoT and WebEx were introduced to students roughly in the 
beginning of each of the semesters. The use of these systems was optional and did not 
impact the students’ grades. Overall, there were 48 problems and 64 examples 
available to the students. 

The number of students, as well as their level of participation, varied across 
semesters and is summarized in Table 1 along with basic usage statistics. 

Table 1.  Basic user participation statistics across semesters and courses. 

School Semester Level No. of 
users 

Avg. 
problem 
attempts 

Avg. 
example 

views 

Avg. 
distinct 

problems 

Avg. 
distinct 

examples 
U. of Pitt Fall 2007 U* 27 156.40 189.00 29.96 32.07 
U. of Pitt Fall 2007 G 20 61.70 104.70 29.95 29.10 
U. of Pitt Spring 2008 U 15 26.94 46.65 16.35 10.29 
DCU Spring 2008 U 52 81.68 257.25 22.82 38.63 
* U – undergraduate, G – graduate 



 
All student activity with both problems (SQL KnoT) and examples (WebEx) has 

been logged by the CUMULATE user modeling server. Each problem and example 
has been indexed with a set of metadata concepts with the help of a semi-automatic 
grammar parser. The concepts came from an SQL ontology, developed by domain 
experts. The indexes were double-checked afterwards.  

6.2   Experimental Procedures 

For each of the semester logs, we have (re)-computed several blended user models. 
First of all, a 0-blend was computed; here, no example activity was taken into account 
– only problem solving activity was modeled. 0.1, 0.2, … 0.9, and 1.0 blends 
corresponded to user models where updates resulting from example activity were 
weighted from 0.1 to 1.0 with 0.1 steps. This gave us 4 semesters * 11 blends = 44 
clusters of user models or 114 users * 11 blends = 1254 user models. A classical 
accuracy measure (correct predictions over all predictions) was computed for each 
user model. 

Prior to proceeding with testing of our hypotheses, we filtered user models. The 
filtering condition was that the user had to attempt to solve at least 33% of the 
problems (15 out of 48) and view at least 33% of examples (22 out of 64). The reason 
behind this threshold was that, in order to improve problem solving model by 
blending it with example browsing model, both have to be well populated. Namely, 
the user had to work with both examples and problems to a significant extent. 

After the filtering, the number of users in each semester/class dropped to the values 
shown in Table 2. Thus, the initial number of 114 users was reduced to 56 users. 

Table 2.  Number of qualified users after applying filtering. 

School Semester Level No. of users No. of qualified users 
U. of Pitt Fall 2007 U* 27 14 
U. of Pitt Fall 2007 G 20 10 
U. of Pitt Spring 2008 U 15 3 
DCU Spring 2008 U 52 29 

* U – undergraduate, G – graduate 

6.3   Results 

To get a general idea about the usefulness of blended models for each user, we have 
selected the best non-0% blend (10% to 100%) and ran a left-tailed paired t-test. 
Individual best blends turned out to be significantly better then 0% blends with t = -
5.38, p-value<.001. The average edge of each student’s best blend over 0% blend was 
.015 or 1.5% in terms of accuracy. Mean standard deviation of blended model 
accuracies across users was .0113 or 1.13%. The minimum standard deviation was 
0% and the maximum was 10%. 



To select a universal useful blend we ran 10 left-tailed paired t-tests, in each case 
comparing 0% blend to one of 10 non-0% blends. Here, 40% and 50% blends turned 
out to be the most potent ones and the only ones with significant edge over 0%-blend 
(both with t = -2.05 and p-value = .023). The average advantage of 40% and 50% 
blends over 0% blend dropped to .56%. As we can see, “universal” blends lose to 
individually tailored blends. 

 

Fig. 1 Examples of blend effect on user model accuracy.  

Before further exploring individual user differences with respect to blends, let us 
refer to Fig. 1, where 5 sample users are represented with a graph of blending 
percentage vs. accuracy. Here we can see that the model of user 4 is not sensitive to 
blending whatsoever: the accuracy does not change with respect to blends. In the case 
of user 5, blending has no effect till 70% blend after which accuracy drops. Blending 
does help to improve user models for users 1,2, and 3.  

One feature of the blended models apparent in Fig. 1 is that different users have 
different numbers of points of maximum accuracy. Graph of user 4 is flat, giving us 
11 points of maximum (or no maximum at all). User 5 has 7 points of maximum, and 
users 1, 2, and 3 have 1, 2, and 3 points of maximum accuracy respectively. Fig. 2 
shows the distribution of the number of maximum accuracy points for blended models 
of all 56 users. 

Instantly, we can notice a group of “no difference” consisting of 15 users for which 
blending doesn’t improve the user model. The rest of the range of the number of 
maximum blends can be subdivided into the “low” group (1 maximum) of 2 users, the 
“medium” group (2-4 maximums) of 22 users, and the “high” group (5-9 maximums) 
of 17 users. 



 

Fig. 2 Distribution of number of users for different numbers of peak (maximum) blends. 

The “low” group consists of the two rare cases of a user having just one best blend. 
Both users prefer high blends of 80% and 100% respectively. Users in the “medium” 
group have an inclination towards higher blends. Since our data did not meet the 
requirements of the parametric test (paired t-test), we used its non-parametric analog 
Wilcoxon signed-rank test. Out of 10 tests the most potent belongs to 90% blend with 
p-value = .037. 

Users of the “high” group follow the global trend. Out of 10 Wilcoxon signed-rank 
tests the ones corresponding to 40% and 50% blends turn out to be equally significant. 
Both with p-value = .049. 

7   Discussion 

We are able to see from the data that blending comprehension and application tiers of 
user model in fact does make a difference both for users individually and on a global 
scale. Namely, there is a benefit in (partially) scoring example browsing as if it was 
problem solving, and there is a transfer effect between cognitive layers of the model. 
The major downside is that, although statistically significant, the difference is quite 
small: on the order of few percent. 

Nevertheless, there is a clear indication that, with respect to blends, users do differ 
in what blend works best for the higher accuracy of their model. We also believe that 
there is a way to pinpoint both individual and global blending effect better. 

One of potential ways to improve is to contextualize the model. As described in 
Section 3, modeling in CUMULATE follows the one-fits-all schema. However, as it 
has been shown in [10] each item of the problem space, as well as each user, possess 
individual features. With respect to problems, each has its inherent complexity not 
always captured by the metadata index. Knowledge of concepts does not grow equally 
fast for all of them and does not always starts from same value (0 in our case).   



Making appropriate adjustments in user modeling to accommodate these 
differences has a chance to improve the modeling itself and help to find an optimal 
blend of Bloom’s user model tiers both on global and individual scale. 

Another issue with an exploration of the blending effect is that we had to filter 
nearly 50% of the users out. Ideally, for the blending to have a tangible effect, both 
example browsing and problem solving behaviors have to be well established: the 
user has to work enough with both types of learning resources. 

A prospective remedy here could be to shift from number of distinct learning 
resources covered to the amount of metadata overlap. Instead of counting how many 
examples were viewed or problems were attempted, it might be more beneficial to 
trace the overlap of the domain concepts that both examples and problems addressed. 

One important thing to mention is that in all of the reported studies some form of 
adaptive navigation support was available to users and this could potentially have 
affected our measurements. The navigation support was expressed in the form of a 
descriptive icon next to the link that opened an example or a problem. 

An aspect that still remains unaddressed is the temporal dimension. It might be the 
case that the optimal blending of the user model layers is not persistent over time. As 
users progress through the course, the best blend may change for them. It would be 
challenging to detect these changes, as users would have to stay very active for the 
whole duration of the course and generate enough log data to analyze. From our own 
experience, the proportion of such motivated users is very low in every class and 
often they are outstanding in various regards: both in positive and negative sense. 

For our future work, we would like to apply the blending of cognitive layers of the 
user model in a longitudinal study. This might help us to see a clearer differentiation 
between blending factors and assist in making cognitive layer blending preferences 
explainable more transparent.  

Also we would like to test our blending approach in different learning domains 
such as learning C or Java. In addition, we would like to test other approaches to user 
modeling such as knowledge tracing [11] and/or learning factor analysis [12]. 
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