
Video Surveillance Framework for Crime Prevention

and Event Indexing

Levente Kovács1, Zoltán Szlávik1, Csaba Benedek1, László Havasi1,
István Petrás1, Dávid Losteiner1, Ákos Utasi2, Attila Licsár2,

László Czúni2, and Tamás Szirányi1

1 Distributed Events Analysis Research Group,

MTA SZTAKI, Hungary
levente.kovacs@sztaki.hu

http://www.sztaki.hu
1 Dept.of Image Processing and Neurocomputing,

University of Pannonia, Hungary
utasi@uni-pannon.hu

http://www.uni-pannon.hu

Abstract. The paper will present a video surveillance and event detection and
annotation framework for semi-supervised surveillance use. The system is
intended to be used in automatic mode on camera feeds that are not actively
watched by surveillance personnel, raising alarms and enrolling annotation data
when unusual events occur. We present the current detector filters, and the
easily extendable modular interface. Current filters include local and global
unusual motion detectors, left object detector, motion detector,
tampering/failure detector, etc. The system stores the events and associated
data, which can be organized, searched, annotated and (re)viewed. It has been
tested in real life situation for police street surveillance, and we are working
towards developing a deployable version.

1 Introduction

While the literature of content based image search contains quite a large number of
proposed and in some cases practical systems, the open literature of real time
surveillance feed analysis is much more limited. Also, processing surveillance feeds
for event detection is mostly done as a post-processing feature, working with archived
footage [1,2], not aiding the operators’ work in real time. [3] is a method based on
tracking moving regions from an aerial view. A system with similar goals is that of
[4] with many architectural and procedural differences, but most importantly our
system provides a wider range of detectors, multiple event alarms, and an easy
modular interface. The presented system is not based on later content based
processing and indexing of archived footage, but runs real time filters on live footage
and signals unusual events, so as to reduce the need to actively and constantly watch
the live feeds. This is important, since in many existing systems a few operators need
to survey hundreds of cameras. At the same time, it has the classical archive

functionalities, which makes it also suitable for eventual later content based data
mining. The filters we present are all real time, and are based on pixel level
approaches complemented with robust statistical evaluation and learning steps. The
framework has been developed as part of a project especially started to produce such
a system for real life application by the local police stations in the city’s districts.

2 System Architecture

In simple terms, the system consists of a user interface and a database backend. The
interface runs on a workstation with dual display, which also contains the multihead
frame grabber cards that accept the camera feeds. The feeds come from large camera
matrix multiplexer stations. The users monitor and use the system through this
interface, while the database backend can be anywhere, given the proper internet
connections. Figure 1 shows a simplified diagram of the general system architecture,
while Figure 2 shows a snapshot of the main interface, handling three feeds.

The main application can handle a maximum of four live camera feeds
simultaneously, and each feed can be assigned a chain of selected detection filters
(which we call filter chains). The feed handlers, the filter chains, and the filters
themselves were all written to be real time, and with SMP and heavy multithreading
in mind; all filters and chains run separately and concurrently. Increasing the number
of available processors can greatly increase the possibility of using more filters on
more feeds. Currently all filters run real time, but a combination of multiple filters on

multiple feeds can quickly run into processing and memory bottlenecks. Thus a
careful selection of hardware and filter combinations is necessary.

Modules/filters can be added easily, either by coding them by using a provided
class template as internal filters, or by a provided a library template, as a plugin.
Either way, the coder needs only focus on developing the core algorithm, interfacing
is seamless.

Fig. 1. Main parts of the system architecture.

Fig. 2. Main interface window.

3 Functions, Modules

In this section we describe some of the more important modules/filters currently
deployed in the framework. The system also contains classical surveillance functions
like image and video archiving, large display of the feeds on a secondary monitor and
so on, which we will not detail here. The functions described here are all automatic
and consist of a panorama image creator from panning camera feeds, maskable
motion detector, camera jump detector for cameras that iterate among different
stationary positions, unusual global and local motion detector, fight detector, left
object detector, camera fail/tampering detector, annotation, search and review of
events. Any order of filter combinations can be assigned to each camera feed
separately, and they will run concurrently and independently of each other. All filters
run automatically, in real time, and need no manual intervention.

3.1 Panorama/Mosaic Image

The need of constructing and displaying a panorama image of the scene arose since
there have been a lot of panning cameras that cover a large field of view. This module
allows us to construct and display the full field of view of a camera for the operator,
and also to identify the actual camera position. The method continuously registers the
incoming frames and builds a mosaic. The properties of these cameras are totally
unknown and different on each camera source. There are some articles (e.g. [5])
dealing with moving cameras but they are not based on statistical approach to
segment background and foreground. Our approach computes the transformation
matrices by using the extracted optical flow vectors. The stable points (good features
to track) are determined by the Harris corner [6] detector. The corresponding points
between frames are verified with the motion vector of the flow field. Instead of using

RANSAC [7] to compute the homography we implemented a simpler hit-and-miss
iterative algorithm: every iteration drops the worst points from the dataset, and the
remaining are the base points for the computation of transformation between frames.
Figure 3 shows examples of built panoramas.

Fig. 3. Sample panorama images. Red rectangle shows actual camera position.

3.2 Motion Detector

Motion detection and optical flow field extraction steps are required for many of the
system’s filters, as a base for higher processing stages. But the extracted flows can
also be used for other purposes, e.g. the simple task of raising alarms when any type
of motion occurs on a surveyed area. In this case, the interface’s panorama image
pane gives the possibility to mark a certain area of interest with the mouse, and alarms
will be raised when motions occur over the masked area. This function can be used to
automatically signal e.g. the departure or arrival of a car, open/close of a door/gate, or
any activity over a security area (e.g. Figure 4).

Fig. 4. Motion detector on masked area of interest (blue: mask, red: motion).

3.3 Unusual Global Motion Detector

For this filter, the goal was to detect unusual large motion patterns. Intended use cases
are, e.g.:

• Someone goes against the traffic in a one way street: long term statistics
show one major motion direction, and then a different motion occurs.

• One lane jams in a two way street: long term statistics show two typical
motion directions, and then one of them disappears.

• Accident, traffic jam: statistics show intensive various motions, which
considerably slows, stops, or drops in variance.

To achieve this goal, in a learning phase long term global statistics are built from
direction distributions and typical motion types based on extracted motion fields of
the image sequence. Then, in the detection phase, we try to fit the actual motion data
to one of the statistics, and raise alarms when no good fit can be found.

The motion field extracted from the image sequence is cut every 1t second into 2t

long segments, and we take the mean of such segments as a sample. If 21 tt < then

we will get overlapping segments, which will help in smoothing the blockiness at

segment borders. We keep collecting the samples for a 3t time period, which will

produce N samples. From the samples directional distributions are constructed, and
directional histograms are built from the motion fields. The histograms are quantized
into ε degree bins between 0 and 360. These directional histograms will represent the
typical motion forms of the scene.

In the learning phase, the N samples are classified into k classes by K-means
clustering. Distance between the samples is calculated by L2 norm. K-means needs a k
to be given a priori, which we overcome by starting with a large class number, then
performing a class consolidation step. If the means A0, B0 of classes A and B are closer
than n0, then B is merged into A with a new A0

* mean. In the end we will have k
*

classes, where k*
<k.

During the detection phase, a decision step follows, where we try to fit the actual
sample to the ξj (j=1..k

*) distributions with at most 3σj (jth deviation) discrepancy. If it
fits none of the distributions, an unusual motion form alarm is raised. Figure 5 shows
samples from the operation of this filter.

Fig. 5. Sample frame (top left); flow field and direction histogram (top right: red is the mean
motion field, green is the directional histogram of the current sample); bottom: directional
classes, with colored circles as the class mean.

3.4 Unusual Local Motion Mask

This filter (based on [8]) also detects unusual motion patterns, but in a local manner:
it operates locally, builds different statistics for parts of the frame, can signal unusual
patterns at different locations, and can give the mask of the moving object.

We collect eight-bin motion direction histograms for all image pixels. Larger
number of bins could enhance the adaptation, but would also increase the uncertainty.
We assume that the relative occurrence of motion vectors gives an effective estimate
of the empirical probability:

∑=
Dir

DirDirDir OOP

where DirO is the number of observations in one of the predefined direction classes

}7,0,45{ =°⋅∈ iiDir . The probability that an observed vector belongs to an

unusually moving object is DirDir
U PP −=1)(

. The obtained local statistics are

smoothed by spatial averaging, with a Mean Shift [9] segmentation step of the
probabilities. Figure 6 illustrates the estimated and the smoothed motion statistics
(using discriminating colors). In the detection phase, we use the segmented
probability map for the estimation of anomalous motion:

DirPiDir SP =
where

},....,{ 21 Ni SSSSS =∈
and

],,,...,[00 Dirnni PyxyxS =
.

where each segment iS is a connected component of the image labeled with a

probability distribution DirP obtained by the classification step.

Fig. 6. Sample frame, estimated motion statistics (middle) and typical motion fields after
classification (right).

The method is based on statistical processing of raw data without object level
understanding, and uses spatio-temporal information for the analysis of motion. We
assume that the unusual event happens on at least two consecutive frames, suggesting
a Markov Chain property: if we find an anomalously moving pixel and we estimated
its motion direction at time t, then, projecting back onto the previous frame there
should also be - with high probability - a corresponding anomalous pixel. This is
formalized as:

}{max 1,',',
)(

','
,,,

)(
,,

),(
−

∈
⋅= tyxDir

U

Ryx
tyxDir

U
tyx

MU PPP

where R is the 5x5 pixel neighborhood of the motion compensated position (x’ and
y’).

3.5 Fight Detector

The algorithm of this filter detects fighting people (a few people or small group), and
raises an alarm when such disorderly motion patterns are detected in the video stream.
The tuning of this algorithm is easy and mostly invariant to the characteristics of
video (spatial resolution, refresh rate, view parameters, etc.). This filter runs in real
time, on live camera feeds. Trajectories are constructed from multiscale Lucas-
Kanade-tracked [10] Harris corner points [6] through frames. The main steps are as
follows:

1. Stationary points are removed.
2. If the following hold

• TlengthTlength N maxmin <<

• curvedkcurved curved maxmin <<

• varvar max_min CkC curvednorm << then increase the alarm counter

3. If alarmalarm min> then raise an alarm.

where: Tlengthmin and Tlengthmax are minimal and maximal trajectory lengths, N is

the actual trajectory length, varmin C and varmaxC are the min. and max. curvature

variances, kcurved is the actual trajectory curvature, and

• kkk lengthcurvedcurvednorm /_ = is the normalized curvature

measure,

• ()∑ −= Ntmcurved kkk /
2

 is the deviation from the trajectory’s

mean,

•)()0(Nttlength kkk −= is the distance of the first and last trajectory

points, and
• alarm is the number of trajectories where the above shape constraints are

fulfilled simultaneously.
Figure 7 shows two excerpts from real feeds where people were fighting, red

overlay showing the frames where the filter raised an alarm signal.

3.6 Left and Removed Object Detector

In conventional video surveillance applications, the aims of background modeling and
background subtraction modules are usually limited to moving object detection and
analysis. However, relevant information can be exploited by following the changes in
the background as well. We implemented a filter, which not only detects objects
moving in front of the camera, but it detects changes in the static background and

signals the appearance of new objects (i.e. objects that are brought into the field of
view, then left there, see Figure 8, or objects that are taken from the field). The
method can be used to observe abandoned or stolen objects, which is an important
surveillance task.

 a b

Fig. 7. Fight detector feeds. Red overlay shows frames where fight alarms were raised.

The proposed method (building on [15]) extends the widely used Gaussian mixture
background modeling approach of [11]. Each pixel s is considered as a separate
process, which generates an observed pixel value sequence over time (t is the time
index):

{ })(),(),(][]2[]1[sxsxsx t
K

To model the recent history of the pixels, [11] suggested a mixture of K Gaussians
distribution:

() ()∑
=

⋅=
K

k

t

k

t

k

tt

k

t sssxswsxP
1

][][][][][)(),(),()()(σµη

where Kk ,,1K= are unique and in time static id’s of the mixture components, while

(.)η is a Gaussian density function, with given µ mean and σ deviation. We

ignore multi modal background processes, and consider the background Gaussian
term to be equivalent to the Gaussian component in the mixture with the largest
weight.

The mixture parameters are iteratively refreshed. The weight as updated as follows:

())(,)()1()(][][][]1[sxkMswsw ttt

k

t

k ⋅+⋅−=+ αα

where the following matching operator is used:

()

<

−
=

otherwise

c
s

ssx
if

sxkM t

k

t

k

t

tt

0
)(

)()(
1

)(,][

][][

][][
σ

µ

The mean and deviation parameters of the mixture components are similarly
updated. Denote component with the maximal weight by:

)(maxarg)(][

,...,1

][
max swsk t

k
Kk

t

=
=

Hereon, the background model can classify each pixel into three classes:
foreground, background and changed background as follows:

• If () 0)(),(][][
max

][=sxskM ttt : pixel s is foreground at time t .

• Else, if)()(]1[
max

][
max sksk tt −≠ : pixel s is changed background

• Else: pixel s is background at time t .

Fig. 8. Left object sample, columns from left to right: input frame, extracted motion and
object/shadow segmentation, learned background, frames with new object alerts (red shows the
newly left object)

3.7 Camera Fail/Tampering Detector

This filter detects when a periodic camera movement (i.e. automatic panning camera)
is interrupted by an operator. This is an important case, since the system should run
on unsupervised feeds and stop when an operator is active. To detect the panning
period length, a method like [12] is used; a similarity plot is constructed, and then
projected on a 45 degree line. The actual period length can be calculated as the
distance between consecutive peaks (Figure 9).

Detection of the intervention is an online process and must be recognized
immediately. Building on the Lucas-Kanade [10] algorithm, the method continuously
registers the frames and calculates the optical flow between them.

Fig. 9. The projected similarity plot (left) showing the projected peaks (right).

After statistical analysis two hysteresis thresholds are calculated. If the value
calculated from the current optical flow is outside the thresholds an intervention is
signaled. This indicates that the operator e.g. stopped the panning, zoomed to a region
of interest, or stopped the movement.

Sudden significant changes in illumination are also detected by another filter,
which is useful to signal when e.g. the image gets too dark or too bright (relatively),
lights are switched on or off in indoor views, the camera gets covered.

3.8 Annotation

The application’s interface provides the possibility of annotating frames from
different feeds. This is possible by selecting a certain feed and the annotation tool,
and then putting in some text (Figure 10). This annotation will be stored in the
database, as a viewable, searchable entry (Figure 11). This way it is possible to add
comments to certain events/scenes to provide an easier way to review and search
stored details.

3.9 Archiving

Without going into details, it should be mentioned that the framework also has the
traditional capabilities of archiving frames and videos besides events. Frame and
video archiving can be done automatically in the background, for all or selected feeds,
with custom frame rates. In the case of events at least a frame will be stored along the
event in the database, which will become handy when running queries among the
stored alarm data, showing not just textual and filter data, but also a browseable
associated frame series.

Fig. 10. The annotation dialog.

Fig. 11. A sample of searched events, annotation being a separate field among the data.

3.10 Alerts, Visualization, Retrieval

When a filter in any of the filter chains signals an alert, a message with the alert
details and filter data at the time of the alert is sent to the main framework, which
creates a database entry with the details of the alert and the filter data, also storing a
captured frame. These data will be searchable, by location, time interval, type of
alerts, annotation texts, and sample images. Also, the alarm also shows a visual alert
on the main user interface, in multiple ways, to be easily noticeable. One way of
visual alerting is shown on Figure 12: each feed has an associated event histogram
graph, which shows the last events, color coded for different filters. Clicking on a

graph point brings up a browseable view dialog, showing the alert details (Figure 13).
Also, searching, viewing, and browsing through the stored events is possible in the
search and query dialog (Figure 14).

Fig. 12. Sample alarm graphs, which show a visual representation of the alerts. Clicking on a
point in the graph pop up a dialog with alert information (Fig. 13).

Fig. 13. Dialog with alert information and the belonging stored image. Clicking left/right
makes browsing around the event possible.

Fig. 14. Query/search dialog for reviewing stored event/alarm data and viewing associated
details.

Besides textual, time interval, alert type – and so on – searches, a basic content
based search option is also available. It provides the possibility of selecting an area of
interest on an alert frame, and search for similar frames in the database (Figure 17).

The search engine uses local maxima to calculate the distance between scale
invariant features (SIFT) [13]. The main advantage of this approach is that there is no
need to search for the two best matchings to compute the ration and the distance. The
idea came from the analysis of matched SIFT descriptors. All descriptors never fit
each other completely (Figure 15); they are just very similar to each other (if there is a
match at all). E.g. rotation causes changes in the feature vector because of the discrete

transformation but it will not change the local maxima (locmax). In our attempt, when
using the local maxima only 3 neighboring values are checked so the 128 long
descriptor may contain not more than 128/3=42 locmax positions. In practice this
number spans from 15 to 32.

1

st
 pair 2

nd
 pair

Fig. 15. Standard way for pairing descriptors (for two sample image pairs). Local maximas take
the same positions.

Because of the possible difference between the locmax vector lengths, we used the

DTW (Dynamic Time Warping) algorithm [14] as a distance measure. Using only the
positions is not enough for the correct distance as the structure of the descriptor is
determined by both the position and the weight. Before the DTW, we calculate the
distance between positions vectors, into the distance matrix D:

p
jpipjiD)(2)(1),(−=

where p1 and p2 are position vectors and p is the power factor. Then, the matrix is
corrected using the normalized weights:

))(2)(11(),(),(jwiwjiDjiD −+⋅=

where w1 and w2 come from SIFT. The DTW works the classical way, only with a
different input: instead of vectors, the compensated D matrix is used. The resulting
distance is used to compare two locmax descriptors:

kDDTWDist /)(=

Dimension reduction. The main problem with searching by SIFT descriptors is the
high dimensionality of the feature space, which is also why fast tree structures (e.g.
KD-Tree) cannot be used. Our proposed approach uses only the dominant values of
locmax descriptors. In this case, the significant part of the distance between two
features is estimated from the most important locmax values instead of the Euclidean
distance of the whole feature vector. We have found empirically, that the optimal
dimensionality is 7. The importance of these reduced descriptors is that there is no
further need for supervised learning in a dimension reduction technique (e.g.
covariance matrix). The proposed descriptor can be computed by a locmax search and
a sort algorithm on locmax values. A sample matching using such values is shown in
Figure 16.

4 Conclusions, Applications

We presented an automatic surveillance system, which is intended to be an aid for
surveillance operators who handle hundreds of feeds, thus being physically unable to
watch all feeds at once. We presented some of our current filters that are the base of
the unusual event signaling and review framework. The actual version has been tested
at local police surveillance stations, and we are working towards creating a finalized
deployable version. The system is being developed to be as much modular and
extendable as possible, with easy integration with existing systems.

Fig. 16. Sample showing correct matching of locmax SIFT features.

Fig. 17. Browsing by selecting region of interest: select a region, search, browse through
results, then view associated alert details by double clicking.

Acknowledgments. This work has been supported by MUSCLE (FP6-507752) and
JUMAS (FP7-214306) projects.

References

1. A. Hampapur, L. Brown, R. Feris, A. Senior, S. Chiao-Fe, Y. Tian, Y. Zhai and Max Lu,
“Searching surveillance video”, In Proc. of AVSS 2007, pp. 75-80.

2. J. Meessen, M. Coulanges, X. Desurmont and J.F. Delaigle, "Content-Based Retrieval of
Video Surveillance Scenes," Multimedia Content Representation, Classification and
Security, 2006.

3. G. Medioni, I. Cohen, F. Bremond, S. Hongeng, R. Nevatia, “Event detection and analysis
from video streams”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, no.
8, pp. 873 – 889, 2001.

4. A. Adam, E. Rivlin, I. Shimshoni and D. Reinitz, “Robust Real-Time Unusual Event
Detection using Multiple Fixed-Location Monitors”, IEEE Trans. on Pattern Analysis and
Machine Intelligence , vol. 30, no. 3, pp. 555-560, 2008.

5. R. Cucchiara, A. Prati and R. Vezzani, "Advanced Video Surveillance with Pan Tilt Zoom
Cameras" In Proc. of Workshop on Visual Surveillance (VS) at ECCV 2006.

6. C. Harris and M.J. Stephens, “A combined corner and edge detector”. Alvey Vision
Conference, pp. 147–152, 1988.

7. M.A. Fischler and R.C. Bolles, "Random Sample Consensus: A Paradigm for Model Fitting
with Applications to Image Analysis and Automated Cartography". Comm. of the ACM 24,
pp. 381–395, 1981.

8. Á. Utasi and L. Czúni, "Anomaly Detection with Low-level Processes in Videos", The 3rd
International Conference on Computer Vision Theory and Applications, pp. 678-681,
VISAPP 2008.

9. D. Comaniciu and P. Meer, "Mean Shift: A Robust Approach Toward Feature Space
Analysis", IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (5), pp. 603-
619, 2002.

10. B.D. Lucas and T. Kanade, “An iterative image registration technique with an application to
stereo vision”. In Proc. of Imaging understanding workshop, pp 121-130, 1981.

11. C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for real time
tracking,” In Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 22–29,
1999.

12.R. Cutler and L. Davis, "Robust Real-Time Periodic Motion Detection, Analysis, and
Applications," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 22 No. 8,
pp.781-796, 2000.

13.D.G. Lowe, "Object recognition from local scale-invariant features," In Proc. of ICCV,
1999, pp. 1150-1157.

14.C. S. Myers and L. R. Rabiner, “A comparative study of several dynamic time-warping
algorithms for connected word recognition”, The Bell System Technical Journal,
60(7):1389-1409, 1981.

15.Cs. Benedek and T. Szirányi:, “Bayesian Foreground and Shadow Detection in Uncertain
Frame Rate Surveillance Videos”, IEEE Trans. on Image Processing, vol. 17, no. 4. pp. 608-
621, 2008.

