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Abstract. The paper will present a video surveillance and event detection and 
annotation framework for semi-supervised surveillance use. The system is 
intended to be used in automatic mode on camera feeds that are not actively 
watched by surveillance personnel, raising alarms and enrolling annotation data 
when unusual events occur. We present the current detector filters, and the 
easily extendable modular interface. Current filters include local and global 
unusual motion detectors, left object detector, motion detector, 
tampering/failure detector, etc. The system stores the events and associated 
data, which can be organized, searched, annotated and (re)viewed. It has been 
tested in real life situation for police street surveillance, and we are working 
towards developing a deployable version. 

1   Introduction 

While the literature of content based image search contains quite a large number of 
proposed and in some cases practical systems, the open literature of real time 
surveillance feed analysis is much more limited. Also, processing surveillance feeds 
for event detection is mostly done as a post-processing feature, working with archived 
footage [1,2], not aiding the operators’ work in real time. [3] is a method based on 
tracking moving regions from an aerial view. A system with similar goals is that of 
[4] with many architectural and procedural differences, but most importantly our 
system provides a wider range of detectors, multiple event alarms, and an easy 
modular interface. The presented system is not based on later content based 
processing and indexing of archived footage, but runs real time filters on live footage 
and signals unusual events, so as to reduce the need to actively and constantly watch 
the live feeds. This is important, since in many existing systems a few operators need 
to survey hundreds of cameras. At the same time, it has the classical archive 



functionalities, which makes it also suitable for eventual later content based data 
mining. The filters we present are all real time, and are based on pixel level 
approaches complemented with robust statistical evaluation and learning steps. The 
framework has been developed as part of a project especially started to produce such 
a system for real life application by the local police stations in the city’s districts. 

2   System Architecture 

In simple terms, the system consists of a user interface and a database backend. The 
interface runs on a workstation with dual display, which also contains the multihead 
frame grabber cards that accept the camera feeds. The feeds come from large camera 
matrix multiplexer stations. The users monitor and use the system through this 
interface, while the database backend can be anywhere, given the proper internet 
connections. Figure 1 shows a simplified diagram of the general system architecture, 
while Figure 2 shows a snapshot of the main interface, handling three feeds. 

The main application can handle a maximum of four live camera feeds 
simultaneously, and each feed can be assigned a chain of selected detection filters 
(which we call filter chains). The feed handlers, the filter chains, and the filters 
themselves were all written to be real time, and with SMP and heavy multithreading 
in mind; all filters and chains run separately and concurrently. Increasing the number 
of available processors can greatly increase the possibility of using more filters on 
more feeds. Currently all filters run real time, but a combination of multiple filters on 

multiple feeds can quickly run into processing and memory bottlenecks. Thus a 
careful selection of hardware and filter combinations is necessary. 

Modules/filters can be added easily, either by coding them by using a provided 
class template as internal filters, or by a provided a library template, as a plugin. 
Either way, the coder needs only focus on developing the core algorithm, interfacing 
is seamless. 

Fig. 1. Main parts of the system architecture. 



 

Fig. 2.  Main interface window. 

3   Functions, Modules 

In this section we describe some of the more important modules/filters currently 
deployed in the framework. The system also contains classical surveillance functions 
like image and video archiving, large display of the feeds on a secondary monitor and 
so on, which we will not detail here. The functions described here are all automatic 
and consist of a panorama image creator from panning camera feeds, maskable 
motion detector, camera jump detector for cameras that iterate among different 
stationary positions, unusual global and local motion detector, fight detector, left 
object detector, camera fail/tampering detector, annotation, search and review of 
events. Any order of filter combinations can be assigned to each camera feed 
separately, and they will run concurrently and independently of each other. All filters 
run automatically, in real time, and need no manual intervention. 

3.1   Panorama/Mosaic Image 

The need of constructing and displaying a panorama image of the scene arose since 
there have been a lot of panning cameras that cover a large field of view. This module 
allows us to construct and display the full field of view of a camera for the operator, 
and also to identify the actual camera position. The method continuously registers the 
incoming frames and builds a mosaic. The properties of these cameras are totally 
unknown and different on each camera source. There are some articles (e.g. [5]) 
dealing with moving cameras but they are not based on statistical approach to 
segment background and foreground. Our approach computes the transformation 
matrices by using the extracted optical flow vectors. The stable points (good features 
to track) are determined by the Harris corner [6] detector. The corresponding points 
between frames are verified with the motion vector of the flow field. Instead of using 



RANSAC [7] to compute the homography we implemented a simpler hit-and-miss 
iterative algorithm: every iteration drops the worst points from the dataset, and the 
remaining are the base points for the computation of transformation between frames. 
Figure 3 shows examples of built panoramas. 
 

 

 

Fig. 3. Sample panorama images. Red rectangle shows actual camera position. 

3.2   Motion Detector 

Motion detection and optical flow field extraction steps are required for many of the 
system’s filters, as a base for higher processing stages. But the extracted flows can 
also be used for other purposes, e.g. the simple task of raising alarms when any type 
of motion occurs on a surveyed area. In this case, the interface’s panorama image 
pane gives the possibility to mark a certain area of interest with the mouse, and alarms 
will be raised when motions occur over the masked area. This function can be used to 
automatically signal e.g. the departure or arrival of a car, open/close of a door/gate, or 
any activity over a security area (e.g. Figure 4). 
 

 

Fig. 4. Motion detector on masked area of interest (blue: mask, red: motion). 

3.3   Unusual Global Motion Detector 

For this filter, the goal was to detect unusual large motion patterns. Intended use cases 
are, e.g.: 

• Someone goes against the traffic in a one way street: long term statistics 
show one major motion direction, and then a different motion occurs. 

• One lane jams in a two way street: long term statistics show two typical 
motion directions, and then one of them disappears. 



• Accident, traffic jam: statistics show intensive various motions, which 
considerably slows, stops, or drops in variance. 

To achieve this goal, in a learning phase long term global statistics are built from 
direction distributions and typical motion types based on extracted motion fields of 
the image sequence. Then, in the detection phase, we try to fit the actual motion data 
to one of the statistics, and raise alarms when no good fit can be found. 

The motion field extracted from the image sequence is cut every 1t  second into 2t  

long segments, and we take the mean of such segments as a sample. If 21 tt <  then 

we will get overlapping segments, which will help in smoothing the blockiness at 

segment borders. We keep collecting the samples for a 3t  time period, which will 

produce N samples. From the samples directional distributions are constructed, and 
directional histograms are built from the motion fields. The histograms are quantized 
into ε degree bins between 0 and 360. These directional histograms will represent the 
typical motion forms of the scene. 

In the learning phase, the N samples are classified into k classes by K-means 
clustering. Distance between the samples is calculated by L2 norm. K-means needs a k 
to be given a priori, which we overcome by starting with a large class number, then 
performing a class consolidation step. If the means A0, B0 of classes A and B are closer 
than n0, then B is merged into A with a new A0

* mean. In the end we will have k
* 

classes, where k*
<k. 

During the detection phase, a decision step follows, where we try to fit the actual 
sample to the ξj (j=1..k

*) distributions with at most 3σj (jth deviation) discrepancy. If it 
fits none of the distributions, an unusual motion form alarm is raised. Figure 5 shows 
samples from the operation of this filter. 
 

 

 

Fig. 5. Sample frame (top left); flow field and direction histogram (top right: red is the mean 
motion field, green is the directional histogram of the current sample); bottom: directional 
classes, with colored circles as the class mean. 

 



3.4   Unusual Local Motion Mask 

This filter (based on [8]) also detects unusual motion patterns, but in a local manner: 
it operates locally, builds different statistics for parts of the frame, can signal unusual 
patterns at different locations, and can give the mask of the moving object. 

We collect eight-bin motion direction histograms for all image pixels. Larger 
number of bins could enhance the adaptation, but would also increase the uncertainty. 
We assume that the relative occurrence of motion vectors gives an effective estimate 
of the empirical probability: 
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where DirO  is the number of observations in one of the predefined direction classes 

}7,0,45{ =°⋅∈ iiDir . The probability that an observed vector belongs to an 

unusually moving object is DirDir
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. The obtained local statistics are 

smoothed by spatial averaging, with a Mean Shift [9] segmentation step of the 
probabilities. Figure 6 illustrates the estimated and the smoothed motion statistics 
(using discriminating colors). In the detection phase, we use the segmented 
probability map for the estimation of anomalous motion:  
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where each segment iS  is a connected component of the image labeled with a 

probability distribution DirP  obtained by the classification step. 

 

 

Fig. 6. Sample frame, estimated motion statistics (middle) and typical motion fields after 
classification (right). 

The method is based on statistical processing of raw data without object level 
understanding, and uses spatio-temporal information for the analysis of motion. We 
assume that the unusual event happens on at least two consecutive frames, suggesting 
a Markov Chain property: if we find an anomalously moving pixel and we estimated 
its motion direction at time t, then, projecting back onto the previous frame there 
should also be - with high probability - a corresponding anomalous pixel. This is 
formalized as: 

}{max 1,',',
)(

','
,,,

)(
,,

),(
−

∈
⋅= tyxDir

U

Ryx
tyxDir

U
tyx

MU PPP
 



where R is the 5x5 pixel neighborhood of the motion compensated position (x’ and 
y’). 

3.5   Fight Detector 

The algorithm of this filter detects fighting people (a few people or small group), and 
raises an alarm when such disorderly motion patterns are detected in the video stream. 
The tuning of this algorithm is easy and mostly invariant to the characteristics of 
video (spatial resolution, refresh rate, view parameters, etc.). This filter runs in real 
time, on live camera feeds. Trajectories are constructed from multiscale Lucas-
Kanade-tracked [10] Harris corner points [6] through frames. The main steps are as 
follows: 

1. Stationary points are removed. 
2. If the following hold 

• TlengthTlength N maxmin <<  

• curvedkcurved curved maxmin <<  

• varvar max_min CkC curvednorm <<  then increase the alarm counter 

3. If alarmalarm min>  then raise an alarm. 

where: Tlengthmin  and Tlengthmax  are minimal and maximal trajectory lengths, N is 

the actual trajectory length, varmin C  and varmaxC  are the min. and max. curvature 

variances, kcurved is the actual trajectory curvature, and 

• kkk lengthcurvedcurvednorm /_ =  is the normalized curvature 

measure, 

• ( )∑ −= Ntmcurved kkk /
2

 is the deviation from the trajectory’s 

mean, 

• )()0( Nttlength kkk −=  is the distance of the first and last trajectory 

points, and 
• alarm is the number of trajectories where the above shape constraints are 

fulfilled simultaneously. 
Figure 7 shows two excerpts from real feeds where people were fighting, red 

overlay showing the frames where the filter raised an alarm signal. 

3.6   Left and Removed Object Detector 

In conventional video surveillance applications, the aims of background modeling and 
background subtraction modules are usually limited to moving object detection and 
analysis. However, relevant information can be exploited by following the changes in 
the background as well. We implemented a filter, which not only detects objects 
moving in front of the camera, but it detects changes in the static background and 



signals the appearance of new objects (i.e. objects that are brought into the field of 
view, then left there, see Figure 8, or objects that are taken from the field). The 
method can be used to observe abandoned or stolen objects, which is an important 
surveillance task. 
 

  

  

  

  
               a                                         b 

Fig. 7. Fight detector feeds. Red overlay shows frames where fight alarms were raised. 

The proposed method (building on [15]) extends the widely used Gaussian mixture 
background modeling approach of [11]. Each pixel s  is considered as a separate 
process, which generates an observed pixel value sequence over time (t is the time 
index): 

{ })(),(),( ][]2[]1[ sxsxsx t
K  

To model the recent history of the pixels, [11] suggested a mixture of K Gaussians 
distribution: 
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where Kk ,,1K= are unique and in time static id’s of the mixture components, while 

(.)η  is a Gaussian density function, with given µ  mean and σ deviation. We 

ignore multi modal background processes, and consider the background Gaussian 
term to be equivalent to the Gaussian component in the mixture with the largest 
weight.   

The mixture parameters are iteratively refreshed. The weight as updated as follows: 
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The mean and deviation parameters of the mixture components are similarly 
updated. Denote component with the maximal weight by: 
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Hereon, the background model can classify each pixel into three classes: 
foreground, background and changed background as follows: 

• If ( ) 0)(),( ][][
max

][ =sxskM ttt : pixel s is foreground at time t . 

• Else, if )()( ]1[
max

][
max sksk tt −≠ : pixel s  is changed background 

• Else: pixel s  is background at time t . 
 

 



Fig. 8. Left object sample, columns from left to right: input frame, extracted motion and 
object/shadow segmentation, learned background, frames with new object alerts (red shows the 
newly left object) 

3.7   Camera Fail/Tampering Detector 

This filter detects when a periodic camera movement (i.e. automatic panning camera) 
is interrupted by an operator. This is an important case, since the system should run 
on unsupervised feeds and stop when an operator is active. To detect the panning 
period length, a method like [12] is used; a similarity plot is constructed, and then 
projected on a 45 degree line. The actual period length can be calculated as the 
distance between consecutive peaks (Figure 9). 

Detection of the intervention is an online process and must be recognized 
immediately. Building on the Lucas-Kanade [10] algorithm, the method continuously 
registers the frames and calculates the optical flow between them. 
 

 

Fig. 9. The projected similarity plot (left) showing the projected peaks (right). 

After statistical analysis two hysteresis thresholds are calculated. If the value 
calculated from the current optical flow is outside the thresholds an intervention is 
signaled. This indicates that the operator e.g. stopped the panning, zoomed to a region 
of interest, or stopped the movement. 

Sudden significant changes in illumination are also detected by another filter, 
which is useful to signal when e.g. the image gets too dark or too bright (relatively), 
lights are switched on or off in indoor views, the camera gets covered. 

3.8   Annotation 

The application’s interface provides the possibility of annotating frames from 
different feeds. This is possible by selecting a certain feed and the annotation tool, 
and then putting in some text (Figure 10). This annotation will be stored in the 
database, as a viewable, searchable entry (Figure 11). This way it is possible to add 
comments to certain events/scenes to provide an easier way to review and search 
stored details. 



3.9   Archiving 

Without going into details, it should be mentioned that the framework also has the 
traditional capabilities of archiving frames and videos besides events. Frame and 
video archiving can be done automatically in the background, for all or selected feeds, 
with custom frame rates. In the case of events at least a frame will be stored along the 
event in the database, which will become handy when running queries among the 
stored alarm data, showing not just textual and filter data, but also a browseable 
associated frame series. 
 

                                 

Fig. 10. The annotation dialog. 

 

Fig. 11. A sample of searched events, annotation being a separate field among the data. 

3.10   Alerts, Visualization, Retrieval 

When a filter in any of the filter chains signals an alert, a message with the alert 
details and filter data at the time of the alert is sent to the main framework, which 
creates a database entry with the details of the alert and the filter data, also storing a 
captured frame. These data will be searchable, by location, time interval, type of 
alerts, annotation texts, and sample images. Also, the alarm also shows a visual alert 
on the main user interface, in multiple ways, to be easily noticeable. One way of 
visual alerting is shown on Figure 12: each feed has an associated event histogram 
graph, which shows the last events, color coded for different filters. Clicking on a 



graph point brings up a browseable view dialog, showing the alert details (Figure 13). 
Also, searching, viewing, and browsing through the stored events is possible in the 
search and query dialog (Figure 14). 
 

 

Fig. 12. Sample alarm graphs, which show a visual representation of the alerts. Clicking on a 
point in the graph pop up a dialog with alert information (Fig. 13). 

 

Fig. 13. Dialog with alert information and the belonging stored image. Clicking left/right 
makes browsing around the event possible. 

 

Fig. 14. Query/search dialog for reviewing stored event/alarm data and viewing associated 
details. 

Besides textual, time interval, alert type – and so on – searches, a basic content 
based search option is also available. It provides the possibility of selecting an area of 
interest on an alert frame, and search for similar frames in the database (Figure 17). 

The search engine uses local maxima to calculate the distance between scale 
invariant features (SIFT) [13]. The main advantage of this approach is that there is no 
need to search for the two best matchings to compute the ration and the distance. The 
idea came from the analysis of matched SIFT descriptors. All descriptors never fit 
each other completely (Figure 15); they are just very similar to each other (if there is a 
match at all). E.g. rotation causes changes in the feature vector because of the discrete 



transformation but it will not change the local maxima (locmax). In our attempt, when 
using the local maxima only 3 neighboring values are checked so the 128 long 
descriptor may contain not more than 128/3=42 locmax positions. In practice this 
number spans from 15 to 32. 
 

 
1

st
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Fig. 15. Standard way for pairing descriptors (for two sample image pairs). Local maximas take 
the same positions. 

 
Because of the possible difference between the locmax vector lengths, we used the 

DTW (Dynamic Time Warping) algorithm [14] as a distance measure. Using only the 
positions is not enough for the correct distance as the structure of the descriptor is 
determined by both the position and the weight. Before the DTW, we calculate the 
distance between positions vectors, into the distance matrix D: 

p
jpipjiD )(2)(1),( −=  

where p1 and p2 are position vectors and p is the power factor. Then, the matrix is 
corrected using the normalized weights: 

))(2)(11(),(),( jwiwjiDjiD −+⋅=  

where w1 and w2 come from SIFT. The DTW works the classical way, only with a 
different input: instead of vectors, the compensated D matrix is used. The resulting 
distance is used to compare two locmax descriptors: 

kDDTWDist /)(=  

Dimension reduction. The main problem with searching by SIFT descriptors is the 
high dimensionality of the feature space, which is also why fast tree structures (e.g. 
KD-Tree) cannot be used. Our proposed approach uses only the dominant values of 
locmax descriptors. In this case, the significant part of the distance between two 
features is estimated from the most important locmax values instead of the Euclidean 
distance of the whole feature vector. We have found empirically, that the optimal 
dimensionality is 7. The importance of these reduced descriptors is that there is no 
further need for supervised learning in a dimension reduction technique (e.g. 
covariance matrix). The proposed descriptor can be computed by a locmax search and 
a sort algorithm on locmax values. A sample matching using such values is shown in 
Figure 16. 



4   Conclusions, Applications 

We presented an automatic surveillance system, which is intended to be an aid for 
surveillance operators who handle hundreds of feeds, thus being physically unable to 
watch all feeds at once. We presented some of our current filters that are the base of 
the unusual event signaling and review framework. The actual version has been tested 
at local police surveillance stations, and we are working towards creating a finalized 
deployable version. The system is being developed to be as much modular and 
extendable as possible, with easy integration with existing systems. 
 

 

Fig. 16. Sample showing correct matching of locmax SIFT features. 

 

Fig. 17. Browsing by selecting region of interest: select a region, search, browse through 
results, then view associated alert details by double clicking. 
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