
Combining Unstructured, Fully Structured and
Semi-Structured Information in Semantic Wikis

Rolf Sint1, Sebastian Schaffert1, Stephanie Stroka1 and Roland Ferstl2

1 {firstname.surname}@salzburgresearch.at
Salzburg Research

Jakob Haringer Str. 5/3
5020 Salzburg

Austria
2 roland.ferstl@siemens.com

Siemens AG (Siemens IT Solutions and Services)
Werner von Siemens-Platz 1

5020 Salzburg
Austria

Abstract. The growing impact of Semantic Wikis deduces the impor-
tance of finding a strategy to store textual articles, semantic metadata
and management data. Due to their different characteristics, each data
type requires a specialized storing system, as inappropriate storing re-
duces performance, robustness, flexibility and scalability. Hence, it is
important to identify a sophisticated strategy for storing and synchro-
nizing different types of data structures in a way they provide the best
mix of the previously mentioned properties.
In this paper we compare fully structured, semi-structured and unstruc-
tured data and present their typical appliance. Moreover, we discuss
how all data structures can be combined and stored for one application
and consider three synchronization design alternatives to keep the dis-
tributed data storages consistent. Furthermore, we present the semantic
wiki KiWi, which uses an RDF triplestore in combination with a re-
lational database as basis for the persistence of data, and discuss its
concrete implementation and design decisions.

1 Introduction

Although the promise of effective knowledge management has had the indus-
try abuzz for well over a decade, the reality of available systems fails to meet
the expectations. The EU-funded project KiWi - Knowledge in a Wiki project
sets out to combine the wiki method of collaborative content creation with the
technologies of the Semantic Web to bring knowledge management to the next
level. Combining a Wiki with Semantic Web technologies results in three types
of content:

Wiki Articles, which are basically unstructured textual content,
Management Data, like authors, creation dates and revisions, and

2

Semantic Metadata, which provide flexibility and spreading of the data
about KiWi ‘s contents.

In this paper we explain the differences of data storage for these data types.
We describe our choice of design and illustrate its usefulness for Semantic Social
Software Applications. Furthermore, we explain how these three different ap-
proaches can be integrated in a single application, which is build with the Java
Enterprise Edition (Java EE)1 platform.

We present and discuss three different kinds of data: structured, unstruc-
tured and semi-structured. We discuss the weaknesses and strengths of each of
them and describe that for a semantic social software application a combination
of them brings advantages in form of an improved flexibility and performance.
Furthermore, we describe several ways and designs how an application can im-
plement the different ways of persisting data. The main challenge by developing
an application which uses different data storages is to define a common interface
for the access of data and to guarantee the synchronization of the different data
storages.

Chapter 2 discusses the benefits, techniques and differences of structured,
unstructured and semi-structured data. For this discussion examples for each
paradigm are compared: An Apache Lucene full-text index for unstructured
data, a relational database for fully structured data and an RDF triplestore for
semi-structured data.

Chapter 3 describes several design patterns, which were used within KiWi to
combine the three different approaches, focusing on the combination of relational
databases and RDF triplestores. This chapter tries to answer the question which
data should be stored where and discusses the decisions taken by the KiWi
project.

Chapter 4 gives an overview of related work and chapter 5 summarizes the
practical relevance of this approach.

2 Structured, Unstructured and Semi-Structured Data

In the semantic wiki KiWi we need all three kinds of data: structured, unstruc-
tured and semi-structured. This chapter presents and compares the different
forms of data and gives examples and state-of-the-art techniques. Finally, a tab-
ular overview of the different kinds of data structures is given.

2.1 Unstructured Data

According to[1], the term unstructured refers to the fact that no identifiable
structure within this kind of data is available. Unstrucured data is also described
as data, that cannot be stored in rows and columns in a relational database.

Storing data in an unstructured form without any defined data schema is
a common way of filing information. An example for unstructured data is a
document that is archived in a file folder. Other examples are videos and images.
1 http://java.sun.com/javaee/

http://java.sun.com/javaee/

3

The advantage of unstructured data is, that no additional effort on its clas-
sification is necessary. A limitation of this kind of data is, that no controlled
navigation within unstructured content is possible.

A common technology to search in unstructured text documents is full-text
search. The advantage of full-text search is, that it is completely decoupled from
the data. This makes it very flexible, because it can be used on every kind of
textual data, even if no schema or structure is defined. One limitation of full-text
search is that it cannot be used to search for pictures or videos.

Full-Text Search can be optimized by generating a full-text index, that in-
creases the performance of a full-text search query. A famous full-text search
engine library is Apache Lucene2 . Other examples are MySql3 and Postgres
indixes4.

2.2 Fully Structured Data

Fig. 1: Sample Table in a Relational Database System

Fully structured data follows a predefined schema. ”An instance of such a
schema is some data that conforms to this specification,”[2]. A typical example
for fully structured data is a relational database system. Designing a database
schema is an elaborate process, because a schema has to be defined before the
content is created and the database is populated. The schema defines the type
and structure of data and its relations. Figure 1 illustrates an Entity Relation-
ship diagram (ER-diagram) and its concrete tables within a RDBMS (relational
database management system).

”The well-defined schema of fully structured data enables efficient data pro-
cessing and an improved storage and navigation of content,”[2, page 122]. The

2 http://lucene.apache.org
3 http://dev.mysql.com/doc/refman/5.0/en/mysql-indexes.html
4 http://www.postgresql.org/docs/7.4/static/indexes.html

http://lucene.apache.org
http://dev.mysql.com/doc/refman/5.0/en/mysql-indexes.html
http://www.postgresql.org/docs/7.4/static/indexes.html

4

cost for high performance and navigation is flexibility and scalability. It is diffi-
cult to subsequently extend a previously defined database schema that already
contains content. For example, it is not possible to extend a single table row with
a new attribute without creating another table column. This is unprofitable for
tables that contain thousands of other rows that do not need another attribute.

An advantage of relational database applications are the existing tools and
web frameworks, which support the development of database-focused appli-
cations. For instance, Hibernate5 and Oracle TopLink6 are Object/Relational
(O/R) Mapping frameworks, which map classes and objects to relational database
tables and rows. Moreover, there exist several practical tools for maintenance,
management and administration of relational database systems.

2.3 Semi-Structured Data

Fig. 2: Sample RDF Graph

Semi-structured data is often explained as ”...schemaless or self-describing,
terms that indicate that there is no separate description of the type or struc-
ture of the data”[2, page 11]. Semi-structured data does not require a schema
definition. This does not mean that the definition of a schema is not possible,
it is rather optional. The instances do also exist in the case that the schema
changes. Furthermore, a schema can also be defined according to already exist-
ing instances (posteriori). The types of semi-structured data instances may be
defined for a part of the data and it is also possible that a data instance has
more than one type[2].

One of the strengths of semi-structured data is ”... the ability to accommo-
date variations in structure”[2, page 12]. This means that data may be created
according to a specification or close to a type. For instance, fields can be du-
plicated, data can be lacking or there may exist minor changes[2]. Figure 2
illustrates a graph representation of semistructured data. Figure 4 illustrates
the same schema as in Figure 3, with the difference that the instance model has
an additional property, which is not defined in the schema model.
5 http://www.hibernate.org/
6 http://www.oracle.com/technology/products/ias/toplink/index.html

http://www.hibernate.org/
http://www.oracle.com/technology/products/ias/toplink/index.html

5

Fig. 3: RDF Schema (RDFS) and two instances

Fig. 4: RDFS and a flexible instance

6

A typical example of semi-structured data is XML, which is a language for
data representation and exchange on the web. In XML data can be directly
encoded and a Document Type Definition (DTD) or XML Schema (XMLS) may
define the structure of the XML document[2].

In the research fields of the Semantic Web, knowledge is encoded in Resource
Description Framework (RDF) triples[3], which store data in the form of subject,
predicate and object nodes. The RDF Schema (RDFS)[4] vocabulary definition
language allows the definition of classes and properties. In the World Wide Web
RDF is used as a language that provides metadata to web resources.

2.4 Transformation of Data

In KiWi, data sometimes needs to be transformed from one structure into an-
other. For instance, fully structured data is converted into unstructured data
when a user generates a PDF out of a wiki article and its management data
like author, creation date and so forth. It is also possible to convert data from
a database into semi-structured data, like an RDF graph. Several modern web
applications use RSS feeds , which are generated by reading data of a relational
database and provide it in RDF format.

On the contrary, it is more complex to transform unstructured informa-
tion into semi- or fully structured information. KiWi structures textual content
with techniques of information extraction and natural language processing. Tags,
which describe the content of a text, are automatically extracted out of a wiki
article. In this way the unstructured data can be converted into semi-structured
data.

2.5 Comparison and relevance for an application

It can be summarized, that the high degree of typing enables a better perfor-
mance and less flexibility.

Serge Abiteboul, Peter Buneman and Dan Suciu define several reasons why
defining a structure is good for[2]:

– to optimize query evaluation,
– to improve storage,
– to construct indexes,
– to describe the database content to the user and facilitate query formulation,
– to proscribe certain updates, and
– to support strongly typed languages.

Table 1 gives an overview over the strengths and weaknesses of the different
storing structures in technology fields that may be important in practice.

2.6 Conceptual Federation of Relational Databases and Triplestores

To know how to combine a relational database and a triplestore we have to
consider what data is stored where. Therefore, we review the strengths and

7

Unstructured Fully Structured Semi-Structured

Technology Character and Relational XML/RDF
binary data database tables

Transaction No transaction Matured transaction Transaction management
Management management, management, various adapted from RDBMS,

no concurrency concurrency techniques not matured

Version Versioned as Versioning over Not very common,
Management a whole tuples, rows, versioning over

tables, etc. triples or graphs
is possible

Flexibility Very flexible, Schema-dependent, Flexible, tolerant
absence of schema rigorous schema schema

Scalability Very scalable Scaling DB Schema scaling
schema is difficult is simple

Robustness - Very robust, New technology,
enhancements since not widely spread
30 years

Query- Only textual Structured Query Queries over
Performance queries possible allows complex joins anonymous nodes

are possible

Table 1: Comparison of unstructured, fully structured and semi-structured con-
tent

weaknesses of different data structures and discuss the demand of structure
characteristics for specific data sets. A relational database stores fully structured
data, which necessarily have a predefined schema. Relational databases provide
the application with a high query-performance and fast joins. Vulnerabilities
are rare since more than 30 years of research, development and improvement
eliminated most of them and increased the robustness.

Semi-structured data like RDF data does not have to predefine a schema and
is very scalable and flexible. Furthermore, RDF and OWL7 allow the definition
of logical rules and many applications implement an inference layer that infers
new triples by reasoning over the existing data set.

Thus, data that has a predefined schema, that is sensitive and that is often
queried should be stored in a relational database. Data that is added to the
application lately (e.g. data for extensions or plug-ins) and data that might be
important for reasoning should be stored in the triplestore. Figure 5 provides
a quick overview over the division into relational database data and triplestore
data. As one can see, the data sets are partially overlapping.

7 http://www.w3.org/TR/owl-features/

http://www.w3.org/TR/owl-features/

8

Sensitive
Management
Data

Non-sensitive Data

Plug-In &
Extension Data

Data that can
be access from other
applications or agents

Automatical ly or
manual ly generated
data dur ing runt ime

Core Component
Management Data

Triplestore
Relational Database

Data with a
predefined
schema

Versioned Data

Fig. 5: Overlapping data sets stored in the triplestore and in the relational
database

3 Data representation in KiWi

Combining structured and unstructured data is an often applied strategy in web
applications to achieve the advantages of both persistence types. The employ-
ment of all three alternatives, however, is uncommon.

KiWi is a platform for Semantic Social Software applications, implemented
with Java EE technologies. We decided to store data in a semi-structured form,
because we wanted to attain a better flexibility and scalability than provided
by the structured form. We also wanted to store data in a robust database with
good query and join performance. We have to control a big amount of textual
content, which needs to be queried for keywords.

Hence, we decided to combine unstructured, structured and semi-structured
data storage and segmented the data into long textual content (unstructured),
core component data (fully structured) and flexible data (semi-structured). For
a better clarity, Table 2 visualizes the segmentation. The sets of fully structured
and semi-structured data are overlapping, because we represent the non-sensitive
core data additionally in the triplestore to get a complete data set that can be
provided to other Semantic Web Applications (e.g. Linked Data8).

3.1 Three possible Levels of Synchronization

Applications that store data in a triplestore as well as in a relational database
have to implement a synchronization mechanism to keep information consistent.
Such a synchronization mechanism can be implemented on different layers of an
application.
8 http://linkeddata.org

9

Content Type Example

Unstructured Textual Content Wiki Articles,
Blog Pages

Fully Structured Sensitive Content & ContentItem,
System Maintenance Data
Core Component Data User data

Semi-Structured Non-sensitive Core ContentItem-extending
Component Data, Flexible Data, Use Case Data
Content & Individual Data

Table 2: Persistence alternatives and apportioned content

Database Layer Synchronization on the database layer is implemented
by forcing a data storage (e.g. database) to update another data storage (e.g.
triplestore) when a data item changed. For instance, every time an application
writes on a database, the according operation could be executed on the triple-
store, which might be hold in the database. This could be implemented using
database triggers or Java EE persistence interceptors. Another possibility is that
the triplestore is generated automatically from the entries within the database.
Hence, the triplestore could be updated regularly. In both variants the database
is defined as master and the triplestore is defined as slave. This design is illus-
trated in Figure 6.

This design benefits from high performance and good integration of relational
databases into existing software technology stacks (e.g. Java EE). Furthermore,
functions provided by a triplestore, like reasoning, are possible, because the data
also exists in a semi-structured form. The disadvantage is that this design does
not offer the flexibility of semi-structured data, and that the application has
read only access to one data storage.

An alternative design is a bi-directional trigger synchronisation between rela-
tional database and triplestore. The triplestore, as well as the relational database
can update each other with database triggers. The advantage of this design is
that it allows writing access to both data storages. This design is illustrated in
Figure 7. The limitation is, that some updates on the triplestore cannot be pro-
cessed on the database and must be forbidden to keep consistency. Therefore,
this design does not support the full flexibility of semi-structured data, too.

O/R Mapping Tool O/R mapping tools provide another layer for synchroni-
sation. This design is illustrated in Figure 8. For instance, the Java Persistence
API (JPA)9 could be extended to persist Java objects in the database as well as
in the triplestore. This encloses the translation of JpaQL (JavaPersistenceApi-
QueryLanguage)10 queries into triplestore queries. This approach decouples the

9 http://java.sun.com/developer/technicalArticles/J2EE/jpa/
10 http://java.sun.com/javaee/5/docs/tutorial/doc/bnbtg.html

10

Fig. 6: Database defined as master
and triplestore defined as slave

Fig. 7: Triplestore and database up-
date each other

persistence layer from the application layer, and, therefore, provides the flexi-
bility of semi-structured data. Thus, additional attributes of an object may be
defined during the runtime of an application and persisted in a triplestore. This
may be realized using Aspect Oriented Programming (AOP)11 techniques or
dynamic languages like Groovy12. With this approach, distributed queries over
several datasources could be realized.

Fig. 8: Extension of the JPA with a triplestore module to guarantee consistency

11 http://www.eclipse.org/aspectj/
12 http://groovy.codehaus.org/

11

Application Layer / Middleware Layer Another alternative to guarantee
the synchronisation of data is to implement it in the middleware or application
layer. This layer could use normal JpaQL queries for the database as well as
SPARQL commands to query the triplestore. This design is illustrated in Figure
9. A different alternative is to provide a general purpose query language for
both data stores. In this way, distributed reasoning over the triplestore, as well
as over the data in the relational database system could be enabled. This design
is illustrated in Figure 10.

Fig. 9: Middleware layer which han-
dles the persistence of data

Fig. 10: General purpose query lan-
guage

3.2 Integration of a triplestore in the Java EE stack

We decided to choose the Application Layer for synchronization, because it
grants us flexibility to improve weaknesses and to enforce the strengths of each
data structure type. First, we will give you an overview over the triplestore
position inside of KiWi.

Figure 11 illustrates the overall structure of KiWi. The combination of triple-
store and relational database can be found in the Persistence and Data Model
layers. As an RDF triplestore KiWi currently uses Sesame2 13. The relational
database connection is enabled through Hibernate with JPA. Storage configu-
rations for relational database and triplestore can be applied with Java annota-
tions.

13 http://www.openrdf.org/

12

Fig. 11: KiWi‘s overall structure, adapted from[5]

Transactional synchronization As Table 1 illustrated, transaction manage-
ment for unstructured and semi-structured data is not very common or ma-
tured. Though, storing data in those federated, heterogeneous databases needs
to be controlled to avoid states of inconsistency. A global transaction manage-
ment is the easiest way to administer all three data structure types in terms of
their transactions. JBoss Seam[6], Hibernate/JPA[7], and Enterprise Java Beans
(EJB)[8] provide us with diverse techniques to control transactions programmat-
ically and declaratively, for example:

Java Transaction API , also called JTA14 specifies standard Java interfaces
for Java Enterprise Applications implemented by the application server[9].

Seam Transactions extend JTA UserTransactions with useful functionality,
for example the registration of a synchronization implementation[6].

EntityManager Transactions are provided by Hibernate/JPA for program-
matic transaction management to start and stop transactions explicitly[10].

Programmatic transaction processing requires the definition of a start and
end time for the transaction. It allows flexible pre- and post-treatment of the
application when the transaction ends. Declarative transaction processing, on the
other hand, is simpler than programmatic transaction management, because the
transaction start and end time is managed by the container[11]. To control the
behaviour before and after a transaction ends in applications using declarative

14 http://java.sun.com/javaee/technologies/jta/index.jsp

13

transaction processing, a synchronization implementation can be registered[9]. In
KiWi we use the before-completion phase to synchronize the relational database
state with the triplestore state. Thus, updates to both databases will be executed
simultaneously at the end of a transaction. Figure 12 illustrates the process. If
an update fails, the whole transaction including changes on both databases will
be rolled back.

A more detailed description of the transaction models in Java Enterprise
Applications, the concurrency problems that triplestores must consider and the
database synchronization is given in [12].

T x s t a r t

r e a d f r o m r e l . d a t a b a s e

o r / a n d t r i p l e s t o r e

m a k e l o c a l c h a n g e s

t o t h e d a t a i t e m s

r e a c h b e f o r e -

c o m p l e t i o n p h a s e

s t o r e c h a n g e s

i n t r i p l e s t o r e

t r i p l e s t o r e

upda te f a i l s

t r i p l e s t o r e

 u p d a t e s u c c e e d s

ro l lback Tx

T x e n d

c o m m i t T x

T x e n d

re l DB

u p d a t e f a i l s

r e l D B u p d a t e

s u c c e e d s

Fig. 12: Transactional synchronization process

Data Versioning Versioning of unstructured, semi-structured and fully struc-
tured data is an important core functionality of KiWi. RDF triple versioning is
uncommon and few well-established RDF repositories allow versioning. Sesame2
puts RDF triples internally under version control, but it does not enable undo
or redo functions.

With the chosen transaction strategy we can easily implement version-control
of unstructured, semi-structured and fully structured data. At the end of a trans-
action, updates for all kinds of data are creates and stored as revisioning and
update tables in the relational database. This design was chosen to collect all
versioning data in a robust database, to enable easy querying, and, consequently,

14

to allow fast undo and redo functionality for all kinds of data. Versioning data
has a pre-defined schema that will not be changed in the future.

Query & Reasoning With the chosen level of synchronization it is possible to
create a query language for all kinds of data. KiWi enables this global querying
that interprets to SQL and SPARQL15 queries. Furthermore, reasoning is not
limited to the RDF repository anymore. The interested reader is referred to [13]
for a more detailed discussion about this issue.

4 Related Work

In the following we provide an overview over implementations of semi-structured
data into existing application stacks. Elmo[14] is a Java library for Semantic Web
applications that maps Java classes to RDFS/OWL classes. Another implemen-
tation of a server which offers access to different representations of data is Vir-
tuoso, ”... which is a database engine hybrid that combines the functionality of
a traditional RDBMS, ORDBMS, virtual database, RDF, XML, free-text, Web
Application Server and File Server functionality in a single server product”[15].

5 Conclusion

The main advantage of fully structured data is the strong typing which enables
high performance and efficiency. On the other hand, unstructured and semi-
structured data allow a higher degree of flexibility. In this paper we compared
unstructured, semi-structured and fully structured information and discussed an
application design which combines all three types of data, based on a relational
database system combined with an RDF triplestore. We illustrated this design on
the concrete implementation of the semantic wiki KiWi. We saw that a challenge
for such an application is to avoid states of inconsistency and present three
different layers where a synchronisation of data within an application could be
implemented:

1 On a low level database layer,
2 On the he O/R mapping layer, and
3 On the application layer.

In KiWi the synchronisation of data is implemented on the application layer
because it offers database independence and enables the implementation of a
common query language for all different data stores.

15 http://www.w3.org/TR/rdf-sparql-query/

15

References

1. Blumberg, R., Atre, S.: The Problem with Unstructured Data. http://www.

dmreview.com/issues/20030201/6287-1.html (19.02.2009) (2003)
2. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: from relations to

semistructured data and XML. Morgan Kaufmann Publishers Inc. San Francisco,
CA, USA (1999)

3. Manola, F., Miller, E.: Resource Description Framework (RDF):Concepts and
Abstract Syntax. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

(19.02.2009) (2004)
4. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema.

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/ (19.02.2009) (2004)
5. Schaffert, S., Sint, R., Grünwald, S., Stroka, S.: The KiWi Architecture. (2008)
6. Allen, D.: Seam in Action. Manning Publications Co. Greenwich, CT, USA (2008)
7. Bauer, C.: Java Persistence with Hibernate. Manning Publications Co. Greenwich,

CT, USA (2006)
8. DeMichiel, L., Keith, M.: JSR 220: Enterprise JavaBeansTM,Version 3.0. http:

//java.sun.com/products/ejb/docs.html (20.02.2009) (2006)
9. Cheung, S., Matena, V.: Java Transaction API (JTA). http://java.sun.

com/javaee/technologies/jta/index.jsphttp://java.sun.com/javaee/

technologies/jta/index.jsp (19.02.2009) (2002)
10. : javax.persistence.EntityTransaction Interface JavaDoc. http://java.sun.com/

javaee/5/docs/api/javax/persistence/EntityTransaction.html (11.02.2009)
(unknown)

11. Connolly, T., Begg, C.: Database Systems: A Practical Approach to Design, Im-
plementation, and Management. Addison Wesley Publishing Company (2005)

12. Stroka, S.: Transaction Management in Federated, Heterogeneous Database Sys-
tems for Semantic Social Software Applications. (2009)

13. Francois Bry, Michael Eckert, J.K., Weiand, K.: What the User interacts with:
Reflections On Conceptual Models For Semantic Wikis. (2009)

14. Leigh, J.: Elmo User Guide. http://www.openrdf.org/doc/elmo/1.4/

user-guide/index.html (19.02.2009) (2008)
15. Virtuoso: Virtuoso Universal Server. http://virtuoso.openlinksw.com (2009)

http://www.dmreview.com/issues/20030201/6287-1.html
http://www.dmreview.com/issues/20030201/6287-1.html
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/javaee/technologies/jta/index.jsphttp://java.sun.com/javaee/technologies/jta/index.jsp
http://java.sun.com/javaee/technologies/jta/index.jsphttp://java.sun.com/javaee/technologies/jta/index.jsp
http://java.sun.com/javaee/technologies/jta/index.jsphttp://java.sun.com/javaee/technologies/jta/index.jsp
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityTransaction.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityTransaction.html
http://www.openrdf.org/doc/elmo/1.4/user-guide/index.html
http://www.openrdf.org/doc/elmo/1.4/user-guide/index.html
http://virtuoso.openlinksw.com

	Combining Unstructured, Fully Structured and Semi-Structured Information in Semantic Wikis
	Rolf Sint1, Sebastian Schaffert1, Stephanie Stroka1 and Roland Ferstl2
	Introduction
	Structured, Unstructured and Semi-Structured Data
	Unstructured Data
	Fully Structured Data
	Semi-Structured Data
	Transformation of Data
	Comparison and relevance for an application
	Conceptual Federation of Relational Databases and Triplestores

	Data representation in KiWi
	Three possible Levels of Synchronization
	Integration of a triplestore in the Java EE stack

	Related Work
	Conclusion

