
Proceedings of the
Fourth Workshop on Semantic Wikis

– The Semantic Wiki Web
6th European Semantic Web Conference
Hersonissos, Crete, Greece, June 2009

edited by Christoph Lange

June 1, 2009





Preface

Dear Reader,
after a successful year, the semantic wiki community is meeting again to have their 4th

workshop. A lot has happened after the previous workshop: People have invested further
research and development into existing systems to make them more mature: Three out
of 15 presentations in this workshop are about evolutions of systems presented in 2008.
The community has further grown and become aware of new application areas, mainly
thanks to the Ontolog teleconference series on semantic wikis1. Another indication of
maturity is that, while research is still as creative and dynamic as ever, implementation
of semantic wiki technologies largely concentrates on few successful platforms that are
extensible by plugins, most notably (Semantic) MediaWiki and KiWi (8 out of 15 talks
in this workshop). And these technologies are not necessarily limited to wikis. Using
a wiki is not an end in itself, but, depending on the application, any semantic social
software will get the task done: Systems that are no longer called “wikis” have adopted
key principles of wikis, such as ubiquitous interlinking and easy collaboration. Thus, the
semantic wiki community is giving their findings back into the larger Semantic Web. In
2006, when our first workshop took place, many semantic web researchers jumped onto
the semantic wiki bandwagon, as they were hip. Now, semantic wikis rather serve as
incubators for testing and evaluating new approaches and technologies in a manageable
setting, before releasing them to the Semantic Web.
We wish to thank all authors and reviewers who spent their nights and days con-

tributing to this topic and thereby made this workshop possible. Many thanks also to
the ESWC organisation team, which set the stage for this workshop as one out of 8. Let
us continue to bring the lively wiki spirit to the Semantic Web and enjoy reading the
proceedings.

Bremen, June 2009
Christoph Lange, Sebastian Schaffert, Hala Skaf-Molli and Max Völkel

1http://ontolog.cim3.net/cgi-bin/wiki.pl?SemanticWiki

iii

http://ontolog.cim3.net/cgi-bin/wiki.pl?SemanticWiki


Contents

Preface iii

Programme vi

How Controlled English can Improve Semantic Wikis
Tobias Kuhn 1
Poster (AceWiki – Natural, Usable, Expressive, Understandable) . . . . . . . . 16

Information Extraction in Semantic Wikis
Pavel Smrz and Marek Schmidt 17

Undo in Peer-to-peer Semantic Wikis
Charbel Rahhal, Stéphane Weiss, Hala Skaf-Molli, Pascal Urso, and Pascal
Molli 30

Enabling cross-wikis integration by extending the SIOC ontology
Fabrizio Orlandi and Alexandre Passant 45

What the User Interacts With: Reflections on Conceptual Models for Semantic
Wikis
François Bry, Michael Eckert, Jakub Kotowski, and Klara Weiand 60

Combining Unstructured, Fully Structured and Semi-Structured Information in
Semantic Wikis
Rolf Sint, Stephanie Stroka, Sebastian Schaffert and Roland Ferstl 73

WIKITAAABLE: A semantic wiki as a blackboard for a textual case-base reason-
ing system
Amélie Cordier, Jean Lieber, Pascal Molli, Emmanuel Nauer, Hala Skaf-Molli
and Yannick Toussaint 88

Engineering on the Knowledge Formalization Continuum
Joachim Baumeister, Jochen Reutelshöfer, and Frank Puppe 102

MoKi: the Modelling wiKi
Marco Rospocher, Chiara Ghidini, Viktoria Pammer, Luciano Serafini, and
Stefanie Lindstaedt 113
Poster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

iv



Brede Wiki: Neuroscience data structured in a wiki
Finn Årup Nielsen 129
Poster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Metasocial Wiki – Towards an interlinked knowledge in a decentralized social
space
Amparo E. Cano, Matthew Rowe, and Fabio Ciravegna 136

Analysis of Tag-Based Recommendation Performance for a Semantic Wiki
Frederico Durão and Peter Dolog 141

An Extensible Semantic Wiki Architecture
Jochen Reutelshöfer, Fabian Haupt, Florian Lemmerich, and Joachim Baumeis-
ter 155
Poster (KnowWE – Knowledge Formalization in the Age of Wikis) . . . . . . . 170

KiWi – A Platform for Semantic Social Software
Sebastian Schaffert, Julia Eder, Szaby Grünwald, Thomas Kurz, Mihai Rad-
ulescu, Rolf Sint and Stephanie Stroka 171

VPOET Templates to Handle the Presentation of Semantic Data Sources in
Wikis
Mariano Rico, David Camacho and Oscar Corcho 186

v



Programme

09:00 – 10:30 Session 1: Lightning panels
09:00 – 09:15 Opening Ceremony

Christoph Lange, Sebastian Schaffert, Hala Skaf-Molli, and Max
Völkel
Lightning panels: a group of short talks on related topics,
≈ 10 min. per full paper, 5 min. per short paper,
followed by a joint discussion (5 min. per paper)

09:15 – 09:45 Language Processing
How Controlled English can Improve Semantic Wikis
(Best Paper)
Tobias Kuhn
Information Extraction in Semantic Wikis
Pavel Smrz and Marek Schmidt
—discussion—

09:45 – 10:30 Wiki Architectures
Undo in Peer-to-peer Semantic Wikis
Charbel Rahhal, Stéphane Weiss, Hala Skaf-Molli, Pascal Urso,
and Pascal Molli
Enabling cross-wikis integration by extending the SIOC ontol-
ogy
Fabrizio Orlandi and Alexandre Passant
What the User Interacts With: Reflections on Conceptual Mod-
els for Semantic Wikis
François Bry, Michael Eckert, Jakub Kotowski, and Klara
Weiand
—discussion—

10:30 – 11:00 Coffee Break

vi



11:00 – 13:00 Session 2: Lightning Panels
11:00 – 11:30 Knowledge Representation and Reasoning

Combining Unstructured, Fully Structured and Semi-
Structured Information in Semantic Wikis
Rolf Sint, Stephanie Stroka, Sebastian Schaffert and Roland
Ferstl
WIKITAAABLE: A semantic wiki as a blackboard for a textual
case-base reasoning system
Amélie Cordier, Jean Lieber, Pascal Molli, Emmanuel Nauer,
Hala Skaf-Molli and Yannick Toussaint
Engineering on the Knowledge Formalization Continuum
Joachim Baumeister, Jochen Reutelshöfer, and Frank Puppe
—discussion—

11:30 – 11:55 Applications
MoKi: the Modelling wiKi
Marco Rospocher, Chiara Ghidini, Viktoria Pammer, Luciano
Serafini, and Stefanie Lindstaedt
Brede Wiki: Neuroscience data structured in a wiki
Finn Årup Nielsen
—discussion—

11:55 – 12:15 Social Software
Metasocial Wiki – Towards an interlinked knowledge in a de-
centralized social space
Amparo E. Cano, Matthew Rowe, and Fabio Ciravegna
Analysis of Tag-Based Recommendation Performance for a Se-
mantic Wiki
Frederico Durão and Peter Dolog
—discussion—

12:15 – 12:50 Platforms and Plugins
An Extensible Semantic Wiki Architecture
Jochen Reutelshöfer, Fabian Haupt, Florian Lemmerich, and
Joachim Baumeister
KiWi – A Platform for Semantic Social Software
Sebastian Schaffert, Julia Eder, Szaby Grünwald, Thomas Kurz,
Mihai Radulescu, Rolf Sint and Stephanie Stroka
VPOET Templates to Handle the Presentation of Semantic
Data Sources in Wikis
Mariano Rico, David Camacho and Oscar Corcho
—discussion—

12:50 – 13:00 Wrapping up the talks, preparing the Demo Session

13:00 – 14:30 Lunch

vii



14:30 – 15:10 Session 3: Keynote
Semantic Wikis for Software Knowledge Management
Josef Holy, Sun, Prague
—discussion—

15:10 – 16:00 Session 4: Demo Session
(demos listed in the order of the morning talks)
AceWiki: Controlled English
Tobias Kuhn
Information Extraction in KiWi
Pavel Smrz and Marek Schmidt
Peer-to-peer Undo in Swooki
Charbel Rahhal, Stéphane Weiss, Hala Skaf-Molli, Pascal Urso,
and Pascal Molli
SIOC-MediaWiki Exporter
Fabrizio Orlandi and Alexandre Passant
Case-based Reasoning in WIKITAAABLE
Amélie Cordier, Jean Lieber, Pascal Molli, Emmanuel Nauer,
Hala Skaf-Molli and Yannick Toussaint
MoKi: the Modelling wiKi
Marco Rospocher, Chiara Ghidini, Viktoria Pammer, Luciano
Serafini, and Stefanie Lindstaedt
Brede Wiki: Neuroscience data structured in a wiki
Finn Årup Nielsen
Tag-Based Recommendation in KiWi
Frederico Durão and Peter Dolog
The KnowWE Architecture
Jochen Reutelshöfer, Fabian Haupt, Florian Lemmerich, and
Joachim Baumeister
KiWi – A Platform for Semantic Social Software
Sebastian Schaffert, Julia Eder, Szaby Grünwald, Thomas Kurz,
Mihai Radulescu, Rolf Sint and Stephanie Stroka
VPOET Templates to Handle the Presentation of Semantic
Data Sources in Wikis
Mariano Rico, David Camacho and Oscar Corcho

16:00 – 16:30 Coffee Break (poster/demo session open to visitors)

viii



16:30 – 18:00 Session 5: Interactive
16:30 – 16:50 Problem Presentation
16:50 – 17:35 Teamwork
17:35 – 17:55 Presentation of results
17:55 – 18:00 Concluding Remarks

18:30 – 19:30
LarKC Reception

20:45 SemWiki 2009 Social Event

Organisation

• Christoph Lange

• Sebastian Schaffert

• Hala Skaf-Molli

• Max Völkel

ix



x



How Controlled English can Improve
Semantic Wikis

Tobias Kuhn

Department of Informatics & Institute of Computational Linguistics,
University of Zurich, Switzerland

tkuhn@ifi.uzh.ch

http://www.ifi.uzh.ch/cl/tkuhn

Abstract. The motivation of semantic wikis is to make acquisition,
maintenance, and mining of formal knowledge simpler, faster, and more
flexible. However, most existing semantic wikis have a very technical in-
terface and are restricted to a relatively low level of expressivity. In this
paper, we explain how AceWiki uses controlled English — concretely At-
tempto Controlled English (ACE) — to provide a natural and intuitive
interface while supporting a high degree of expressivity. We introduce re-
cent improvements of the AceWiki system and user studies that indicate
that AceWiki is usable and useful.

1 Introduction

We present an approach how semantic wikis and controlled natural language
can be brought together. This section gives a short introduction into the fields
of semantic wikis and controlled natural languages.

1.1 Semantic Wikis

Semantic wikis are a relatively new field of research that started in 2004 when
semantic wikis were introduced in [16] describing the PlatypusWiki system. Dur-
ing the last years, an active community emerged and many new semantic wiki
systems were presented. Semantic wikis combine the philosophy of wikis (i.e.
quick and easy editing of textual content in a collaborative way over the Web)
with the concepts and techniques of the Semantic Web (i.e. enriching the data
on the Web with well-defined meaning). The idea is to manage formal knowledge
representations within a wiki environment.

Generally, two types of semantic wikis can be distinguished: On the one hand,
there are text-centered approaches that enrich classical wiki environments with
semantic annotations. On the other hand, logic-centered approaches use seman-
tic wikis as a form of online ontology editors. Semantic MediaWiki [7], IkeWiki
[12], SweetWiki [4], and HyperDEWiki [13] are examples of text-centered se-
mantic wikis, whereas OntoWiki [1] and myOntology [15] are two examples of
logic-centered semantic wikis. Web-Protégé [17] is the Web version of the popular

1



Protégé ontology editor and can be seen as another example of a logic-centered
semantic wiki, even though its developers do not call it a “semantic wiki”. In gen-
eral, there are many new web applications that do not call themselves “semantic
wikis” but exhibit many of their characteristic properties. Freebase1, Knoodl2,
SWIRRL3, and Twine4 are some examples.

Semantic wikis seem to be a very promising approach to get the domain
experts better involved in the creation and maintenance of ontologies. Semantic
wikis could increase the number and quality of available ontologies which is
an important step into the direction of making the Semantic Web a reality.
However, we see two major problems with the existing semantic wikis. First,
most of them have a very technical interface that is hard to understand and use
for untrained persons, especially for those who have no particular background in
formal knowledge representation. Second, existing semantic wikis support only
a relatively low degree of expressivity — mostly just “subject predicate object”-
structures — and do not allow the users to assert complex axioms. These two
shortcomings have to be overcome to enable average domain experts to manage
complex ontologies through semantic wiki interfaces.

In this paper, we will argue for using controlled natural language within se-
mantic wikis. The Wiki@nt5 system follows a similar approach. It uses controlled
natural language (concretely Rabbit and ACE) for verbalizing OWL axioms. In
contrast to our approach, users cannot create or edit the controlled natural lan-
guage sentences directly but only the underlying OWL axioms in a common
formal notation. Furthermore, no reasoning takes place in Wiki@nt.

1.2 Attempto Controlled English

Controlled natural languages are subsets of natural languages that are controlled
(in both syntax and semantics) in a way that removes or reduces the ambiguity of
the language. Recently, several controlled natural languages have been proposed
for the Semantic Web [14]. The idea is to represent formal statements in a way
that looks like natural language in order to make them better understandable
to people with no background in formal methods.

Attempto Controlled English (ACE)6 is a controlled subset of English. While
looking like natural English, it can be translated automatically and unambigu-
ously into logic. Thus, every ACE text has a single and well-defined formal
meaning. A subset of ACE has been used as a natural language front-end to
OWL with a bidirectional mapping from ACE to OWL [6]. This mapping covers
all of OWL 2 except data properties and some very complex class expressions.

ACE supports a wide range of natural language constructs: nouns (e.g.
“country”), proper names (“Zurich”), verbs (“contains”), adjectives (“rich”), singu-
1 see [3] and http://www.freebase.com
2 http://knoodl.com
3 http://www.swirrl.com
4 http://www.twine.com
5 see [2] and http://tw.rpi.edu/dev/cnl/
6 see [5] and http://attempto.ifi.uzh.ch

2



lar and plural noun phrases (“a person”, “some persons”), active and passive voice
(“owns”, “is owned by”), pronouns (“she”, “who”, “something”), relative phrases
(“who is rich”, “that is owned by John”), conjunction and disjunction (“and”, “or”),
existential and universal quantifiers (“a”, “every”), negation (“no”, “does not”),
cardinality restrictions (“at most 3 persons”), anaphoric references (“the country”,
“she”), questions (“what borders Switzerland?”), and much more. Using these ele-
ments, one can state ACE sentences like for example

Every person who writes a book is an author.

that can be translated into its logical representation:

∀A∀B(person(A) ∧ write(A, B) ∧ book(B) → author(A))

In the functional-style syntax of OWL, the same statement would have to be
expressed as follows:

SubClassOf(

IntersectionOf(

Class(:person)

SomeValuesFrom(

ObjectProperty(:write)

Class(:book)

)

)

Class(:author)

)

This example shows the advantage of controlled natural languages like ACE over
other logic languages. While the latter two statements require a considerable
learning effort to be understood, the statement in ACE is very easy to grasp
even for a completely untrained reader. We could show in an experiment that
untrained users (who have no particular background in knowledge representation
or computational linguistics) are able to understand ACE sentences very well and
within very short time [10].

2 AceWiki

We developed AceWiki that is a logic-centered semantic wiki that tries to solve
the identified problems of existing semantic wikis by using a subset of ACE
as its knowledge representation language. The goal of AceWiki is to show that
semantic wikis can be more natural and at the same time more expressive than
existing systems. Figure 1 shows a screenshot of the AceWiki interface. The
general approach is to provide a simple and natural interface that hides all
technical details.

AceWiki has been introduced in [8] and [9]. Since then, many new fea-
tures have been implemented: support for transitive adjectives, abbreviations for
proper names, passive voice for transitive verbs, support for comments, client-
side OWL export, a completely redesigned lexical editor, and proper persistent

3



Fig. 1. This screenshot of the AceWiki interface shows an article about planets. Articles
in AceWiki consist of declarative ACE sentences and ACE questions (both in black
color) and of unrestricted natural language comments (in gray color).

storage of the wiki data. There is a public demo available7 and the source code
of AceWiki can be downloaded under an open source license. However, AceWiki
has not yet reached the stage where it could be used for real-world applications.
Crucial (but scientifically not so interesting) parts are missing: history/undo
facility, user management, and ontology import.

One of the most interesting new features in AceWiki is the support for com-
ments in unrestricted natural language, as it can be seen in Figure 1. Since it is
unrealistic that all available information about a certain topic can be represented
in a formal way, such comments can complement the formal ACE sentences. The
comments can contain internal and external links, much like the text in tradi-
tional non-semantic wikis.

In order to enable the easy creation of ACE sentences, users are supported
by an intelligent predictive text editor [11] that is able to look ahead and to
show the possible words and phrases to continue the sentence. Figure 2 shows a
screenshot of this editor.
7 see http://attempto.ifi.uzh.ch/acewiki

4



Fig. 2. This is the predictive editor of AceWiki. The partial sentence “every city that
is located in a country that is ...” has already been entered and now the possible contin-
uations are shown. In this way, the users can conveniently create syntactically correct
sentences without learning the language in advance.

AceWiki supports an expressive subset of ACE. Some examples of sentences
that can be created in AceWiki are shown here:

AceWiki is designed to seamlessly integrate a reasoner that can give feedback
to the users, ensures the consistency of the ontology, can show its semantic
structure, and answers queries. At the moment, we are using the OWL reasoner
Pellet8 and apply the ACE-to-OWL translator that is described in [6]. However,
AceWiki is not restricted to OWL and another reasoner or rule engine might be
used in the future.

The subset of ACE that is used in AceWiki is more expressive than OWL,
and thus the users can assert statements that have no OWL representation.
Because we are using an OWL reasoner at the moment, such statements are not

8 http://clarkparsia.com/pellet/

5



considered for reasoning. In order to make this clear to the users, the sentences
that are outside of OWL are marked by a red triangle:

The most important task of the reasoner is to check consistency because
only consistent ontologies enable to calculate logical entailments. In previous
work [9], we explain how consistency is ensured in AceWiki by incrementally
checking every new sentence that is added.

Not only asserted but also inferred knowledge can be represented in ACE. At
the moment, AceWiki shows inferred class hierarchies and class memberships.
The hierarchy for the noun “country”, for example, could look as follows:

Furthermore, ACE questions can be formulated within the articles. Such ques-
tions are evaluated by the reasoner and the results are listed directly after the
question:

If the question asks for a certain individual (represented in ACE by proper
names) then the named classes (represented by nouns) of the individual are
shown as the answer. In the cases where the question asks for a class (represented
by a noun phrase), the individuals that belong to this class are shown as the
answer.

Thus, AceWiki uses ACE in different ways: as an expressive knowledge rep-
resentation language for asserted knowledge, to display entailed knowledge gen-
erated by the reasoner, and as a query language.

In AceWiki, words have to be defined before they can be used. At the mo-
ment, five types of words are supported: proper names, nouns, transitive verbs,

6



Fig. 3. The lexical editor of AceWiki helps the users to define the word forms. The
example shows how a new noun “mountain” is created.

of -constructs (i.e. nouns that have to be used with of -phrases), and transitive
adjectives (i.e. adjectives that require an object). A new feature of AceWiki is
that proper names can have an abbreviation that has exactly the same meaning
as the long proper name. This is very helpful for proper names that are too long
to be spelled out each time.

Figure 3 shows the lexical editor of AceWiki that helps the users in creating
and modifying word forms in an appropriate way. An icon and an explanation
in natural language help the users to choose the right category.

3 Evaluation

In order to find out how usable and how useful AceWiki is, we performed several
tests. From time to time, we set up small usability experiments to test how well
normal users are able to cope with the current version of AceWiki. Two such
experiments have been performed so far. In order to find out whether AceWiki
can be useful in the real world, we additionally conducted a small case study in
which we tried to formalize the content of the existing Attempto project website
in AceWiki. The results are explained in the following sections. Table 1 shows
an overview.

3.1 Usability Experiments

Two usability experiments have been performed so far on AceWiki. The first one
took place in November 2007 and has been described and analyzed in [8]. The
second experiment — that is introduced here — was conducted one year later in
November 2008. Both experiments have the nature of cheap ad hoc experiments
with the goal to get some feedback about possible weak points of AceWiki.
Since the settings of the two experiments were different and since the number

7



Table 1. This table compares the settings of the three tests that have been performed
on AceWiki.

Experiment 1 Experiment 2 Case Study

time Nov 2007 Nov 2008 Nov/Dec 2008

AceWiki version 0.2.1 0.2.9 0.2.10

number of subjects (n) 20 6 1

subjects mostly students students AceWiki developer

level of preexisting knowl-
edge about AceWiki

none low highest

domain to be represented “the real world” universities Attempto project

of subjects was relatively low, we cannot draw strong statistical conclusions.
Nevertheless, these experiments can give us valuable feedback about the usability
of AceWiki.

In both experiments, the subjects were told to create a formal knowledge
base in a collaborative way using AceWiki. The task was just to add correct and
meaningful knowledge about the given domain without any further constraints
on the kind of knowledge to be added. The subjects — mostly students — had
no particular background in formal knowledge representation. The domain to
be represented was the real world in general in the first experiment, and the
domain of universities (i.e. students, departments, professors, etc.) in the second
experiment.

In the first experiment, the subjects received no instructions at all how
AceWiki has to be used. In the second experiment, they attended a 45 minutes
lesson about AceWiki. Another important difference is that the first experiment
used an older version of AceWiki where templates could be used for the creation
of certain types of sentences (e.g. class hierarchies). This has been removed in
later versions because of its lack of generality.

Table 2 shows the results of the two experiments. Since the subjects worked
together on the same knowledge base and could change or remove the contri-
butions of others, we can look at the results from two perspectives: On the one
hand, there is the community perspective where we consider only the final result,
not counting the sentences that have been removed at some point and only look-
ing at the final versions of the sentences. On the other hand, from the individuals
perspective we count also the sentences that have been changed or removed by
another subject. The different versions of a changed sentence count for each of
the respective subjects. However, sentences created and then removed by the
same subject are not counted, and only the last version counts for sentences
that have been changed by the same subject.

The first part of the table shows the number and type of sentences the sub-
jects created. In total, the resulting knowledge bases contained 179 and 93 sen-
tences, respectively. We checked these sentences manually for correctness. S+

stands for the number of sentences that are (1) logically correct and (2) sensible
to state.

8



Table 2. This table shows the results of the first (Exp. 1) and the second (Exp. 2)
experiment. The results can be seen from the individuals perspective (ind.) or the
community perspective (comm.)

Exp. 1 Exp. 2
ind. comm. ind. comm.

total sentences created S 186 179 113 93
correct sentences S+ 148 145 76 73

correct sentences that are complex S+
x 91 89 54 51

sentences using “a” instead of “every” Se 9 9 23 12
sentences using misclassified words Sw 9 8 0 0
other incorrect sentences S− 20 17 14 8

% of correct sentences S+/S 80% 81% 67% 78%
% of (almost) correct sentences (S+ + Se)/S 84% 86% 88% 91%
% of complex sentences S+

x /S+ 61% 61% 71% 70%

total words created w 170 170 53 50
individuals (i.e. proper names) wp 44 44 11 10
classes (i.e. nouns) wn 81 81 14 14
relations total wr 45 45 28 26

transitive verbs wv 39 39 20 18
of -constructs wo 6 6 2 2
transitive adjectives wa – – 6 6

sentences per word S/w 1.09 1.05 2.13 1.86
correct sentences per word S+/w 0.87 0.85 1.43 1.46

total time spent (in minutes) t 930.9 930.9 360.2 360.2
av. time per subject t/n 46.5 46.5 60.0 60.0
av. time per correct sentence t/S+ 6.3 6.4 4.7 4.9
av. time per (almost) correct sentence t/(S+ + Se) 5.9 6.0 3.6 4.2

The first criterion is simple: In order to be classified as correct, the sentence
has to represent a correct statement about the real world using the common
interpretations of the words and applying the interpretation rules of ACE.

The second criterion can be explained best on the basis of the sentences of
the type Se. These sentence start with “a ...” like for example “a student studies

at a university”. This sentence is interpreted in ACE as having only existential
quantification: “there is a student that studies at a university”. This is certainly a
logically correct statement about the real world, but the writer probably wanted
to say “every student studies at a university” which is a more precise and more
sensible statement. For this reason, such statements are not considered correct,
even though they are correct from a purely logical point of view.

Sentences of the type Se have been identified in [8] as one of two frequent error
types when using AceWiki. The other one — denoted by Sw — are sentences
using words in the wrong word category like for example “every London is a city”
where “London” has been added as a noun instead of a proper name.

It is interesting that the incorrect sentences of the types Se and Sw had the
same frequency in the first experiment, but evolved in different directions in the

9



Fig. 4. This figure shows a solution to the problem that the users often state sentences
starting with “a ...” when they should say “every ...”. This is included in the latest
version of AceWiki.

second experiment. There was not a single case of Sw-mistakes in the second
experiment. This might be due to the fact that we learned from the results of
the first experiment and enriched the lexical editor with icons and explanations
(see Figure 3).

On the other hand, the number of Se-mistakes increased. This might be
caused by the removal of the templates feature from AceWiki. In the first ex-
periment, the subjects were encouraged to say “every ...” because there were
templates for such sentences. In the second experiment, those templates were
not available anymore and the subjects were tempted to say “a” instead of
“every”. This is bad news for AceWiki, but the good news is that there are two
indications that we are on the right track nevertheless. First, while none of the
Se-sentences has been corrected in the first experiment, almost half of them have
been removed or changed by the community during the second experiment. This
indicates that some subjects of the second experiment recognized the problem
and tried to resolve it. Second, the Se-sentences can be detected and resolved in
a very easy way. Almost every sentence starting with “a ...” is an Se-sentence
and can be corrected just by replacing the initial “a” by “every”. After the sec-
ond experiment, we added a new feature to AceWiki that asks the users each
time they create a sentence of the form “a ...” whether it should be “every ...”.
The users can then say whether they really mean “a ...” or whether it should
be rather “every ...”. In the latter case the sentence is automatically corrected.
Figure 4 shows a screenshot of the dialog shown to the users. Future experiments
will show whether this solves the problem.

An interesting figure is of course the ratio of correct sentences S+/S. As it
turns out, the first experiment exhibits the better ratio for both perspectives:
80% versus 67% for the individuals and 81% versus 78% for the community.
However, since Se-sentences are easily detectable and correctable (and hopefully
a solved problem with the latest version of AceWiki), it makes sense to have a
look at the ratio of “(almost) correct” sentences consisting of the correct sen-
tences S+ and the Se-sentences. This ratio was better in the second experiment:
84% versus 88% for the individuals perspective; 86% versus 91% for the com-
munity perspective. However, the settings of the experiments do not allow us to

10



draw any statistical conclusions from these numbers. Nevertheless, these results
give us the impression that a ratio of correct and sensible statements of 90% and
above is achievable with our approach.

Another important aspect is the complexity of the created sentences. Of
course, syntactically and semantically complex statements are harder to con-
struct than simple ones. For this reason, we classified the correct sentences ac-
cording to their complexity. S+

c stands for all correct sentences that are complex
in the sense that they contain a negation (“no”, “does not”, etc.), an implication
(“every”, “if ... then”, etc.), a disjunction (“or”), a cardinality restriction (“at most

3”, etc.), or several of these elements. While the ratio of complex sentences was
already very high in the first experiment (around 60%), it was was even higher
in the second experiment reaching 70%. Looking at the concrete sentences the
subjects created during the second experiment, one can see that they managed
to create a broad variety of complex sentences. Some examples are shown here:

– Every lecture is attended by at least 3 students.
– Every lecturer is a professor or is an assistant.
– Every professor is employed by a university.
– If X contains Y then X is larger than Y.
– If somebody X likes Y then X does not hate Y.
– If X is a student and a professor knows X then the professor hates X or likes X or is

indifferent to X.

The last example is even too complex to be represented in OWL. Thus, the
AceWiki user interface seems to scale very well in respect to the complexity of
the ontology.

The second part of Table 2 shows the number and types of the words that
have been created during the experiment. All types of words have been used by
the subjects with the exception that transitive adjectives were not supported by
the AceWiki version used for the first experiment. It is interesting to see that the
first experiment resulted in an ontology consisting of more words than correct
sentences, whereas in the second experiment the number of correct sentences
clearly exceeds the number of words. This is an indication that the terms in the
second experiment have been reused more often and were more interconnected.

The third part of Table 2 takes the time dimension into account. On average,
each subject of the first experiment spent 47 minutes, and each subject of the
second experiment spent 60 minutes. The average time per correct sentence
that was around 6.4 minutes in the first experiment was much better in the
second experiment being only 4.9 minutes. We consider these time values very
good results, given that the subjects were not trained and had no particular
background in formal knowledge representation.

In general, the results of the two experiments indicate that AceWiki enables
unexperienced users to create complex ontologies within a short amount of time.

3.2 Case Study

The two experiments presented above seem to confirm that AceWiki can be used
easily by untrained persons. However, usability does not imply the usefulness

11



Table 3. This table lists the results of the AceWiki case study where the content of
the Attempto website was formalized in AceWiki.

total sentences created S 538
complex sentences Sx 107

% of complex sentences Sx/S 19.9%

total words created w 261
individuals (i.e. proper names) wp 184
classes (i.e. nouns) wn 46
relations total wr 31

transitive verbs wv 11
of -constructs wo 13
transitive adjectives wa 7

sentences per word S/w 2.061

time spent (in minutes) t 347.8 (= 5.8 h)
av. time per sentence t/S 0.65 (= 38.8 s)

for a particular purpose. For that reason, we performed a small case study to
exemplify how an experienced user can represent a strictly defined part of real-
world knowledge in AceWiki in a useful way.

The case study presented here consists of the formalization of the content of
the Attempto website9 in AceWiki. This website contains information about the
Attempto project and its members, collaborators, documents, tools, languages,
and publications, and the relations among these entities. Thus, the information
provided by the Attempto website is a piece of relevant real-world knowledge.

In the case study to be presented, one person — the author of this paper
who is the developer of AceWiki — used a plain AceWiki instance and filled
it with the information found on the public Attempto website. The goal was
to represent as much as possible of the original information in a natural and
adequate way. This was done manually using the AceWiki editor without any
kind of automation.

Table 3 shows the results of the case study. The formalization of the website
content took less than six hours and resulted in 538 sentences. This gives an
average time per sentence of less than 40 seconds. These results give us some
indication that AceWiki is not only usable for novice users but can also be used
in an efficient way by experienced users.

Most of the created words are proper names (i.e. individuals) which is not
surprising for the formalization of a project website. The ratio of complex sen-
tences is much lower than the ones encountered in the experiments but with
almost 20% still on a considerable level.

Basically, all relevant content of the Attempto website could be represented
in AceWiki. Of course, the text could not be taken over verbatim but had to
be rephrased. Figure 5 exemplary shows how the content of the website was
formalized. The resulting ACE sentences are natural and understandable.
9 http://attempto.ifi.uzh.ch

12



Fig. 5. This figure shows an example text that occurs on the Attempto website (top)
and how it was represented in AceWiki (bottom).

However, some minor problems were encountered. Data types like strings,
numbers, and dates would have been helpful but are not supported. ACE itself
has support for strings and numbers, but AceWiki does not use this feature so
far. Another problem was that the words in AceWiki can consist only of letters,
numbers, hyphens, and blank spaces10. Some things like publication titles or
package names contain colons or dots which had to be replaced by hyphens in
the AceWiki representation. We plan to solve these problems by adding support
for data types and being more flexible in respect to user-defined words.

Figure 6 shows a wiki article that resulted from the case study. It shows how
inline queries can be used for automatically generated and updated content. This
is an important advantage of such semantic wiki systems. The knowledge has to
be asserted once but can be displayed at different places. In the case of AceWiki,
such automatically created content is well separated from asserted content in a
natural and simple manner by using ACE questions.

As can be seen on Figure 6, the abbreviation feature for proper names has
been used extensively. The answer lists show the abbreviations in parentheses
after the long proper names. The most natural name for a publication, for ex-
ample, is its title. However, sentences that contain a spelled-out publication title
become very hard to read. In such cases, abbreviations are defined which can be
used conveniently to refer to the publication.

The fact that the AceWiki developer is able to use AceWiki in an efficient
way for representing real world knowledge does of course not imply that every
experienced user is able to do so. However, we can see the results as an upper
boundary of what is possible to achieve with AceWiki, and the results show that
AceWiki in principle can be used in an effective way.

10 Blank spaces are represented internally as underscores.

13



Fig. 6. This figure shows an exemplary wiki article that resulted from the case study.
Inline queries are used to generate content that is automatically updated.

4 Conclusions

We presented the AceWiki system that should solve the problems that existing
semantic wikis do not support expressive ontology languages and are hard to
understand for untrained persons. AceWiki shows how semantic wikis can serve
as online ontology editors for domain experts with no background in formal
methods.

The two user experiments indicate that unexperienced users are able to deal
with AceWiki. The subjects managed to create many correct and complex state-
ments within a short period of time. The presented case study indicates that
AceWiki is suitable for formalization tasks of the real world and that it can
be used — in principle — by experienced users in an efficient way. Still, more
user studies are needed in the future to prove our claim that controlled natural
language improves the usability of semantic wikis.

In general, we showed how controlled natural language can bring the Semantic
Web closer to the end users. The full power of the Semantic Web can only be
exploited if a large part of the Web users are able to understand and extend the
semantic data.

References

1. Sören Auer, Sebastian Dietzold, and Thomas Riechert. OntoWiki — A Tool for
Social, Semantic Collaboration. In Proceedings of the 5th International Semantic
Web Conference, number 4273 in Lecture Notes in Computer Science, pages 736–
749. Springer, 2006.

14



2. Jie Bao and Vasant Honavar. Collaborative Ontology Building with Wiki@nt —
a Multi-agent Based Ontology Building Environment. In ISWC Workshop on
Evaluation of Ontology-based Tools (EON), pages 37–46, 2004.

3. Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: a collaboratively created graph database for structuring human knowl-
edge. In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD international con-
ference on Management of data, pages 1247–1250. ACM, 2008.

4. Michel Buffa, Fabien Gandon, Guillaume Ereteo, Peter Sander, and Catherine
Faron. SweetWiki: A semantic wiki. Web Semantics: Science, Services and Agents
on the World Wide Web, 6(1):84–97, 2008.

5. Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto Controlled
English for Knowledge Representation. In Cristina Baroglio, Piero A. Bonatti, Jan
Ma luszyński, Massimo Marchiori, Axel Polleres, and Sebastian Schaffert, editors,
Reasoning Web, 4th International Summer School 2008, Venice, Italy, September
7–11, 2008, Tutorial Lectures, number 5224 in Lecture Notes in Computer Science,
pages 104–124. Springer, 2008.

6. Kaarel Kaljurand. Attempto Controlled English as a Semantic Web Language. PhD
thesis, Faculty of Mathematics and Computer Science, University of Tartu, 2007.

7. Markus Krötzsch, Denny Vrandečić, Max Völkel, Heiko Haller, and Rudi Studer.
Semantic Wikipedia. Web Semantics: Science, Services and Agents on the World
Wide Web, 5(4):251–261, December 2007.

8. Tobias Kuhn. AceWiki: A Natural and Expressive Semantic Wiki. In Semantic
Web User Interaction at CHI 2008: Exploring HCI Challenges, 2008.

9. Tobias Kuhn. AceWiki: Collaborative Ontology Management in Controlled Natural
Language. In Proceedings of the 3rd Semantic Wiki Workshop, volume 360. CEUR
Proceedings, 2008.

10. Tobias Kuhn. How to Evaluate Controlled Natural Languages. Extended abstract
for the Workshop on Controlled Natural Language 2009, (to appear).

11. Tobias Kuhn and Rolf Schwitter. Writing Support for Controlled Natural Lan-
guages. In Proceedings of the Australasian Language Technology Workshop (ALTA
2008), 2008.

12. Sebastian Schaffert. IkeWiki: A Semantic Wiki for Collaborative Knowledge Man-
agement. In Proceedings of the First International Workshop on Semantic Tech-
nologies in Collaborative Applications (STICA 06), pages 388–396, 2006.

13. Daniel Schwabe and Miguel Rezende da Silva. Unifying Semantic Wikis and Se-
mantic Web Applications. In Christian Bizer and Anupam Joshi, editors, Proceed-
ings of the Poster and Demonstration Session at the 7th International Semantic
Web Conference (ISWC2008), volume 401. CEUR Workshop Proceedings, 2008.

14. Rolf Schwitter, Kaarel Kaljurand, Anne Cregan, Catherine Dolbear, and Glen
Hart. A Comparison of three Controlled Natural Languages for OWL 1.1. In
4th OWL Experiences and Directions Workshop (OWLED 2008 DC), Washington,
1–2 April 2008.

15. Katharina Siorpaes and Martin Hepp. myOntology: The Marriage of Ontology
Engineering and Collective Intelligence. In Bridging the Gep between Semantic
Web and Web 2.0 (SemNet 2007), pages 127–138, 2007.

16. Roberto Tazzoli, Paolo Castagna, and Stefano Emilio Campanini. Towards a Se-
mantic Wiki Wiki Web. In Poster Session at the 3rd International Semantic Web
Conference (ISWC2004), 2004.

17. Tania Tudorache, Jennifer Vendetti, and Natalya F. Noy. Web-Protégé: A
Lightweight OWL Ontology Editor for the Web. In 5th OWL Experiences and
Directions Workshop (OWLED 2008), 2008.

15



●AceWiki  makes it easy to add and modify ACE sentences. 
A predictive editor  helps the users to create sentences that 
comply with the ACE syntax:
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Two usability experiments  showed that AceWiki is easy to 
learn and use. Untrained subjects were told to collaboratively 
create a knowledge base using AceWiki:
● 78%–81% of the sentences were correct and sensible
● 61%–70% of them were complex (containing negations, im-

plications, disjunctions, or number restrictions)
● Creation of a correct sentence every 5–6 minutes
● Defnition of a new word every 5–7 minutes

Natural Expressive

UnderstandableUsable

●AceWiki  is a semantic wiki using the controlled natural lan-
guage ACE (Attempto Controlled English).
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●ACE supports a wide range of natural language constructs:
● Proper names, Nouns, Verbs, Adjectives
● Of-constructs:  part of, child of, owner of
● Number restrictions:  at most 3 countries
● Relative phrases:  ... that orbits the Sun
● Anaphoric references:  the country, the planet
● Existential and universal quantifers:  a, every
● Negation:  no, does not, is not, it is false that
● Pronouns:  something, everybody, what
● Conditional sentences:  if ... then ...
●... and much more.

ACE is a formal language that is translatable into logic and 
other languages, for example OWL. AceWiki is designed to 
seamlessly integrate a reasoner (currently Pellet). The 
reasoner is used to ensure that the ontology is always 
consistent:

Because ACE is more expressive than OWL, one can ex-
press complex statements that are beyond OWL (currently 
not used for reasoning):

Questions in ACE can be used to express queries that are 
answered by the reasoner:

The reasoner is used to infer class memberships  and 
class hierarchies:

We performed an understandability experiment  that 
compares the understandability of ACE to a comparable 

common formal language: MLL, a language that is heavily 
inspired by the Manchester OWL Syntax.
During the experiment, the subjects had to classify 10 
statements in ACE/MLL as true or false according to a 
situation depicted by a diagram. Our results show that ACE 
was understood signifcantly better:

Furthermore, ACE required signifcantly less time to be 
learned:

After the experiment, the subjects stated that  ACE was 
more understandable:

Website: attempto.if.uzh.ch/acewiki
Language: Java

License: LGPL
Version: 0.2.13 (alpha)

Tobias Kuhn
tkuhn@if.uzh.ch

Department of Informatics
University of Zurich

ACE
MLL

correct classifcations out of 10
5 6 7 8 9 10

time spent in minutes (time limit of 22 minutes)
0 2 4 6 8 10 12 14 16 18 20 22

subjective understandability (0 “very hard” ... 3 “very easy”)
0 1 2 3

16



Information Extraction in Semantic Wikis

Pavel Smrž and Marek Schmidt

Faculty of Information Technology
Brno University of Technology

Božetěchova 2, 612 66 Brno, Czech Republic
E-mail: {smrz,ischmidt}@fit.vutbr.cz

Abstract. This paper deals with information extraction technologies
supporting semantic annotation and logical organization of textual con-
tent in semantic wikis. We describe our work in the context of the KiWi
project which aims at developing a new knowledge management system
motivated by the wiki way of collaborative content creation that is en-
hanced by the semantic web technology. The specific characteristics of
semantic wikis as advanced community knowledge-sharing platforms are
discussed from the perspective of the functionality providing automatic
suggestions of semantic tags. We focus on the innovative aspects of the
implemented methods. The interfaces of the user-interaction tools as well
as the back-end web services are also tackled. We conclude that though
there are many challenges related to the integration of information ex-
traction into semantic wikis, this fusion brings valuable results.

1 Introduction

A frequently mentioned shortcoming of wikis used in the context of knowledge
management is the inconsistency of information that often appears when wikis
are put to everyday use of more than a few knowledge workers. Semantic wikis,
combining the easy-to-participate nature of wikis with semantic annotations,
have a strong potential to help in this situation and to become the ultimate
collaborative knowledge management system. However, adding metadata means
additional work and requires user’s attention and thinking. Since it is often
difficult to give users immediate satisfaction in reward for this tedious work, an-
notations in internal wikis tend to be rather scarce. This situation has a negative
impact on comprehension of the advantages of semantic wikis and discourages
their extensive deployment.

Information extraction (IE) can be seen as a means of reducing user’s anno-
tation workload. It refers to the automatic extraction of structured information
such as entities, relationships between entities, and attributes describing entities
from unstructured sources [19]. The state-of-the-art IE technology can produce
metadata from content, provide users with useful suggestions on potential an-
notations and ask questions relevant for the current context. The ultimate goal
of IE in semantic wikis is to maximize the benefits of the rich annotation and,
at the same time, minimize the necessity of manual tagging.

17



2 Pavel Smrž and Marek Schmidt

New application domains raise various challenges for large-scale deployments
of IE models. Despite more than two decades of intensive research, the accu-
racy of the systems is still unsatisfactory for many tasks. Moreover, the results
strongly depend on the domain of applications and the solutions are not easy to
be ported to other domains. Language dependency is also an issue as the level of
analysis required by some methods is available only for a few languages. Another
difficulty, particularly significant for the use of IE technology in semantic wikis,
lies in the limited character of examples that could be used to train extraction
models. Indeed, the real use of semantic technologies calls for specialized an-
notations of complex relations rather than simple and frequent entities such as
places, dates etc. Users are not willing to look for more than one or two other
occurrences of a particular relation that should be automatically tagged.

The issues related to standard IE solutions also determine the work described
in this paper. As almost all realistic IE-integration scenarios involve system sug-
gestions and user interaction, the IE components that have been designed and
are successively developed can be taken as a kind of semantic wiki recommen-
dation system. We pay a special attention to the “cold-start problem” which
appears in the beginning of the technology deployment when there are no data
to provide high quality suggestions. Taking the semantic wiki as an open link-
ing data platform (rather than a tool to enrich data with semantics for internal
purposes only) helps in this respect as one can immediately take advantage of
external data sources. We also deal with the incremental character of IE tasks
running on gradually growing wiki pages. The implemented interfaces of the IE
services facilitate the process of continuous updating of the annotations. They
also help to interlink external resources that are modified independently of the
controlled updates in the internal wiki.

The following sections tackle the mentioned challenges and show how IE can
be used in real semantic wiki systems. As a use case, the next section briefly
introduces the IE techniques and tasks applied in the KiWi project. Section 3
discusses specific features of the IE techniques required by the semantic wikis and
the innovative aspects of the KiWi solutions. We conclude with future directions
of our work.

2 IE Techniques and Tasks in the KiWi project

2.1 Conceptual Model

The main objective of the KiWi (Knowledge in a Wiki1) project is to facilitate
knowledge sharing and collaboration among the users of the system to manage
knowledge in a more efficient way [20]. Together with personalization, reasoning
and reason maintenance, IE belongs to the key enabling technologies in KiWi.

There are two main use cases in this project. The first one is provided by
Sun Microsystems, Prague, and is focused on knowledge management in software
development, particularly in the NetBeans project. The second one addresses
1 http://www.kiwi-project.eu

18



Information Extraction in Semantic Wikis 3

vital issues in process management in Logica. The examples given in this paper
are taken from those use cases.

KiWi allows users to add meta-data to individual pages or their parts in the
form of free or semantic tags. The role of IE is to support users in creating the
semantic meta-data and making the knowledge explicit so that it can be further
queried and reasoned in a semantic way. The conceptual model for IE in KiWi
consists of three major components:

– content items;
– text fragments;
– annotations of content items.

Content item refers to any entity that can be identified. Text fragment is an
arbitrary continuous piece of a content item. Text fragments are content items
themselves. It enables adding metadata to individual text fragments. In a simple
case of commenting a piece of information on a wiki page, the metadata can be
of type “comment” and can contain the text of the comment. Tagging text
fragments provides a bridge between structured and unstructured information.
The fragments can be taken as generalizations of links representing any kind of
related resources. In that sense, the fragments are independent of the formatting
structure of the wiki page.

Figure 1 demonstrates the way in which information extracted from three
different content items (wiki pages) is put together. All the pages mention the
same resource – an issue identified by its number #1223 (corresponding to Sun’s
bug-reporting site IssueZilla). In the “Description of Issue #2536”, one can read
that the issue is actually a consequence of Issue #1223. The page on “Release
Engineering” page says that issue #1223 is critical for the current release of the
final product. Finally, “Meeting minutes” assign the task to fix the bug to Joe.
The information extraction component is able to extract the mentioned pieces
of information and save them (as a set of RDF triples) for further processing.

#1223 is a RC bug

Release Engineering

releaseCritical

Issue #2556

is caused by #1223
causes(#2556)

Issue #1223

Meeting Minutes

Joe will fix #1223
assignedTo(Joe)

Fig. 1. Information about one entity may come from different pages

Note that the described concept of tagging text fragments that represent a
resource (rather than to simply join the ascertained statement to the particu-

19



4 Pavel Smrž and Marek Schmidt

lar resource) enables identifying sources of extracted information, synchronizing
text and tags, keeping track of the consequences of the changes and pointing out
inconsistencies. What is even more important for the semi-automatic IE pro-
cesses, it also makes the manual corrections easier and allows users to improve
the IE accuracy by providing explicit feed-back to the system’s decisions.

KiWi is designed as a modular system, in which modules provide additional
functionality to the core system via widgets which a user may add to her custom
layout. The main interaction between the IE system and the user is realized by
the annotation widget. Figure 2 demonstrates the use of the widget for IE from
meeting minutes. It shows information extracted from the text fragment appear-
ing on the wiki page. The widget also offers actions enabled by the semantics
of extracted information (such as inserting the event to the calendar, showing
the map of the place, etc.). The annotation editor that has been also developed
allows users to manually annotate fragments directly in the KiWi editor and to
inspect associated semantic information in the annotation widget.

Alice will come to Salzburg on May 21st

Content Editor Annotation Widget

Accept    Reject

Add to Calendar

Business Trip (event)

  Salzburg (place)
  03/21 (date)

Show Map

...

...

  Alice Smith (employee)

Fig. 2. An example of metadata and action suggestions provided by the KiWi anno-
tation component

KiWi aims at an application of the state-of-the-art IE methods in the se-
mantic wikis [8]. Various techniques and methods are employed to fulfil the key
tasks identified in the project.

IE from wiki pages deals mostly with free text. In general, it can therefore
benefit from a thorough language analysis of the input. In addition to tokeniza-
tion and sentence splitting, the natural language processing may involve stop-list
filtering, stemming or lemmatization, POS tagging, chunking and shallow or deep
parsing. Many of these pre-processing steps are computationally expensive. Al-
most all of them are strongly language-dependent. Moreover, there is danger of
cascading of errors from pre-processing in the IE system. That is why we follow
the current trend and apply selective pre-processing in KiWi. The methods de-
scribed below take into account the context in which they work and employ only
those pre-processing processes that can bring significant value to the IE itself.

20



Information Extraction in Semantic Wikis 5

2.2 Implemented IE Techniques

The IE solutions implemented in KiWi rely on several state-of-the-art IE tech-
niques. Before discussing the function of particular IE processes in KiWi, let us
therefore mention the crucial techniques employed. The following technologies
play a key role in the system:

– automatic term recognition combining domain-specific and general knowl-
edge;

– computation of word relatedness to define similarity measures;
– text classification and sense disambiguation based on advanced machine-

learning methods;
– dimensionality reduction for text feature vectors.

Any realistic approach to automatic term recognition (ATR) from wiki pages
cannot ignore the fact that the source texts are usually rather short. Unfortu-
nately, most of available ATR methods rely too much on high frequency counts
of term occurrences and, therefore, cannot be utilized in the intended field.

To cope with the problem, we adopt a new ATR method proved to give
the best r results suggestesults in our previous experiments (see [9]). It flexi-
bly combines the frequency-based measure (a variant of the TF.IDF score) and
the comparisons with a background corpus. The current implementation works
with a general background data (such as American GigaWord [5] or Google
TeraCorpus [1] for English) only. Our future work will focus on an automatic
identification of supplementary in-domain texts that would be useful for the
“focused background subtraction”.

Various approaches to characterize the semantic distance between terms have
been also explored in our research. For general terms, we make use of the
wordnet-based similarity measures [16] that take into account the hierarchical
structure of the resource. The same technique is employed when the closeness of
concepts in a domain-specific thesaurus or ontology is to be computed (e.g., on
Sun’s Swordfish ontology [3]).

An implemented alternative method which does not require manually cre-
ated resources (such as wordnet-like lexical databases or domain ontologies)
determines the semantic similarity of terms by the relative frequency of their
appearance in similar contexts. Of course, there are many ways to assess the
similarity of contexts. The results of our preliminary experiments suggest that
the best performer for the general case is the method taking into account the
(dependency) syntactical structure of the contexts [7, 10] (terms are semanti-
cally close if they often appear in the same positions, e.g., as subjects of the
same verb, modifiers of the same noun, etc.).

Many IE tasks can be formulated as classification problems. This finding is
behind the immense popularity of machine learning techniques in the IE field
today. In the rare case when there are enough data for training, KiWi follows
this trend. Complex features computed on the dependency structures from the
source text are gathered first.

21



6 Pavel Smrž and Marek Schmidt

The particular set of features applied depends on the task and the language
in hand. For English named entity recognition, a gazetteer, word contexts, lexi-
cal and part of speech tags are used. For classification of the role an entity plays
on a page (which can be interpreted as a semantic role labeling problem [13]),
additional features provided by a dependency parser are employed. The classi-
fication is performed by CRF (Conditional Random Fields) and SVM (Support
Vector Machine) models with tree kernels constructed from syntax trees of the
sentences [21]. Depending on the context, the process can identify “soft cate-
gories” sorted by the descending probability of correctness. The resulting N-best
options are presented to the user who chooses the correct one.

As opposed to the discussed situation, a typical classification task in the
context of semantic wikis can be characterized by the limited character of the
input text and the lack of data to train the classifier. The advanced methods that
can deal with the latter issue are discussed in the next section. Let us therefore
just note, that to overcome the former one (inherent to the wiki world), KiWi
harnesses the other mentioned techniques and personal/organizational contexts
to characterize the “ground” of the material provided by the user and to increase
accuracy of the classification.

As exemplified by the Logica use-case in KiWi, the semantic wikis in the
professional setting often need to integrate large sets of business documents
(product specifications, customer requirements, etc.). Having such a document
in hand, the user can ask the system to find similar documents in the given
collection. As the terminology and the style of the documents can differ signif-
icantly, the straightforward computing of the similarity as a function of term
co-occurrences is often insufficient. Standard approaches to overcome this (such
as PLSA – Probabilistic Latent Semantic Analysis or LDA – Latent Dirichlet
Allocation) transform the term vectors representing the documents to point out
their semantic closeness.

Unfortunately, the computation of such transformations is prohibitively ex-
pensive. KiWi draws on the random indexing technique [6] that is several orders
of magnitude faster than the mentioned approaches. As KiWi documents are
indexed by means of Apache Lucene search library – we take advantage of Se-
mantic Vectors [22] – a fast implementation of the random indexing concept
based on the Lucene indices. This setting provides very efficient mechanism to
evaluate similarity queries in KiWi.

2.3 IE Tasks in KiWi

The above-mentioned IE techniques find their application in various tasks and
various contexts in the KiWi system. From a general point of view, the whole
IE functionality can be seen as tag suggestion or automatic annotation (if the
similarity is interpreted as a special kind of tagging). On the other hand, the
user perspective distinguishes different kinds of tags for different purposes. The
following tasks form the core of the KiWi IE module in the latter sense:

– suggestion of new free-text tags and thesaurus/ontology extensions;

22



Information Extraction in Semantic Wikis 7

– entity recognition and semi-automatic annotation of content items;
– relation extraction and structured tag suggestion;
– similarity search adapted according to the user’s feedback.

Figure 3 (based on the KiWi use case defined by Logica) demonstrates the
interplay of these tasks. It shows a situation when a project manager comes to
the task to produce a project risk analysis report based on her notes from a
preparatory meeting (as displayed in the KiWi annotation editor on the left side
of the picture). Risk-related information needs to be formalized, the potential
impact should be identified and the resolution strategies explicitly stated. Based
on the user-specific setting, the IE component automatically identifies entities
such as company products, development technologies, names of employees, dates,
places, etc. and classifies the page as a (seed of) risk analysis report – a known
type of document with an associated semantic form. The identified type narrows
down the similarity search which focuses on those risk analysis reports that men-
tion semantically related risks (it is realized as a simple word-based relatedness
function on the “identified risks” sections in the current implementation).

Fig. 3. KiWi annotation component classifying entities and relations and suggesting
tags and projects related to a given page according to the identified risks

The annotation component also suggests terms found in the text as additional
tags. The possibility to propose free-text tags is not particularly useful in the
semantically-rich case discussed but it can be essential for “lightweight” semantic
wiki environments. A more practical function in the actual context refers to semi-
automatic extending the conceptual domain model. The most frequent form of
this process regards thesaurus or ontology population by instances referred to in
the analysed text. For example, finding new term “JBoss Seam” in the position
where a development tool name is expected, the system can suggest adding the

23



8 Pavel Smrž and Marek Schmidt

term as an instance of class “development tools”. The problem domain ontology
can also be extended in higher levels, e.g., “video meeting room” can be suggested
as a subclass of “meeting room”.

Entity recognition employs the FSA (finite-state automaton) technology and
implements a straightforward gazetteer strategy when it is tightly coupled with
the annotation editor to identify types and instances of entities mentioned in the
text and to suggest annotations linking the specific reference to the knowledge
base. A limited set of rules is applied to identify compound expressions such as
names, absolute temporal terms, monetary and other numeric expressions, etc.
Apart from that, the functionality is completely based on lists of entities that
should be identified in the texts. The lists are populated by terms referring to
concepts in general ontologies (e.g., UMBEL2 or GeoNames3) as well as domain-
specific resources (such as Sun’s Swordfish ontology or a list of team members
and their roles). For the fast on-line processing, these extensive lists are compiled
to a large FSA which is then used to identify matches in the text and to provide
the type of the suggested tag.

Similarity search takes advantage of pre-computed matrices of term relat-
edness. This is crucial especially for comparing short text fragments such as
the “identified risk” sections discussed above. Particular matrices correspond to
various measures of the semantic distance between terms. Except for the batch
document clustering, the similarity search is always intended for the on-line
mode. The pre-computation of the term similarities in the form of the matrices
helps to speed up the search significantly.

For the fast search on short text fragments (less than a paragraph), KiWi
computes the information gain of the terms appearing in the text. The lines
corresponding to the most informative terms are taken from the term-closeness
matrices. This provides a simple query-expansion mechanism. The query com-
bining the terms from the actual fragment and the semantically close terms
(weighted by the informativeness and similarity, respectively) is evaluated on
the all content items of the same type and the best matches are retrieved.

The whole wiki pages and full documents are indexed by the Lucene library.
To perform similarity search on this kind of documents, SemanticVectors [22]
are employed. It is often the case that the retrieved documents do not come up
to user’s expectations. The most informative terms can prove to be unimpor-
tant from the user’s perspective. That is why it is very important to let KiWi
users know why the particular documents are considered similar to that one
in question and what terms played the key role in the system’s decision. KiWi
lists those terms for the entire set of the similar documents and for each indi-
vidual document as well. The user can mark some of the terms as unimportant
for the current context and the system re-computes the similarity with the new
restricted set of terms.

The concept of tags in KiWi is rather general. It comprises the standard
label-like tags, but also structured ones that encode relations of the concept

2 http://www.umbel.org
3 http://www.geonames.org

24



Information Extraction in Semantic Wikis 9

represented by the given term to other concepts. The corresponding IE task
of relation extraction extracts facts from relations between entities in a wiki
page (e.g., from statements like Alice will travel to Salzburg on May 21st). The
relation can also be identified between an entity and the wiki page itself, since
every page in the KiWi represents some entity.

The implementation of the relation extraction algorithm is similar to that
of entity recognition. It employs advanced machine learning models (CRF men-
tioned above) and incorporates additional information provided by the user to
improve the performance. For example, the user can specify features relevant
for semi-structured documents as an XPath expression (e.g., to inform the auto-
matic extraction method that the cost is always in the second column of a table).
Unfortunately, the process is prone to the errors in the language analysis layer
so that the results strongly depend on the quality of the language-dependent
pre-processing phase.

Semantic wikis with annotations support evolution of knowledge from free-
form to structured formalized knowledge. The role of IE is to support the user
in the process of creating semantic annotations. If the structure of knowledge is
well understood, the annotations can take a unified form of tags anchored in a
domain ontology. However, the “wiki way” of knowledge structure that is only
emerging in the collaborative work process calls for sharing of free-text tags as
well. KiWi supports this by means of new tag suggestions based on the ATR
(see above) from a particular document or a wiki page. Users can choose which
extracted terms are appropriate to tag the resource and what their relations to
other tags are. For ATR on short wiki pages, KiWi engages heuristics based on
simple grammar patterns (such as “an adjective followed by a noun”) to propose
the candidate terms.

In addition to free-text tagging, ATR makes it also possible to suggest ex-
tensions to a domain ontology or thesaurus. KiWi checks whether the extracted
terms correspond to existing concepts and if not, it proposes additions. If there
are enough data for classification training, it can also find the most probable
class to link the new concept to.

3 Innovative Aspects of IE in KiWi

As mentioned above, there are many challenges and open questions related to
the use of IE in semantic wikis. The state-of-the-art IE systems [2, 12, 17] often
make assumptions about the type of data, its size and availability, and the user
interaction mode that are not acceptable in the given context. KiWi explores
solutions that are able to cope with the problems and work the “wiki way”
(provide sophisticated functionality but easy to understand and easy to use).

Machine learning plays a central role in the current IE paradigm [14]. From
a conceptual point of view, statistical IE systems distinguish two phases: the
training phase and the deployment phase. In the training phase the system ac-
quires a model that covers a given set of annotation examples. In the deployment
phase, the system identifies and classifies relevant semantic information in new

25



10 Pavel Smrž and Marek Schmidt

texts, i.e., texts that were not included in the training set. The predominant ap-
proach expects a large text corpus with annotated information to be extracted,
and then uses a learning procedure to extract some characteristics from the an-
notated texts [23]. Unfortunately, an annotated training data set is available for
a very limited number of cases. And it is unrealistic to expect that KiWi users
will provide this kind of data to make the system “semantics-aware”. This is
especially true for the case of many application-specific relations in the explored
domains.

To overcome the problem of training data scarcity, IE in KiWi explores a
combination of the standard supervised algorithms with the methods that are
able to learn from untagged texts. We take advantage of the concept of boot-
strapping, which refers to the technique that starts from a small initial effort
and gradually grows into something larger and more significant [14]. One of the
currently employed methods relying on this principle is the expansion. An ini-
tial extraction model (learned from few examples) is applied to the unannotated
text (wiki pages, linked documents or external resources) first. Newly discovered
entities or relations that are considered sufficiently similar to other members of
the training set are added and the process is iterated.

Another approach we apply is active learning. In active learning, the system
itself decides what the best candidates for annotation are in order to maximize
the speed of the learning process. A user is then asked to annotate these instances
only. The idea of active learning perfectly fits the wiki philosophy that every
user can annotate every page for which she has sufficient rights. All changes are
naturally reported and there is no problem to come back to a previous version
in case somebody made inappropriate annotations.

The combination of both methods lets the system exploit the knowledge as
much as possible, but still allows users to have full control of the annotation
process.

There is not much to do about the dependency of the IE methods on the
result of the pre-processing phase. The trade-off between the quality of the lan-
guage analysis and the general availability of the corresponding tools makes it
impossible to provide the same grade of extraction in all languages. KiWi tries
to mitigate the “curse of language-dependency” by means of using general re-
sources that are available across languages. For example, our experiments with
instances of Wikipedia in several languages used for the expansion proved that
this functionality does not need to be limited to a particular language.

In addition to the lack of annotated data for training classifiers, there is also
a specific problem of the unusual nature of some IE tasks in semantic wikis.
The resources that are to be semantically annotated vary exhibit high diversity.
The length ranges from a few words to entire pages and full documents that are
uploaded to the system. Especially the lower side on this scale (very short texts)
trouble the commonly used IE techniques – they often need more material to
find similar contexts, to disambiguate a term, to classify a relation, etc.

One of the techniques that partially deals with the problem of short texts
benefits from the PLSA and random projection algorithms discussed above. It

26



Information Extraction in Semantic Wikis 11

projects the dimensions given by the original set of terms to the space defined by
a referential collection of resources. In the case of KiWi, pages from Wikipedia
are taken as the dimensions. Thus, it is possible to present the results to the
user in an intuitive form – pointing out the articles with the most significant
contribution.

The concept of KiWi as the open linking data platform has been already
mentioned. The IE technology tries to re-use as much as possible from exist-
ing semantic web knowledge resources. Dbpedia and Wikipedia find their place
in the training of classifiers and sense disambiguators, the taxonomy based on
WordNet and OpenCyc help to define the similarity measures etc. The external
data sources are also linked to the user-interaction mode in KiWi. For example, a
user defines new semantic tag “programming language” as http://umbel.org/
umbel/semset/en/wikipedia/Programming\_language. The system fetches all
relevant articles from Freebase and trains an initial classifier. The user can start
to tag with it immediately and to provide feedback to improve the model.

4 Conclusions and Future Directions

Let us summarize the major point of the work reported in this paper. The
application of IE methods on the specific set of problems (texts of varying size
and character, complex relations, etc.) with this kind of user interface (semi-
automatic, generic, ontology based) is novel. In addition to other results, KiWi
brings valuable insights into the practical applicability of the best IE techniques
in real conditions.

KiWi promises an advanced knowledge management system with state-of-
the-art personalization, reasoning and information extraction features. As the
project is still in its early phase (the first year finished in February 2009), only
the first open source pre-release of the core system is available for real use. The
IE components applicable in the context of the mentioned use-cases have been
developed in parallel and are available in the experimental mode.

The accuracy of the IE methods significantly depends on the domain, task
and data that can be used. For example, the reported figures for entity recog-
nition range from 60 % to 90 % and generally correspond to the type of entities
to be extracted [15]. The precision of the relation extraction task demonstrates
even more significant variability (e.g., [18] reports results ranging from 7 % to
90 % on various relations from Wikipedia). It has been shown that the IE process
can be useful even if the performance is imperfect [4]. However, to the best of
our knowledge, no studies assessed the actual added value of the IE solutions
for the highly interactive scenarios which is typical for the semantic wikis. This
forms one of the key directions of our future work.

Another challenge we have to face in the next stage comes from the fact
that the types of entities and relations to extract are not specified in advance.
Users can apply the services to extract information from arbitrary complex texts.
They can also specify an ontology and ask the system to identify any given
relation. While, e.g., the use of ontologies to drive the IE process has been

27



12 Pavel Smrž and Marek Schmidt

already explored [11], it is not yet clear whether the performance of the general
IE system, capable of extracting any type of entity or relation only by learning
from the user annotations, will be acceptable for the end-users.

Acknowledgement

The work presented in this paper has been supported by European Commis-
sion, under the ICT program, contract No. 211932 and under the IST program,
contract No. 27490.

References

1. Brants, T., and Franz, A. Web 1T 5-gram Version 1, 2006. Linguistic Data
Consortium, Philadelphia.

2. Ciravegna, F., Chapman, S., Dingli, A., and Wilks, Y. Learning to harvest
information for the semantic web. In Proceedings of the 1st European Semantic
Web Symposium, Heraklion, Greece (2004).

3. Cone, S., and MacDougall, K. Case Study: The swoRDFish Metadata Initia-
tive: Better, Faster, Smarter Web Content, 2007. http://www.w3.org/2001/sw/

sweo/public/UseCases/Sun/.
4. Feldman, R., and Sanger, J. The Text Mining Handbook: Advanced Approaches

in Analyzing Unstructured Data. Cambridge University Press, December 2006.
5. Graff, D. English Giga-word, 2003. Linguistic Data Consortium, Philadeplhia.
6. Kanerva, P., Kristoferson, J., and Holst, A. Random Indexing of Text

Samples for Latent Semantic Analysis. In 22nd Annual Conference of the Cognitive
Science Society (2000), Erlbaum.

7. Kilgarriff, A., Rychly, P., Smrz, P., and Tugwell, D. The sketch engine.
In Practical Lexicography: A Reader, T. Fontenelle, Ed. Oxford University Press,
USA, 2008.

8. Knoth, P., Schmidt, M., and Smrž, P. KiWi deliverable d2.5: Information
Extraction – State of the Art, 2008. http://wiki.kiwi-project.eu/multimedia/
kiwi-pub:KiWi_D2.5_final.pdf.

9. Knoth, P., Schmidt, M., Smrž, P., and Zdráhal, Z. Towards a Framework
for Automatic Term Recognition. In Proceedings of Znalosti (Knowledge) 2009
(2009).

10. Lin, D. Automatic Retrieval and Clustering of Similar Words. In COLING-ACL
(1998), pp. 768–774.

11. Maedche, E., Neumann, G., and Staab, S. Bootstrapping an ontology-based
information extraction system. In Studies in Fuzziness and Soft Computing, Intel-
ligent Exploration of the Web (2002), Springer.

12. McDowell, L. K., and Cafarella, M. Ontology-driven information extraction
with ontosyphon. In Proceedings of the International Semantic Web Conference
(2006), pp. 428–444.

13. Mitsumori, T., Murata, M., Fukuda, Y., Doi, K., and Doi, H. Semantic role
labeling using support vector machines. In Proceedings of the 9th Conference on
Computational Natural Language Learning (CoNLL) (Ann Arbor, U.S.A., 2005),
Association for Computational Linguistics, pp. 197–200. http://www.lsi.upc.es/

~srlconll/st05/papers/mitsumori.pdf.

28



Information Extraction in Semantic Wikis 13

14. Moens, M.-F. Information Extraction: Algorithms and Prospects in a Retrieval
Context (The Information Retrieval Series). Springer, 2006.

15. Nadeau, D., and Sekine, S. A survey of named entity recognition and classifi-
cation. Journal of Linguisticae Investigationes (2007).

16. Pederson, T., Patwardhan, S., and Michelizzi, J. WordNet::Similarity -
Measuring the Relatedness of Concepts, 2004. http://www.d.umn.edu/~tpederse/
similarity.html.

17. Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., and Kirilov, A. KIM
- A semantic platform for information extraction and retrieval. Natural Language
Engineering 10, 3-4 (2004), 375–392.

18. Ruiz-Casado, M., Alfonseca, E., and Castells, P. From wikipedia to se-
mantic relationships: a semi-automated annotation approach. In Proceedings of
SemWiki06 (2006).

19. Sarawagi, S. Information Extraction. Foundations and Trends in Databases 1, 3
(2008), 261–377.

20. Schaffert, S. The KiWi Vision: Collaborative Knowledge Management, pow-
ered by the Semantic Web, 2008. http://www.kiwi-project.eu/index.php/

kiwi-vision.
21. Settles, B. Biomedical named entity recognition using conditional random fields

and rich feature sets. In Proceedings of the COLING 2004 International Joint
Workshop on Natural Language Processing in Biomedicine and its Applications
(NLPBA) (Geneva, Switzerland, 2004). http://pages.cs.wisc.edu/~bsettles/

pub/bsettles-nlpba04.pdf.
22. Widdows, D., and Ferraro, K. Semantic Vectors: A scalable Open Source

package and online technology management application. In Proceedings of the
Sixth International Language Resources and Evaluation (LREC’08) (Marrakech,
Morocco, 2008), ELRA, Ed. http://code.google.com/p/semanticvectors.

23. Yangarber, R., and Grishman, R. Machine learning of extraction patterns from
unannotated corpora: Position statement. In Proceedings of Workshop on Machine
Learning for Information Extraction (2001), pp. 76–83.

29



Undo in Peer-to-peer Semantic Wikis

Charbel Rahhal, Stéphane Weiss, Hala Skaf-Molli, Pascal Urso, and Pascal
Molli

LORIA – INRIA Nancy-Grand Est, Nancy Université, France
{Charbel.Rahal, weiss, skaf, urso, molli}@loria.fr

Abstract. The undo mechanism is an essential feature in collaborative
editing systems. Most popular semantic wikis support a revert feature,
some provide an undo feature to remove any modification at any time.
However this undo feature does not always succeed. Supporting the undo
mechanism for P2P semantic wikis has never been tackled. In this paper,
we present an undo approach for Swooki, the first P2P semantic wiki. We
identify the problems to resolve in order to achieve such mechanism for
P2P semantic wikis. We give the definition of the undo and the properties
that must ensure. This approach allows both a revert and a permanent
successful undo.

1 Introduction

Wiki systems are very popular collaborative editing systems. Thanks to a simple
syntax, users can build complex text documents, including tables, pictures or
videos. As collaborative editors, wiki systems provide an undo mechanism. This
mechanism is integrated in two forms, either through a revert which allows to
return to an old version, or through an undo allowing to remove any modification
from the current version [24].

In spite of their success, wiki systems have some limitations such as:

Centralization Most of existing wikis are centralized: this implies a high cost
to ensure scalability, censorship issues, data availability and durability issues
especially in case of failure;

Low structuring Wiki systems are low-structured, they suffer in the naviga-
tion and the search, i.e. it is hard to navigate and to find relevant information
in wikis [6]. Wiki content is only human readable and it is not accessible and
readable by machines, hence, it cannot be reused in external applications.

To overcome these limitations, two orthogonal solutions are proposed: P2P
wiki systems and semantic wiki systems.

P2P wiki systems [28, 12] are based on a decentralized architecture and op-
timistic replication[19] mechanism to improve scalability and data availability.
As traditional wiki systems, they suffer from low structuring.

Semantic wiki systems [27, 20, 6] allow users to incorporate some computer
readable information in wiki pages. Such information can be used to improve
navigation and search. However, they suffer from centralization limitations.

30



2 Rahhal et al.

Swooki [21] aims at conciliating both directions, it combines the advantages
of P2P systems and semantic wikis. Swooki is a semantic wiki inspired from Se-
mantic MediaWiki [27]. Moreover, Swooki supports massive collaboration, fault
tolerance, off-line work mode and ad hoc collaboration thanks to its P2P struc-
ture and to the replication of semantic wiki pages on different sites. Unfortu-
nately, this approach does not offer any undo mechanism.

In the literature, several collaborative editing systems offer an undo mecha-
nism. Existing semantic wikis are centralized, therefore their undo mechanism is
not adequate for the P2P environment. On the contrary, some undo frameworks
were devised for distributed collaborative systems, however they do not support
semantic wiki data type. The data type maintained in semantic wikis is the
wiki pages and the semantic annotations storage. Our goal is to design an undo
mechanism that is compatible with P2P constraints, that supports the semantic
wiki data type and that ensures the consistency between the wiki pages and the
semantic storage.

In this paper, we propose an undo mechanism for Swooki. We define the
property that this mechanism must ensure. This mechanism supports both undo
and revert features. We develop the undo component and the needed algorithms
and extensions to instantiate this undo mechanism in Swooki.

The paper is organized as follows. In section 2, we motivate the need for the
undo mechanism. Section 3 presents existing approaches for the integration of the
undo mechanism in collaborative editing systems. Section 4 presents Swooki. An
overview of the undo in Swooki approach is given in section 5. Section 6 describes
the implementation of the approach. The last section concludes the paper.

2 Motivation

Similarly to classical collaborative editors, P2P semantic wikis require support-
ing the undo feature for many reasons:

– Undo is a user required feature. Indeed, users can use the undo feature as a
powerful way to recover from their proper errors.

– In collaborative editors, when two or more users modify the same data,
the system proposes a document based on all modifications. This merge
algorithm is a best-effort and is not able to produce the result expected by
users. The undo feature is useful to recover from unexpected results.

– We consider a P2P semantic wiki as an open system where anyone can join
and leave. Since anyone can join, malicious users can also join. As a result,
the undo feature can be used to remove the impact of vandalism acts.

In all these cases, the expected result matches the undo definition [23]:
“Undoing a modification makes the system return to the state it would have

reached if this modification was never produced.”
To achieve such a goal, the revert feature seems to be adequate: we can

remove the whole content and add a previously created one. Unfortunately, the
revert feature does not allow to undo any modification.

31



Undo in Peer-to-peer Semantic Wikis 3

Another common idea is to undo changes by doing the inverse modification.
Unfortunately, this does not achieve the undo definition.

Peer1 Peer2

“The Ferrari FXX is a [type::race car].
It can reach [topSpeed:=349km/h].

It has a [topSpeed:=49km/h].”

M1

��

“The Ferrari FXX is a [type::race car].
It can reach [topSpeed:=349km/h].

It has a [topSpeed:=49km/h].”

M2

��

“The Ferrari FXX is a [type::race car].
It can reach [topSpeed:=349km/h].”

“

”

M2sshhhhhhhhhhhhhhh

“

”
Inverse(M2)

��
“The Ferrari FXX is a [type::race car].

It can reach [topSpeed:=349km/h].
It has a [topSpeed:=49km/h].”

Fig. 1. Undo using the inverse modification

Starting from a version V1 (Figure 1), a user2 on Peer2 generates a malicious
modification M2 by deleting the whole document. M2 deletes all the document
lines. Concurrently, user1 on Peer1 deletes the third line that contains an error.
The inverse modification of M2 inserts the three lines. As a consequence, when
user1 on Peer1 undoes M2, it reinserts the three lines and looses its proper
modification M1 which aims at deleting the third line. If M2 was never produced,
the document would be corrected to ”The Ferrari FXX is a [type::race car]. It
can reach [topSpeed:=349km/h].”. A correct undo must return the document to
this state. Our goal is to provide such an undo feature.

3 Related work

This section gives an overview about the undo mechanism in different collabo-
rative editors.

3.1 Undo in semantic wikis

Semantic wikis such AceWiki [10], Rise [7] and WikiSar [4] do not support ver-
sioning for wiki pages, hence they do not support an undo mechanism.

32



4 Rahhal et al.

Makna [8] is a wiki based tool for distributed knowledge engineering. It ex-
tends the JSPWiki wiki engine with generic, easy to use ontology-driven com-
ponents for collaboratively authoring, querying and browsing Semantic Web in-
formation. Makna supports versioning for pages and metadata within the pages,
thus the revert feature is provided. However, it does not support the undo fea-
ture.

IkeWiki [20] is a semantic wiki with features to support collaborative knowl-
edge engineering, different levels of formalization ranging from informal texts to
formal ontologies, and it has a sophisticated, interactive user interface. IkeWiki
supports also a revert feature to restore an old version. IkeWiki does not support
a feature to undo modifications applied on a page version. In addition, the an-
notations about the wiki pages are outside the content of these pages. Tracking
the annotations changes is not provided, an insert or a delete of annotations can
not be detected.

SweetWiki [6] is a semantic wiki based on the CORESE engine. It supports
WYSIWYG edition of pages and annotations, and use the CORESE engine and
the SeWeSe library for all semantic operations : navigation, search and others.
Pages are annotated using tags which are outside the content of the pages.
SweetWiki does not support a versioning support for the formalized content,
i.e. changes in the tags on pages are not tracked. SweetWiki supports a revert
feature without an undo one.

Rhizome [22] supports a modified version of WikiML (ZML) that uses special
formatting conventions to make semantic properties directly explicit in the page
content. Pages are saved in RDF and another editor can be used to edit the
RDF directly. Rhizome provides a native versioning of content and metadata. It
provides only a revert feature without an undo one.

Semantic MediaWiki (SMW) [27] is an extension of MediaWiki that helps
to search, organize, tag, browse, evaluate, and share wiki content. SMW adds
semantic annotations in wiki pages in order to bring the power of the Semantic
Web into the wiki. SMW inherits all the features of MediaWiki including revert
and undo. While the revert always succeeds in restoring an old version, in some
cases the undo can fail 1. For instance, the undo of a modification in a paragraph
followed by other modifications in the same paragraph can not succeed.

OntoWiki [3] and Powl [2] are web based applications designed to collabora-
tively build ontologies and create instances. Every change on any element such as
knowledge model, concept, property or instance is logged. So they enable users
to track, review and selectively roll-back changes. Consequently, they can offer
both the revert and the undo features. Unfortunately, their undo mechanism is
designed only for ontological elements and not for text.

3.2 Undo in different collaborative editors

DBin [26] enables end users to create and experience the Semantic Web by
exchanging RDF knowledge in P2P “topic” channels. DBin is not designed to

1 http://en.wikipedia.org/wiki/Wikipedia:Undo#Undo

33



Undo in Peer-to-peer Semantic Wikis 5

exchange and edit semantic wiki pages. However, it can be used as a complemen-
tary component for P2P semantic wikis separating the annotations from the wiki
page content. There is no indication about the support of an undo mechanism.

Most undo approaches were devised in the Operational Transformation [9]
(OT) framework.

In [15], the authors propose to select which operation to undo. They also add
the notion of conflict. If a conflict occurs, the undo is aborted. Therefore, this
framework does not allow undoing any operation.

In [18], the authors propose a solution to undo operations in the inverse
chronological order, i.e. from the last operation to the first one without skipping
one. Therefore this approach does not allow undoing any operation.

The GOTO-ANYUNDO approach [23] is the first approach that allows any
user to undo any operation at any time. This approach is designed for real-time
editing and uses state vectors [11]. Since state vectors size is proportional to the
number of sites, this approach cannot be used in a P2P environment.

The COT approach [25] is an OT system designed for real-time editing which
introduces the notion of “context vector”. A context vector is associated to each
operation and represents the operations executed before its generation. As state
vectors, context vectors are not suitable in a P2P environment.

Distributed version control systems (DVCS) as Git 2 are P2P collaborative
systems mainly used for source code editing. They compute a new patch to
remove the effect of a previous one and treat it as a new patch. However, DVCS
lack of a formal framework: there is no property to validate their correctness.
For instance, in Git, the use of the undo feature may confuse further merges 3.

The UNO[29] framework proposed an undo for P2P collaborative editing
based on the Operational Transformation approach. The main idea of this ap-
proach is to devise new operations for counterbalancing previously made oper-
ations. This framework cannot be used directly to provide an undo feature in
Swooki. However, we propose an undo mechanism inspired by this framework
capable of undoing any modification at any time, i.e. supporting both a revert
and an undo features.

4 Swooki System

Swooki [16, 21, 17] is the first P2P semantic wiki, it combines the advantages of
P2P wikis and semantic wikis. Swooki is a P2P network of a set of autonomous
semantic wiki servers called also peers, that can dynamically join and leave the
network.

Every peer hosts a copy of all wiki pages where these pages embed semantic
data and an RDF store. Every peer can autonomously offer all the services of
a semantic wiki server. Swooki supports massive collaboration, improves data
availability and has a high performance thanks to its total replication of shared
2 http://git.or.cz/
3 http://www.kernel.org/pub/software/scm/git/docs/user-manual.html#

undoing-a-merge

34



6 Rahhal et al.

data. It allows to query and access data locally without any data transfer. In
addition, it enables off-line works and transactional changes.

As in any wiki system, the basic element is a wiki page and every wiki page is
assigned a unique identifier PageID, which is the name of the page. The name is
set at the creation of the page. If several servers create concurrently pages with
the same name, their content will be directly merged by the synchronization
algorithm. An URI can be used to unambiguously identify the page. The URI
is global and location independent.

A semantic wiki page Page is an ordered sequence of semantic wiki lines.
A semantic wiki line L is a four-tuple < LineID, content, degree, visibility >
where LineID is a unique line identifier in the whole network, content is a
string representing text and the semantic data embedded in the line. degree is
an integer used by the synchronization algorithm. visibility is a boolean repre-
senting whether the line is visible or not. Lines are not deleted physically, they
are just invisible in the view of the semantic wiki page.

Changes in semantic wiki pages are detected as operations. An operation
is either an insert operation Op = Insert(PageID, line, lP , lN ) or a delete
operation Op = Delete(PageID, LineID) where lP and lN are the previous
and the next lines of the inserted or the deleted line. An update of a line is
considered as a delete of the old value followed by an insert of a new value.

A Swooki peer is composed of the following components (see figure 2):
User Interface. The Swooki UI component is basically a regular wiki editor.

It allows users to edit a view of a page by getting the page from the Swooki
manager. Users can disconnect their peer to work in an off-line mode and they
can add new neighbors in their list to work with. In addition, the UI allows
users to see the history of a page, to execute semantic queries and to export the
semantic annotations of the wiki pages in an RDF format. The history of a page
is the set of events concerning that page on a peer.

Swooki Manager. The Swooki manager is responsible for the generation
and the integration of the editing patches. A patch is the set of delete and
insert operations on the semantic wiki page. Patches are stored in a patchGraph.
The SWooki manager implements the Swooki algorithm [17]. Requesting and
modifying a page or resolving a semantic query in the RDF repository pass
through this manager.

Sesame Engine. The RDF repository used in Swooki is Sesame 2.0 [5].
Sesame is controlled by the Swooki manager for storing and retrieving RDF
triples. We used a facility of Sesame to represent RDF triples as multi-set. This
component allows also generating dynamic content for wiki pages using queries
embedded in the wiki pages. It provides also a feature to execute semantic queries
and to export RDF graphs.

Diffusion Manager. The diffusion manager maintains the membership of
the unstructured network and implements a reliable broadcast. This component
is described in [21, 28].

The integration of the undo mechanism in Swooki requires the addition of the
undo component, with slightly extensions of some existing elements. The undo

35



Undo in Peer-to-peer Semantic Wikis 7

Fig. 2. Swooki architecture extended with the undo component

mechanism is designed to allow users to remove or reinsert the effect of some
changes in the wiki pages and consequently to update their semantic annotations
in the RDF repository. A detailed overview of the proposition is given in the
following section.

5 Proposition

We developed the undo component for Swooki to provide users a feature to
handle vandalism, to correct errors and to improve easily undesired result of an
automatic merge done by Swooki.

5.1 Undo component

In this section, we describe the behavior of the undo component which is respon-
sible of handling undo actions.

When a user wants to undo a modification, i.e. a patch, the document must
return to a state in which the modification was never performed according to
the undo definition see section 2. This definition implies two cases:

– the patch is already undone and the document must not be changed,

36



8 Rahhal et al.

– the patch must be disabled and its effect must be removed.

Moreover, since the action of undoing a patch is also a modification of the
document, users must be able to undo an undo modification, also called redo.

Similarly, according to the undo definition, if a patch is already redone, the
action of “redo” has no effect, otherwise, we must re-apply its effect.

As a result, the system must know if a patch is enabled or not. Moreover,
the system has to know how many times a patch has been undone or redone as
illustrated in figure 3.

Peer1 Peer2

P1 P1

M1 = undo(P1)

%%LLLLLLLLLLLLLLLLLLLLL M2 = undo(P1)

ttiiiiiiiiiiiiii

M2 = undo(P1) M3 = redo(P1)

ttiiiiiiiiiiiiii

M3 = redo(P1) M1 = undo(P1)

Fig. 3. Concurrent undo and redo messages

Assume that two sites, called Peer1 and Peer2, have received the same patch
P1. Concurrently, both sites decide to undo this patch. Consequently, Peer1
generates a modification M1 while Peer2 generates M2. Then, Peer2 chooses to
redo the patch P1. Finally, each peer receives each other modifications. Peer1
has received both “undo” modifications and then the “redo”. If the system just
knows that P1 is undone, the “redo” will reapply P1. Unfortunately, this example
violates the definition. Indeed, if the modification M2 was never produced, the
only remaining modification is M1, then the P1 must remain undone.

For instance, a patch with a patchDegree equals to three implies that the
patch has been redone three times and that it has an effect in the semantic wiki
page model. Actually, patches are never deleted from the patchGraph, however
their effect is removed from the wiki page model as if they did not exist.

As a result, we propose to extend the patchGraph as defined in Swooki by
associating a patchDegree to each patch in that graph. This patchGraph be-
comes a set of <patch, patchDegree> where the patchDegree indicates whether
the patch has an effect or not in the current state of the wiki page. We arbitrary
choose to affect a degree of 1 at the patch reception, to decrease by one the
degree at the execution of an undo and increase it by one for a redo. Then, a
patch is undone if its degree is strictly less than to 1.

37



Undo in Peer-to-peer Semantic Wikis 9

Consequently, in Figure 3, Peer1 will compute a degree of 0 and will not
restore P1.

Finally, we translate the description of the undo component above into the
following algorithm:

integrateUndo(patchId):
patch := getPatch(patchId)
decreasePatchDegree(patch)
if getPatchDegree(patch) = 0 then

disable(patch)

integrateRedo(patchId):
patch := getPatch(patchId)
increasePatchDegree(patch)
if getPatchDegree(patch) = 1 then

enable(patch)

Now, the system can compute whether or not a patch has to be reapplied or
undone. Next, we will explain how to remove or reapply a patch.

5.2 Removing and reapplying a patch

Since we keep deleted lines as tombstones in Swooki, we propose to reuse them
instead of inserting new lines in case of redo. We call deletion the transformation
of a line into a tombstone and, reinsertion the inverse of deletion.

Moreover, using the inverse operations as shown in Figure 1 is not sufficient
for removing the effect of a patch. This is mainly due to concurrency: the line “It
has a [topSpeed:=49km/h].” is deleted twice (by M1 and M2) and “reinserted”
once by “Inverse(M2)”. Similarly to the previous example, we propose to count
the number of deletions/reinsertions to overcome this issue.

In Swooki, a line in the wiki page model is never deleted, it is only set to
invisible in the wiki page view. The visibility of a line is determined through a
boolean visibility field. We change the line visibility as defined in Swooki into
a visibility degree in order to let the system detect whether a line is visible or
not after multiple undo and redo of patches. In our case, a line is visible if it is
visibility degree is positive. A delete of a line turns its visibility degree to zero,
however an undo (or a redo) action decreases (respectively increases) it by one.

Since we have changed the data model, we have to redefine the operations to
modify it. In Swooki, the integration of an operation is processed in two steps:
(1) text integration and (2) RDF statements integration. To integrate an insert
operation op = insert(PageID, line, lP , lN ), the line has to be placed among all
the lines between lP and lN . Finding the right position where the line should be
inserted is done through the Woot algorithm (for more details see [14]).

Once the right position is found, we insert the line in the page with a degree
of 1 and insert the metadata into the RDF store:

insertLine( line ):

38



10 Rahhal et al.

insert (PageID, line, NextIdentifier )
integrateInsRDF(line)

Due to concurrency, a line can have a degree greater than 1. Therefore, the
execution of a delete consists in decreasing the degree of that line. If the line
becomes invisible, i.e. its degree is zero, we have to update the RDF store using
the method “integrateInsRDF”.

delLine(lineID):
line := getLine(lineID)
decreaseVisibilityDegreeOfLine( line )
if visibilityDegree ( line ) = 0 then

integrateDelRDF(getContent(line))

Similarly, the reinsertion of a line increases its degree. If the line becomes
visible, we update the RDF store.

reinsertLine (lineID):
line := getLine(lineID)
increaseVisibilityDegreeOfLine( line )
if visibilityDegree ( line ) = 1 then

integrateInsRDF(getContent(line))

Finally, we can now remove a patch effect:

disablePatch(patch):
for op in patch do

line := getLine(op)
switch(type(op))

‘‘ insert ’’: delLine( line )
‘‘ delete ’’: reinsertLine ( line )

or reapply its effect:

enablePatch(patch):
for op in patch do

line := getLine(op)
switch(type(op))

‘‘ insert ’’: reinsertLine ( line )
‘‘ delete ’’: delLine( line )

In Figure 1, since the third line is deleted twice, its degree is −1. As a
consequence, when Peer1 undoes M2, the line degree is increased by one and the
line remains invisible.

5.3 Messages

As usual modifications, the undo/redo actions must be propagated to all other
sites. Therefore, we need to extend the diffusion manager to take account of
undo/redo messages. We define three kind of messages:

39



Undo in Peer-to-peer Semantic Wikis 11

Do message: In case of a do message (i.e. containing only insert or delete op-
erations), the patch is added in the patchGraph with a patchDegree equals
to one. The operations of that patch are integrated depending on their type.

Undo message: In case of an undo message, the patch on which the undo
message will be applied is extracted from the patchGraph;

Redo message: Similarly for a redo message, the patch is extracted from the
patchGraph.

When a message is received, it is added into a waiting queue. Then each
message in that waiting queue is tested if it is executable or not. A do message is
executable if its operations satisfy their preconditions as defined in [13], however
an undo or a redo message is executable if the patch on which it is applied exists
in the patchGraph. In case of an executable message, its message information
mInfo is added into the page history. Then the message is integrated depending
on its type. The algorithm stops when the waiting queue does not contain any
executable message.

uponReceive(message):
addMsgWaitingQueue(message)
stop := false
while(stop = false) do

stop := true
for msg in MsgWaitingQueue do

if isExecutable(msg)= true then
stop := false
writeHistoryEvent(mInfo)
switch(type(msg))

‘‘ Do’’:
addInPatchGraph(getPatch(msg))
for op in patch do

if type(op) = insert
integrateIns (op)

else
integrateDel(op)

done
‘‘ Undo’’:

disablePatch(getPatch(msg))
‘‘ Redo’’:

enablePatch(getPatch(msg))
endif

endif

6 Implementation

The undo or redo of changes can take place either by visiting the history or the
patch graph of a page. The figure 4 shows the history where different messages
are integrated on the wiki page. A line in the history is equivalent to the message

40



12 Rahhal et al.

information. It indicates the identifier of the patch, the peer that generated the
patch, the type of the message and a user comment when it exists. The undo
action of a patch has a grey background. In order to undo a set of patches, a user
can click the checkbox that precedes each one of them and then press the undo
preview link. The result of this preview is a temporary version of the page which
undoes these patches. If he is satisfied, he can apply these changes by saving the
undo preview.

Another option provided in the history is to revert the current version of
the wiki page. Users can choose to return to a state of a page undoing all the
changes integrated after the chosen patch. This is can be achieved by selecting
the patch and clicking on the revert preview. Similarly, if he is satisfied the user
can save the revert preview and his changes will be applied. The undo of each
patch inserts a new line in the history. The history allows also providing more
information about each patch by a click on show details link at the end of each
line. Each undo action in the history generates a new message of type undo. This
message is sent through Swooki diffusion manager to the other peers in order to
be integrated. The integration of that message locally or on the other peers is
done as defined in section 5.

Fig. 4. Undo from the history

Another way to undo or redo a patch is through the patch graph (see Fig-
ure 5). The patch graph is viewed as an oriented graph of patches. Each patch

41



Undo in Peer-to-peer Semantic Wikis 13

is a node in the graph and the arrows represent the dependence between these
patches. A node relating one or more nodes implies that this patch was gener-
ated on a state integrating these patches. Each node is labeled with the patch
identifier and the patch degree. A black node is a disabled patch that has no
effect in the wiki page. A right click on a node allows to show the information
about the patch, to undo or redo a patch or to preview a version of the wiki
page. The patch graph is visualized through an applet built using JGraphT java
libraries and JGraph is used to render the graph layout. It is based on a recursive
algorithm browsing the patch graph [1]. The patch graph provides information
about the patches dependency, hence the concurrency between them.

Fig. 5. Undo from the patch graph

7 Conclusion

In this paper, we propose an undo mechanism for Swooki. This mechanism allows
users to undo any modification at any time, i.e. to remove any modification as
if it was never produced. It provides both an undo and a revert features. We
developed the undo component, the appropriate algorithms and extended some
parts of Swooki to provide it with an undo mechanism. The undo component is

42



14 Rahhal et al.

responsible for the generation and the integration of undo and redo actions. The
propagation of these actions lies on Swooki diffusion manager. Swooki extension
ensures the convergence of the wiki pages and the RDF stores on all peers.
This convergence is independent from concurrent modifications, the order of
integration of the undo or redo actions and the fact that users can edit in an
off-line mode i.e. join or leave at anytime.

We identified the problems to resolve in order to achieve such mechanism for
P2P semantic wikis. While the revert feature may be sufficient for centralized
semantic wikis, this is not the case for P2P semantic wikis aiming at removing
any modification at any time. Our solution is general, it is based: (1) on en-
abling/disabling patches in the patchGraph and (2) on the generation and the
integration of undo/redo actions. It can be adopted in any P2P semantic wiki
and any P2P wiki.

As future work, we intend to carry out user studies to evaluate: (1) the quality
improvement of wiki pages and the knowledge in the RDF stores using our
approach and (2) how this mechanism facilitates the task of the users compared
to Swooki without the undo mechanism.

References

1. S. Alshattnawi, G. Canals, and P. Molli. Concurrency awareness in a p2p wiki
system. In Proceedings of CTS 2008, The 2008 International Symposium on Col-
laborative Technologies and Systems, Irvine, California, USA, May 2008.

2. S. Auer. Powl. In Proceedings of the 1st Workshop on Scripting for the Semantic
Web (SFSW’05), Hersonissos, Greece, 2005.

3. S. Auer, S. Dietzold, and T. Riechert. Ontowiki - A tool for social, semantic
collaboration. In International Semantic Web Conference, volume 4273 of Lecture
Notes in Computer Science, pages 736–749. Springer, 2006.

4. D. Aumueller and S. Auer. Towards a semantic wiki experience - desktop inte-
gration and interactivity in wiksar. In Proceedings of the Workshop on Semantic
Desktop, Galway, Ireland, 2005.

5. J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A generic architecture
for storing and querying rdf and rdf schema. In ISWC 2002: First International
Semantic Web Conference, 2002.

6. M. Buffa, F. L. Gandon, G. Ereteo, P. Sander, and C. Faron. Sweetwiki: A semantic
wiki. Journal of Web Semantic, 6(1):84–97, 2008.

7. B. Decker, E. Ras, J. Rech, B. Klein, and C. Hoecht. Self-organized Reuse of
Software Engineering Knowledge Supported by Semantic Wikis. Proceedings of the
Workshop on Semantic Web Enabled Software Engineering (SWESE), November
6th-10th, 2005.

8. K. Dello, E. P. B. Simperl, and R. Tolksdorf. Creating and using semantic web
information with makna. In Proceedings of the First Workshop on Semantic Wikis
– From Wiki To Semantics. ESWC2006, June 2006.

9. C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. In J. Clif-
ford, B. G. Lindsay, and D. Maier, editors, SIGMOD Conference, pages 399–407.
ACM Press, 1989.

43



Undo in Peer-to-peer Semantic Wikis 15

10. T. Kuhn. Acewiki: Collaborative ontology management in controlled natural lan-
guage. In Proceedings of the 3rd Semantic Wiki Workshop, CEUR Workshop Pro-
ceedings, 2008, Jul 2008.

11. F. Mattern. Virtual time and global states of distributed systems. In M. C. et al.,
editor, Proceedings of the International Workshop on Parallel and Distributed Al-
gorithms, pages 215–226, Château de Bonas, France, october 1989. Elsevier Science
Publishers.

12. J. C. Morris. Distriwiki: : a distributed peer-to-peer wiki network. In Int. Sym.
Wikis, pages 69–74, 2007.

13. G. Oster, P. Urso, P. Molli, and A. Imine. Data consistency for P2P collaborative
editing. In Proceedings of the ACM Conference on Computer Supported Cooperative
Work, CSCW, Banff, Alberta, Canada, November 2006.

14. G. Oster, P. Urso, P. Molli, and A. Imine. Tombstone transformation functions for
ensuring consistency in collaborative editing systems. In The Second International
Conference on Collaborative Computing: Networking, Applications and Workshar-
ing (CollaborateCom 2006), Atlanta, Georgia, USA, November 2006. IEEE Press.

15. A. Prakash and M. J. Knister. A framework for undoing actions in collaborative
systems. ACM Transactions on Computer-Human Interaction (TOCHI), 1(4):295–
330, 1994.

16. C. Rahhal, H. Skaf-Molli, and P. Molli. Swooki: A peer-to-peer semantic wiki. In
The 3rd Workshop: ’The Wiki Way of Semantics’-SemWiki2008, co-located with
the 5th Annual European Semantic Web Conference (ESWC), Tenerife, Spain,
June 2008.

17. C. Rahhal, H. Skaf-Molli, and P. Molli. Swooki: A peer-to-peer semantic wiki.
Research Report 6468, INRIA, Mars 2008.

18. M. Ressel and R. Gunzenhäuser. Reducing the problems of group undo. In
GROUP, pages 131–139, 1999.

19. Y. Saito and M. Shapiro. Optimistic replication. ACM Computing Surveys,
37(1):42–81, 2005.

20. S. Schaffert. Ikewiki: A semantic wiki for collaborative knowledge management.
In WETICE, pages 388–396. IEEE Computer Society, 2006.

21. H. Skaf-Molli, C. Rahhal, and P. Molli. Peer-to-peer semantic wikis. Research
report, INRIA, 2008.

22. A. Souzis. Building a semantic wiki. IEEE Intelligent Systems, 20(5):87–91, 2005.
23. C. Sun. Undo as concurrent inverse in group editors. ACM Transactions on

Computer-Human Interaction (TOCHI), 9(4):309–361, December 2002.
24. C. Sun and C. A. Ellis. Operational transformation in real-time group editors:

Issues, algorithms, and achievements. In Proceedings of CSCW, pages 59–68, New
York, New York, États-Unis, Novembre 1998. ACM Press.

25. D. Sun and C. Sun. Operation Context and Context-based Operational Transfor-
mation. In Proceedings of CSCW, pages 279–288, Banff, Alberta, Canada, Novem-
ber 2006. ACM Press.

26. G. Tummarello, C. Morbidoni, and M. Nucci. Enabling semantic web communities
with dbin: An overview. The Semantic Web - ISWC 2006, pages 943–950, 2006.

27. M. Vôlkel, M. Krtôzsch, D. Vrandecic, H. Haller, and R. Studer. Semantic
wikipedia. Journal of Web Semantics, 5(4), 2007.

28. S. Weiss, P. Urso, and P. Molli. Wooki: a p2p wiki-based collaborative writing
tool. In Web Information Systems Engineering, Nancy, France, December 2007.
Springer.

29. S. Weiss, P. Urso, and P. Molli. An undo framework for p2p collaborative editing.
In CollaborateCom, Orlando, USA, November 2008.

44



Enabling cross-wikis integration by extending
the SIOC ontology

Fabrizio Orlandi1 and Alexandre Passant2

1 Università degli studi di Modena e Reggio Emilia,
Modena, Italy

orlandi.fabrizio.31985@unimore.it
2 Digital Enterprise Research Institute,
National University of Ireland, Galway

alexandre.passant@deri.org

Abstract. This paper describes how we extended the SIOC ontology to
take into account particular aspects of wikis in order to enable integration
capabilities between various wiki systems. In particular, we will overview
the proposed extensions and detail a webservice providing SIOC data
from any MediaWiki instance, as well as related query examples that
show how different wikis, designed as independant data silos, can be
uniformally queried and interlinked.

Key words: Semantic Web, SIOC, wikis, MediaWiki, Social Semantic
Web, Linked Data, DBpedia

1 Introduction

The SIOC Ontology – Semantically-Interlinked Online Communities [4] – is now
considered as one of the building blocks of the ”Social Semantic Web”. More
than 50 applications are currently using SIOC3, either as a common vocabulary
to expose their data in RDF, alongside with FOAF for instance, as well as using
existing SIOC data, as for instance Yahoo! SearchMonkey. Moreover, the use of
SIOC goes further than mainstream Web 2.0 services, from Enterprise 2.0 infor-
mation integration4 to Health Care and Life Sciences discourse representation5.

However, only a few work have been done so far regarding wikis, semantic
wikis and the SIOC ontology. While the SIOC Types6 module already provides
the Wiki and WikiArticle classes that can be used to represent the basic objects
manipulated by wikis, some particular features of wikis such as pages versioning
and backlinks are not taken into account, neither in the SIOC core nor in its
modules. Yet, providing wikis information using SIOC would have several advan-
tages in terms of integration with existing and constantly dynamically-created

3 http://sioc-project.org/applications
4 http://www.w3.org/2001/sw/sweo/public/UseCases/EDF/
5 http://esw.w3.org/topic/HCLSIG/SWANSIOC
6 http://rdfs.org/sioc/types

45



2 Fabrizio Orlandi and Alexandre Passant

SIOC data, as well as interlinking with other RDF data for advanced querying
purposes. For instance, one will be able to run the same SPARQL query to find
latest created items on a MediaWiki instance or on a WordPress weblog. Hence,
we recently worked on extending the SIOC ontology for this purposes, as well
as providing a SIOC exporter for MediaWiki, potentially creating millions of
SIOC-based RDF documents from various popular wiki services.

This paper is organized as follows. First, we will go through an overview of
wiki features that are important to consider in such a modeling approach and
explain how we took them in consideration in regards of the SIOC ontology and
how we extended it based on this analysis. Second, since some wikis already
expose their data in a machine-readable form thanks to Semantic Web tech-
nologies, we will focus on a state of the art of existing models that achieve the
same goal. Then we will detail how we built a webservice that translates any
MediaWiki wiki page to RDF using the newly-extended SIOC ontology. We will
particularly focus on how this service produces RDF data compliant with the
Linked Data principles and how it relates to initiatives such as DBpedia. Then
we will show some relevant query examples, from advanced queries in a single
wiki to cross-querying capabilities. Finally, we will conclude the paper with an
overview of future works on the domain.

2 Using and extending the SIOC ontology for advanced
modeling of wiki structure

In this section we spot and explore what we consider being the typical and fun-
damental features of wikis in terms of structure and social interactions. Typically
wikis allow editing of documents and, by definition, allow multiple users to si-
multaneously contribute to the content; they track history of changes so that
pages can be restored to previous modified versions; they include comments or
discussion areas; they link to other external sources or within the wiki; they de-
scribe categories into hierarchical structures. For each identified feature, we give
a brief overview of its goal, and detail how we extended, and generally use, the
SIOC Core ontology7 and its Types module8 taking each feature into account in
our modeling approach.

2.1 Modeling relevant wiki features

Multi-authoring. A fundamental feature of wikis is that multiple users are
allowed to modify the same content, enabling some kind of collective intelligence
process. In this regard the semantic infrastructure should provide a model to
identify users and theirs modifications, marking events with a corresponding
timestamp.

This feature can be modeled using the class sioc:User as object of the prop-
erty sioc:has_creator that describes a user account in an online community
7 http://rdfs.org/sioc/ns, prefix sioc in this document
8 http://rdfs.org/sioc/types, prefix sioct in this document

46



Enabling cross-wikis integration by extending the SIOC ontology 3

site, and which is a subclass of foaf:OnlineAccount. In this way a foaf:Person
could be linked to several sioc:User belonging to different wiki sites. Another
way to model the relationships between pages and their authors is to reuse prop-
erties from the Dublin Core ontology, i.e. dc:contributor (or dc:creator) and
dcterms:created. Yet, these properties do not link to a user URI but to a sim-
ple text string, which can be an issue when querying information, especially for
cross-querying as we will detail in section 5.

Categories. Wiki pages are generally related to categories, that allow read-
ers to find sets of articles on related topics. Categories can also be organized
in a tree-like structure and their semantic model should mantain the original
taxonomical structure. In this regard an appropriate solution is provided by
the SKOS9 vocabulary [11], as it offers a way to model hierarchical structures
between various categories, represented as instances of skos:Concept.

As regards the SIOC ontology, a sioct:Category class was already present
into the SIOC Types module, allowing only the modeling of a flat set of category
names. Hence, we decided to declare this class as a subclass of a skos:Concept,
giving it the ability to use the wide SKOS ontology capabilities to organize cate-
gories into advanced taxonomies. Moreover, thanks to the sioc:topic property,
one can link any wiki page to such category.

Social tagging. While not all wiki engines support that feature, we believe
this is particularly relevant, especially as it offers an open and user-driven clas-
sification scheme for wiki pages. The use of tags lead to a non-organised but
dynamic organisation process, known as a ”folksonomy”, rather than the more
widely used hierarchical structures.

The properties sioc:topic and dc:subject can be used to represent tags re-
lated to a particular wiki page, either using URIs for these tags (with sioc:topic)
or simple keywords (dc:subject). In addition, vocabularies such as the Tag on-
tology [12], SCOT [8] or MOAT [13] allow to model tagging as tripartite actions
(between a wiki page, a user and a tag) as well as organize tags together or
link them to ontology concepts, in order to solve common tagging issues such as
ambiguity between tags.

Discussions. Several wikis associate a discussion page to every wiki page, so
that each user is able to comment and argue his point-of-view on the topic. On
a discussion page, people can discuss about the article subject, or about the
way that subject is presented (see the Wikipedia’s approach10). A first modeling
solution could be to simply keep the native wiki text format of the wiki and just
semantically link the discussion page to the related article page.

The SIOC’s main class responsible for the modeling of a discussion is the
sioc:Forum class, but there could be other specific classes that are more suitable
9 http://www.w3.org/2004/02/skos/

10 http://en.wikipedia.org/wiki/Wikipedia:Talk_page_guidelines

47



4 Fabrizio Orlandi and Alexandre Passant

for these discussion purposes, as defined in the Types module. The appropriate
class to choose depends also on the type and style of the discussion page. So it has
been necessary to identify a proper attribute to link a wiki page to its discussion
page. In this regard we decided to add a sioc:has discussion property to
the SIOC Core ontology, with domain sioc:Item and open range. This choice
has been done in order to make this property reusable also in other contexts,
for instance linking a simple webpage to a discussion forum. The discussions
happening within the related sioc:Forum can then be modeled either as wiki-
style discussions or threaded ones, and that feature also allows us to re-use
advanced SIOC-based argumentative discussion modeling as defined in [10].

Backlinks. Backlinks are an important feature of wikis, as they allow to vi-
sualize instantaneously all the incoming links to a website or web page. More
precisely they are wiki internal links pointing to a wiki article. It is a very com-
mon wiki feature and they may be of significant interest: they indicate who is
paying attention to the linked page or topic.

We modeled this feature using the already existing sioc:links to property.
This property identifies links extracted from hyperlinks within a SIOC concept
and is a subproperty of dcterms:references. It is important to remember that
this property has to be defined into the RDF description of the original wiki
article which links back to the wiki article. Hence, to model for instance that the
Wikipedia page about ”DERI” features a backlink from the page about ”RDF”,
the following statement would be added into the RDF description of DERI’s
page.

<http ://en.wikipedia.org/wiki/

Resource_Description_Framework > sioc:links_to

<http ://en.wikipedia.org/wiki/

Digital_Enterprise_Research_Institute > .

Listing 1.1. Representing backlinks

Pages versioning. Usually all editable pages on wikis have an associated page
history. This history consists of the old versions of the wikitext, as well as a
record of the date and time of every edit, the username or IP address of the
user who wrote it, and their edit summary. All this is usually accessible through
a special ”history” page which shows time-ordered links to all the revisions.
Commonly the latest revision of a wiki page has always the same URL (alias
name), meanwhile older versions have further parameters appended to the URL.

The versioning of pages could be modeled in several ways. Taking into account
other semantic wikis, that we describe in Section 3, we took inspiration from
other existing approaches. Then we defined our own different model because
we wanted to keep the pros of each model and we did not find one capable to
satisfy completely our needs. An important requirement we take into account
is the fast and simple browsing capability that the model should have. For this

48



Enabling cross-wikis integration by extending the SIOC ontology 5

reason we chose to use transitive properties to express the temporal relation
between revisions of a wiki page. The model is displayed in Fig. 1 and all the
used properties are now defined in the SIOC Core ontology.

http://wikiexample.org/PageName

http://wikiexample.org/PageName_Vers_X

http://wikiexample.org/PageName_Vers_Y

http://wikiexample.org/PageName_Vers_Z

latest_version

earlier_version
previous_version

previous_version

previous_version

next_version

next_version

next_version

later_version

Fig. 1. Pages versioning model with SIOC properties. Please note that, for more clarity,
transitive properties earlier version and later version are only displayed for two
wiki articles: the latest one and the first one.

The next/previous version properties link only the next/previous revision
of a generic sioc:Item. Meanwhile earlier/later version are defined as tran-
sitive properties and as super-properties respectively of next/previous version.
The main advantage of the definition of transitivity and the declaration of super-
properties, is that they can be inferred automatically by a reasoner. Hence, using
an OWL level reasoning engine, when modeling a WikiArticle (or a sioc:Item
in general), it is only necessary to describe its previous and next revision and
the transitive super-properties will be automatically inferred by the system. This
can also be convenient during the querying process (described in Section 5): if
it is necessary to get all the earlier versions of a wiki page, with transitivity it
is sufficient to use the sioc:earlier version transitive property, while in the
other case, it has to be implemented a query that recursively ”jumps” on each
sioc:previous version of the latest wiki article. Another introduced property
is the sioc:latest version which points always to the newest revision. Usu-
ally it is used in combination with an alias name of the latest version so that
it is not necessary to change the referred URI in all the earlier versions as soon
as a modification happens. All the wikis we analyzed adopt this solution as it
addresses scalability.

2.2 Changes summary

All the changes we made to the SIOC ontology are summarized as follows:

– Defined the sioct:Category class as a subclass of skos:Concept.

49



6 Fabrizio Orlandi and Alexandre Passant

– Added a sioc:has discussion property, with domain sioc:Item and open
range.

– Added a sioc:latest version property, with sioc:Item as domain and
range.

– Added two transitive properties: sioc:earlier version and sioc:later version,
with sioc:Item as domain and range.

– Defined sioc:later version as inverse property of sioc:earlier version.
– Defined sioc:next version as a subproperty of sioc:later version.
– Defined sioc:previous version as a subproperty of sioc:earlier version.

3 Related work

3.1 Existing models to represent structure of wikis

While our aim is to model wiki features by extending SIOC, several vocabularies
have been already proposed to achieve this goal. We will overview some of them
in this section, by distinguishing models created with a general purpose and
models created for a particular wiki engine but nevertheless available on the
Web. In addition, it is worth noticing that we focus here on models and tools
defined to represent the structure of wikis and not on the ones that allow domain
ontology modeling and population in RDF(S)/OWL from the wiki itself, while
these two levels of semantics can be obviously combined.

As regards generic models WikiOnt11 [7] is an ontology for describing and
exchanging wiki articles and it aims at integrating Wikipedia (and by exten-
sion other MediaWiki-based sites) into the Semantic Web framework, making
Wikipedia machine-processable. This OWL ontology uses DublinCore to iden-
tify multiple authors of wiki pages as well as the editing date, and provides
Article and Category classes. Yet all the other features are currently not mod-
eled by the ontology. Wiki Interchange Format12 (WIF) [16] is a project
that allows data exchange between wikis and related tools. Different from other
approaches, it also tackles the problem of page content and annotations. WIF
defines a subset of XHTML as an over-the-wire format for wiki content exchange.
It defines the classes of WikiUser (subclassing foaf:Person) and WikiPage to
model pages and authors. It also privides a versioning system thanks to the
hasPreviousVersion and hasChangeDate properties. Categories, social tagging,
discussions and backlinks are features currently not modeled by the ontology.

In addition to the previous models we considered some particular wiki engines
that expose their data in RDF providing an RDF vocabulary for such export.
IkeWiki13 [15] aims at creating instance data based on an existing ontology
but also at being a tool for creating and editing ontologies. In addition, IkeWiki
provides a complete export of the wiki structure using a dedicated OWL ontol-
ogy. It introduces a User class, subclass of foaf:Person, and uses a hasAuthor

11 http://sw.deri.org/2005/04/wikipedia/wikiont.html
12 http://wif.ontoware.org/2005/04/
13 http://ikewiki.salzburgresearch.at

50



Enabling cross-wikis integration by extending the SIOC ontology 7

property, subclass of foaf:maker, to associate an author/User with a resource
in the wiki. It is also worth noticing that IkeWiki uses SIOC to model discus-
sions, using a hasDiscussion property that links any wiki page to an instance of
sioc:Forum. A wiki article is defined by a Page class. Social tagging, backlinks
and pages versioning are features currently not modeled by the ontology.
SweetWiki14 [6] is a semantic wiki based on the CORESE engine. It relies on
Web standards for the semantic annotations (RDFa, RDF) and for the ontologies
it manipulates (OWL Lite). The SweetWiki ontology manages versions of wiki
pages using a Version class, defined as a subclass of the main WikiPage class.
A pageHasVersion property links each old version with the latest page repre-
sented by the WikiPage class. The page version number is declared as an integer
number with the isTheVersionNumber attribute. To note that SweetWiki offers
advanced social tagging features, which are not modeled by other Semantic wikis.
Keywords can be collaboratively structured through a lightweight ontology edi-
tor and related either to pages, categories (defined using a particular Category
class) or embedded media content. Sweetwiki also supports backlinks, but not
discussion pages at the moment. It also defines its own classes to model authors
and wiki pages, respectively using Person and WikiPage.
Semantic MediaWiki15 (SMW) [9] uses a particular ontology to represent the
semantic data exported from a page by a user, named SWIVT – Semantic Wiki
Vocabulary and Terminology. This ontology provides a basis for interpreting
the semantic data exported by SMW, and it incorporates various elements that
are closely related to SMW’s metadata model. Yet, while some features such
as backlinks or categories are provided by SMW, they are not exposed in the
SWIVT model, exporting only a Wikipage class.

Finally, regarding the use of SIOC for wikis, we can mention UfoWiki [14],
that have been deployed in complement of other SIOC-related data in an Enter-
prise 2.0 platform, while it does not support versioning in its RDF representation.

3.2 Comparison and positioning of our approach

Based on the previous analysis, we produced a comparison matrix, to underline
the pros and cons of each approach. We may conclude that multi-authoring is a
feature supported by the ontologies of all the wiki models, and this is because it is
an inescapable characteristic of a semantic wiki. On the other hand backlinks and
versioning are not modeled by most of the considered wikis. These two features
are addressed only by SweetWiki, with the exception of WIF developing a very
simple versioning solution. Moreover, some features that are not modeled by
these vocabularies could be added by external vocabularies, as for instance social
tagging. Finally the most complete model to take into account is SweetWiki,
being able to accomplish to every requirement but the discussions.

14 http://sweetwiki.inria.fr/sweetwiki
15 http://semantic-mediawiki.org

51



8 Fabrizio Orlandi and Alexandre Passant

× IkeWiki SweetWiki SWIVT WikiOnt WIF SIOC

Multi-authoring
√ √ √ √ √ √

Categories
√ √ √ √ × √

Social Tagging × √ × × × √

Discussions
√ × × × × √

Backlinks × √ × × × √

Versioning × √ × × √ √

Table 1. Comparing various ontologies to represent wikis structure

4 Exporting SIOC data from MediaWiki

In order to see implications of our extension, our aim was to build an exporter
from a popular wiki platform, so that it can expose its data in RDF using our
proposed model. Hence we decided to create a web-service application to export
any MediaWiki instance. MediaWiki is one of the most popular wiki platforms,
hosting all the Wikimedia Fundation wikis (i.e. Wikipedia, Wiktionary, etc.) and
propulsing more that 25 millions of wiki articles from different wiki sites16.

4.1 Principles of the SIOC-MediaWiki webservice

In order to export SIOC data from MediaWiki’s wikis we implemented a web-
service, written in PHP, that exports a wiki article in RDF with the structure
we explained in the previous sections. The webservice is publicly available at
http://ws.sioc-project.org/mediawiki/.

Fig. 2. Interface of the SIOC-MediaWiki webservice

16 http://s23.org/wikistats/largest_html.php

52



Enabling cross-wikis integration by extending the SIOC ontology 9

The MediaWiki exporter is relatively lightweight and built thanks to two
PHP classes: the SIOC-Mediawiki exporter itself and the already existing SIOC
API17. Our approach combines the use of the MediaWiki API as well as the
SIOC PHP API – that has been extended based on the previously-detailed on-
tology changes – to create SIOC data. The exporter class is the part responsible
for querying the MediaWiki API and parsing the results, and the SIOC API is
responsible for exporting the content in RDF. The script indeed uses the Medi-
aWiki API to get all the information about the article inserted in the form, with
the following process (as represented in Fig. 3):

– it automatically discovers the API location (if not detected it is possible to
manually specify the API path in the proper text field);

– it connects to the API sending HTTP requests as queries;
– it parses the results of the queries and fills in the proper variables;
– it calls the SIOC API to export in RDF the fetched structural information

and outputs the results in RDF/XML serialization.

SIOC PHP 
API

MediaWiki 
API

SIOC 
MediaWiki 
webservice

REST API Call

PHP-formatted
 results

PHP Objects 

RDF Document
RDF Output

User query

Fig. 3. Activity diagram of the SIOC-MediaWiki webservice

4.2 Following the Linked Data principles

One of our goals with this exporter was not only to create RDF data from any
MediaWiki page, but also to easily allow interlinking between various wikis, as
well as between wiki data and other RDF data, whatever it is social data modeled
with FOAF or SIOC or any other kind of RDF data. Hence, we followed the
Linked Data best practices defined in [1], [2] and [3].

Particularly, to offer a better browsing experience and ease the process of
crawling SIOC exports of MediaWiki instances, our webservice automatically
17 http://wiki.sioc-project.org/index.php/PHPExportAPI

53



10 Fabrizio Orlandi and Alexandre Passant

produces rdfs:seeAlso links between wiki pages. Actually, more than a simple
link to the wiki page, the exporter provides a link to the related RDF document,
as we can see in the following Listing 1.2 related to a particular sioc:User.
As we can also notice in that example, we distinguish the concept itself (i.e.
User:StefanDecker) and the related RDF page. These seeAlso links are very
useful not only to provide link to other related RDF documents, that can be
used for instance when browsing data with Tabulator, but also in a crawling
perspective. A RDF crawler could easily follow all the seeAlso links found on
every document and continue to crawl. In this regard, for example, we crawled
and exported entire wiki sites just following these links.

<sioc:User rdf:about ="http ://en.wikipedia.org/wiki/User:

StefanDecker">

<rdfs:seeAlso rdf:resource ="http ://ws.sioc -project.org/

mediawiki/mediawiki.php?wiki=http ://en.wikipedia.org

/wiki/User:StefanDecker "/>

</sioc:User >

Listing 1.2. Modeling a user in the MediaWiki exporter

Another interesting feature is the linkage to the corresponding DBpedia18

resource, if the article belongs to the english Wikipedia. Since DBpedia seman-
tically models the content of a Wikipedia page, this connection is very useful to
link semantic data about the content and the structure of a wiki article. DB-
pedia resource URIs are used in rage of the foaf:primaryTopic property, this
because it relates a document to the main thing that the document is about.

5 Cross-wikis integration and advanced querying process

In order to evaluate our proposal, we exported and crawled different MediaWiki
instances. Four different wikis have been crawled – using for each crawl a single
entry point thanks to the use of the rdfs:seeAlso links – each one belonging to
the same area of interest in order to have a high probability of shared topics and
users: Semanticweb.org19, Protégé Wiki20, RDFa Wiki21 and the ONTOLORE
Karlsruhe wiki22. In total, we collected about 1GB of RDF data and loaded it
in Sesame [5]. As we needed an higher degree of inference (because of the OWL
transitive properties) we installed and configured the reasoning engine OWLIM23

on the top of it.

18 http://www.dbpedia.org
19 http://www.semanticweb.org
20 http://protegewiki.stanford.edu
21 http://rdfa.info/wiki/RDFa_Wiki
22 http://logic.aifb.uni-karlsruhe.de/wiki/ONTOLORE
23 http://www.ontotext.com/owlim/

54



Enabling cross-wikis integration by extending the SIOC ontology 11

5.1 Advanced querying for a single wiki

A first example of advanced querying for a particular wiki is the ability to an-
swer to the following question: ”what are the collaborating users that worked
alternatively on the same wiki article?”. In Listing 1.3 we provide the SPARQL
implementation of this query.

SELECT DISTINCT ?wikiArt ?Contrib_a ?Contrib_b

WHERE {

?x sioc:latest_version ?wikiArt.

?wikiArt sioc:earlier_version ?VersA .

?VersA sioc:earlier_version ?VersB ;

dc:contributor ?Contrib_a .

?VersB sioc:earlier_version ?VersC ;

dc:contributor ?Contrib_b .

?VersC dc:contributor ?Contrib_a .

FILTER (? Contrib_a != ?Contrib_b) .

}

Listing 1.3. Identifying collaborating users

In Fig. 4 we display a diagram that summarizes the above query, meanwhile
in Fig. 5 we show the results we got querying on our SESAME triplestore. As
we can see, this query takes advantage of the transitivity of the newly created
property sioc:earlier_version, since we identify users that worked on earlier
versions, and not only immediately on the previous one.

?wikiArt

?VersA

?VersB

?VersC

dc:contr ibutor

dc:contr ibutor

dc:contr ibutor

sioc:earlier_version

sioc:earlier_version

sioc:earlier_version
?Contrib_a ?Contrib_b

Fig. 4. Identifying collaborating users

The query results provide the article URI and the two usernames in case
the first user (?Contrib a) re-edited the article after a modification made by
the second user (?Contrib b). It enables you to look for users sharing the same
interests and knowledge areas. The query is important expecially in a social
semantic context.

55



12 Fabrizio Orlandi and Alexandre Passant

Fig. 5. Results of the query for collaborating users on SESAME

5.2 Cross-wiki integration and querying

Another interesting feature of our approach is the ability to do cross-wikis query-
ing, since they are based on the same model. Obviously, one can argue that since
all the exported wikis are based on MediaWiki, the same approach could have
been used simply with the MediaWiki API. Yet, our proposal has many advan-
tages as it relies on SPARQL instead of a particular API and it provides advanced
inference capabilities that the original API does not offer. The following query
identifies users involved in different wikis, looking for the same usernames.

SELECT DISTINCT ?creator1 ?page1 ?page2 ?wiki1 ?wiki2

WHERE {

?page1 sioc:has_container ?wiki1 ;

dc:contributor ?creator1 .

?page2 sioc:has_container ?wiki2 ;

dc:contributor ?creator2 .

FILTER (str(? creator1)==str(? creator2)) .

FILTER (str(?wiki1)!=str(?wiki2)) .

}

Listing 1.4. Identifying pages created by a single user in different wikis

While this is a very simple query it requires high computation capabilities
when ran through a large number of different wikis. Hence, in Fig. 6 we display

56



Enabling cross-wikis integration by extending the SIOC ontology 13

a screenshot of the results we get after running the same query between the
Semanticweb.org wiki and the Protégé wiki. Instead of also displaying all the
other details, such as the related wiki pages and the two wiki containers, we
show only the distinct usernames of the found users.

Fig. 6. Query results. Shared users between two wikis.

Yet, as this query relies on a FILTER clause, it will identify common users
only if they use the same account name on two different wikis. Moreover, we can
imagine that some common account names will be used by different people on
different wikis, e.g. JohnSmith. To that extend, we can benefit from the strong
ties that exist between FOAF and SIOC and the fact we are modeling a wiki user
using the sioc:User class. One person can indeed define in his FOAF profile
the various wiki accounts he owns, using simple foaf:holdsAccount properties.
Then, the previous query can be adapted to deal not only with text strings to
identify the user, but with their related accounts from the FOAF URI, so that
a single query can be used to retrieve all the contributions of a user whatever
the wiki used was. Moreover, since the wiki model is based on SIOC, the same
query can be used to retrieve wiki pages, blog posts, etc. as follows.

SELECT DISTINCT ?content

WHERE {

<http :// example.org/js#me> foaf:holdsAccount ?account .

?account rdf:type sioc:User .

?content sioc:has_creator ?account .

}

Listing 1.5. Cross-sites querying by combining FOAF and SIOC

57



14 Fabrizio Orlandi and Alexandre Passant

6 Conclusion

In this paper we presented how the SIOC ontology and lightweight semantics
can be used and extended to represent the structure of wikis in an unified way.
We first explained our motivations regarding some properties of wikis that we
focused on in our modeling process, particularly focusing on a versioning process,
and how we can benefit in this case of OWL reasoning capabilities. Then, we
described how we designed a webservice to translate any MediaWiki page into
SIOC data, following the Linked Data best principles to provide not only isolated
RDF, but interlinked data. Finally, we gave some examples regarding how this
data could be efficiently used for querying purposes.

While the work done here have been only applied to MediaWiki, further
developments may include exporters and plug-in for other platforms to enable
better cross-wikis integration. We also consider extending the versioning system
defined in SIOC regarding wiki pages to other user-generated content. Moreover
the semantic modeling of a wiki article might be improved adding more details
about the content of the article itself. One of our goals is also to run cross-
queries between our Wikipedia export and DBpedia, for instance to identify
which people where the most active on a particular wiki page or topic. Finally,
we also believe that this article gives a complete and nice overview regarding
how to extend an ontology such as SIOC for particular purposes.

7 Acknowledgements

The work presented in this paper has been funded in part by Science Foundation
Ireland under Grant No. SFI/08/CE/I1380 (Lion-2).

References

1. Danny Ayers and Max Völkel. Cool URIs for the Semantic Web. W3C Interest
Group Note 03 December 2008, World Wide Web Consortium, 2008. http://www.
w3.org/TR/cooluris/.

2. Tim Berners-Lee. Linked Data. Design issues for the world wide web, World Wide
Web Consortium, 2006. http://www.w3.org/DesignIssues/LinkedData.html.

3. Chris Bizer, Richard Cyganiak, and Tom Heath. How to Publish Linked Data
on the Web. Technical report, 2007. http://www4.wiwiss.fu-berlin.de/bizer/

pub/LinkedDataTutorial/.

4. John G. Breslin, Andreas Harth, Uldis Bojārs, and Stefan Decker. Towards
Semantically-Interlinked Online Communities. In Proceedings of the 2nd Euro-
pean Semantic Web Conference (ESWC2005), volume 3532 of Lecture Notes in
Computer Science, pages 500–514. Springer, 2005.

5. Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema. In The Semantic
Web - ISWC 2002. First International Semantic Web Conference, volume 2342 of
Lecture Notes in Computer Science, pages 54–68. Springer, 2002.

58



Enabling cross-wikis integration by extending the SIOC ontology 15

6. Michel Buffa, Fabien L. Gandon, Guillaume Ereteo, Peter Sander, and Catherine
Faron. SweetWiki: A semantic wiki. Journal of Web Semantics, 6(1):84–97, 2008.

7. Andreas Harth, Hannes Gassert, Ina O’Murchu, John G. Breslin, and Stefan
Decker. WikiOnt: An Ontology for Describing and Exchanging Wikipedia Ar-
ticles. In Proceedings of Wikimania 2005 – The First International Wikimedia
Conference, 2005.

8. Hak Lae Kim, Sung-Kwon Yang, John G. Breslin, and Hong-Gee Kim. Simple al-
gorithms for representing tag frequencies in the scot exporter. In Proceedings of the
2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology,
pages 536–539. IEEE Computer Society, 2007.

9. Markus Krötzsch, Denny Vrandecic, and Max Völkel. Semantic MediaWiki. In
Proceedings of the 5th International Semantic Web Conference (ISWC 2006), vol-
ume 4273 of Lecture Notes in Computer Science, pages 935–942. Springer, 2006.

10. Christoph Lange, Uldis Bojārs, Tudor Groza, John G. Breslin, and Siegfried Hand-
schuh. Expressing Argumentative Discussions in Social Media Sites. In Proceedings
of the ISWC2008 Workshop on Social Data on the Web (SDoW2008), volume 405
of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

11. Alistair Miles and Sean Bechhofer. SKOS Simple Knowledge Organization System
Reference. W3C Working Draft 29 August 2008, World Wide Web Consortium,
2008. http://www.w3.org/TR/2008/WD-skos-reference-20080829/.

12. Richard Newman, Danny Ayers, and Seth Russell. Tag ontology, December 2005.
13. Alexandre Passant and Philippe Laublet. Meaning Of A Tag: A collaborative

approach to bridge the gap between tagging and Linked Data. In Proceedings of
the WWW2008 Workshop Linked Data on the Web (LDOW2008), volume 369 of
CEUR Workshop Proceedings. CEUR-WS.org, 2008.

14. Alexandre Passant and Philippe Laublet. Towards an Interlinked Semantic Wiki
Farm. In Third Semantic Wiki Workshop – The Wiki Way of Semantics, volume
360 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

15. Sebastian Schaffert. IkeWiki: A Semantic Wiki for Collaborative Knowledge Man-
agement. In First International Workshop on Semantic Technologies in Collabo-
rative Applications (STICA 06), 2006.

16. Max Völkel and Eyal Oren. Towards a Wiki Interchange Format (WIF) - Opening
Semantic Wiki Content and Metadata. In Proceedings of the First Workshop on
Semantic Wikis - From Wiki to Semantics (SemWiki-2006), volume 206 of CEUR
Workshop Proceedings. CEUR-WS.org, 2006.

59



What The User Interacts With: Reflections On
Conceptual Models For Semantic Wikis

François Bry, Michael Eckert, Jakub Kotowski and Klara Weiand

Institute for Informatics, University of Munich
Oettingenstr. 67, 80538 München, Germany

http://pms.ifi.lmu.de

Abstract. Traditional wikis excel in collaborative work on emerging
content and structure. Semantic Wikis go further by allowing users to
expose knowledge in ways suitable for machine processing, e.g. using
Semantic Web technologies. The combination of ease of use, support
for work in progress and Semantic Web technologies makes Semantic
Wikis particularly interesting for knowledge-intensive work areas such as
project management and software development. While several Semantic
Wikis have been put to practical use, the concepts their users interact
with have been little discussed. This position paper explores this issue,
showing that the design of a conceptual model is not trivial and showing
the repercussions of each design choice. The issue is explored stressing
the social aspect of Semantic Wikis.

Key words: Semantic Wiki, Social Software, Semantic Web, Reasoning,
Querying

1 Introduction

“Semantic Wiki” can refer either to Wikis enhanced with semantic technologies
(or, after [8] “Semantic data for Wikis”) or Wikis for ontology engineers (after
[8] “Wiki for semantic data”). This paper uses the term in the first sense even
though its contribution may be useful in both contexts.

Traditional Wikis are popular for managing personal and professional knowl-
edge, primarily in the form of relatively simple hypertext, that is, Wiki pages and
the links between them. Several features of traditional Wikis have been the key
to their success: simplicity, openness and their thorough support for emerging
and changing content in collaborative environments. Typically, Wikis are easy
to use and allow anyone to make changes to the content. All Wiki content is
version-controlled, meaning that previous versions of Wiki pages are never lost
and changes can be tracked and reverted. Though many Wikis support advanced
concepts that are relevant to their administration such as access rights and page
and user groups, the basic concepts a regular users interacts with are limited to
pages, links, and possibly text structuring and formatting.

Content in traditional Wikis consists of natural language text (and pos-
sibly multimedia files) and is not directly accessible to automated semantic

60



processing. Therefore, knowledge in Wikis can be located only through sim-
ple user-generated structures (tables of contents, inter-page links) and simple
full text keyword search. More advanced functionalities that are highly desirable
in knowledge-intensive professional contexts such as querying, reasoning and se-
mantic browsing are not possible. Semantic Wikis introduce capabilities into
Wikis for specifying knowledge not just in natural language but also in more
formal, machine-processable ways.

Most of the advanced technologies that Semantic Wikis employ were devel-
oped for use in a static environment with annotations and rules being crafted by
knowledge representation experts. This is in contraposition to the ever-changing,
dynamic character of Wikis where content and annotations are, for the most part,
created by regular users. In such an environment, inconsistencies and ambigui-
ties can easily arise and the system should therefore be able to cope with them
and support users in their work.

While several Semantic Wikis have been put to practical use [1,7,17,16,5,12,21]
[14], each using their own conceptual model, there has been little explicit theo-
retical exploration on the possible choices for conceptual models and their con-
sequences [20]. By conceptual model, we here understand the basic concepts or
buildings blocks that a user interacts with as well as how these building blocks
relate to each other1. In a traditional Wiki, there are typically only few such
building blocks, the most basic ones being “page” and “link.” Semantic Wikis,
however, add new building blocks such as typed links, tags and RDF or OWL
annotations. The basic building blocks of a Semantic Wiki and how they relate
to each other has rarely been discussed in the literature, and one can assume
that many decisions in this regard have been without full consideration of the
design space.

In this article, we seek to draw attention to this issue, showing that the de-
sign of a concept model for a Semantic Wiki is a non-trivial issue and design
choices greatly influence how the user sees the system and what functionalities
the system can offer. We will show that there are several possibilities for ap-
proaching certain issues in a Semantic Wiki and that these have advantages and
disadvantages, as well as important consequences on how other issues can be
approached.

2 Content

This section outlines the representation of content in the Wiki. “Content” here
refers to text and multimedia which is used for sharing information, most fre-
quently through the use of natural language, between the users of the Wiki,
and whose meaning is not directly accessible for automatic processing. Informa-
tion Extraction techniques can be used to extract structured data from text or
speech, which enables computerised processing, but this introduces another level
of representation which is not considered “content” in this sense.
1 Since the term “concept” is overloaded, we refer instead to “building blocks” of a

conceptual model.

61



While regular Wikis are restricted to content as data, Semantic Wikis add
further layers, namely data that can be used for human as well as automatic pro-
cessing or data that is intended only for computers and not easily understandable
for humans. These two other types of data are discussed in the following two
sections.

Content Items. Content items constitute the primary unit of information in
the Wiki; a simple textual content item can be thought of as being similar to
a paragraph or section in a formatted text. Content items give structure to
Wiki content. A content item can directly contain only one type of content,
for example text or video. However, content items are also compositional to
enable the representation of complex composite content structure. Therefore,
content items can be nested, yielding complex content items. Content items
do not overlap and every content item has a URI and can be addressed and
accessed individually. As a consequence, there is no inherent distinction between
Wiki pages and content items, or rather, by default, all content items are Wiki
pages. If every (simple or complex) content item can only be embedded in one
other content item, the Wiki content consists of a set of finite trees. Root nodes,
that is, content items that do not have a parent node, then have a special status
in that they encompass all content that forms a cohesive unit. In this, they can
be seen as being alike to a Wiki page in a regular Wiki.

Having an explicit concept of content structure in a Wiki is desirable both
with respect to the semantic as well as the social nature of a Semantic Wiki as
the structural semantics of the content can be immediately used for querying
and reasoning as well as for facilitating collaboration and planning of content.
For example, queries could be used to automatically generate tables of contents
and the modular nature of content items facilitates collaboration and planning.
In addition, content items constitute a natural unit for assigning annotations for
content (see Section 3).

Allowing one content item to have several parents, that is, to be directly
contained in multiple other content items through transclusion [9], is a design
decision that adds functionality but also has side-effects, some of which may be
unwanted. Allowing transclusion means that content items can be easily reused
and shared, which is useful for example for schedules or contact data. If a copy of
the content item’s content is embedded, multiple occurrences of the content item
in the Wiki can not be traced as naturally or easily. On the other hand, updating
the content item or reverting it to an earlier version can lead to unintuitive and
undesired effects as the content item changes in all contexts it is embedded in.
The user editing the content item then needs to be aware of all the contexts in
which the content item is used and has to ensure that the change to the content
item is appropriate in all contexts. To facilitate this, information about embed-
ding locations should be readily available to the users, but even then, the user is
burdened with deciding whether the change can be made, something which he
might not be willing or feel knowledgeable enough to do. When the transclusion
of content items is enabled, loops, which arise when a content item contains it-
self as a descendant, pose another problem. This is due to the fact the resulting

62



infinite recursion is problematic with respect to rendering the content item2 as
well as reasoning or querying over it. Since loops additionally appear to have
no straightforward meaningful interpretation in the Wiki context, transclusions
which would cause loops should generally be forbidden. In summary, allowing
both content items that can be multiply embedded as well as content items that
can only exist in one context combines the advantages of both strategies and
gives the users maximum flexibility.

Fragments. Fragments are small, continuous portions of text (or, potentially,
multimedia) that can be annotated with tags (see Section 3). While content
items allow the authors to create and organise their documents in a modular
and structured way, the idea behind fragments is that they constitute a means
for users to annotate and use them separately from the original structure as they
see fit and find useful. If content items are like chapters and sections in a book,
then fragments can be seen as passages that readers mark; they are linear and
in that transcend the structure of the document, spanning across paragraphs or
sections and different sections of the book might be marked depending on which
aspect or topics a reader is interested in.

Fragments should be maximally flexible in their placement, size and be-
haviour to allow for different groupings. Towards this goal, it is generally desir-
able that –unlike content items– fragments can overlap. The intersection between
two overlapping fragments then can be further processed or it can be ignored.
When two overlapping fragments f1 and f2 are tagged with ”a” and ”b” respec-
tively, a third fragment that spans over the overlapped region and is tagged ”a,
b” could be derived automatically. Similarly, automatically taking the union of
identically tagged overlapping or bordering fragments might be intuitive and ex-
pected by the user. However, this automatic treatment of fragments is a complex
issue which might not always be appropriate or wanted.

On the other hand, fragments could be seen as co-existing but not inter-
acting, meaning that the relationships between fragments are not automatically
computed and no tags are added. This view has the advantage of being simpler
and more flexible in that control of the fragments and their tags stays with the
user. It is also in tune with the philosophy that, unlike content items that always
only realise one structuring, fragments are individual in that different users can
group a text in many different ways and under many different aspects. Frag-
ments can either be restricted to the content directly contained in one content
item, or it can span across content items. In the latter case, a rearrangement of
content items can lead to fragments that span over multiple content items which
no longer occur in successive order in the Wiki and, similarly, transclusion means
that content items may contain only part of a fragment with the other part being
absent (but present in some other content in which the content item is used).

Fragments could be deleted when the structure of content items no longer
supports them, this means that a user might find a fragment she created de-
stroyed as a consequence of another user’s rearrangement of content items.

2 At least if we assume that all of the content item is to be rendered at once.

63



Two possibilities of realising fragments are the insertion of markers in the
text to label the beginning and end of an fragments (“intrusive”), or external
referencing of certain parts of a content items, using for example XQuery, XPath,
XPointer, or line numbers (“non-intrusive”). The latter has the advantage of
allowing to define and annotate fragments on external content items, while the
former means that fragments are less volatile and updates to the text do not
affect fragments as easily, for example when text is added before the fragment.

External Content Items. Linked websites that are located outside of the Wiki
are considered to be external content items. That means, they can be tagged
and they can contain non-intrusive fragments, but they are not considered to be
complex, that is, nested.

3 Semi-formal Annotations

One problem that frequently arises in the context of Semantic web applications is
that it is hard to motivate users to annotate content since they find the process
complicated and laborious. One solution is to provide means for creating less
formal annotations which are easier to use. As work progresses, these annotations
can be made increasingly more precise and can eventually be transformed into
formal knowledge. Tagging is one such kind of semi-formal annotation. Tags
normally consist only of keywords users associate with resources. Despite their
simplicity, there are many possibilities as to how exactly the tags should work
and be used [19]. Further, traditional keyword tagging can be extended in a
number of ways [2,23,18] such as structured tags, negative tagging, and rules
for tags [6]. Semantic links are another kind of semi-formal annotation. They
are anchored in content items or fragments and can point to content items or
fragments. Tags can be used on content items, fragments and possibly links as
a way to assign a type to a link.

The semiotic triangle. One question to ask when designing a system that includes
annotations is “What is annotated?” This question may have a quick, superficial
answer: “Any resource that the system allows to be annotated.” But what does
that mean precisely? Let us say that the resource is a Wiki page about an
elephant. Does a tag added to the page state a fact about the page itself (a
representation of an elephant in the Wiki system) or does it refer to the actual
elephant? This leads to a concept known as semiotic triangle [10], Peirce’s triad
[13] or de Saussure’s distinction between the signifier and the signified [15]. This
distinction is important because it has consequences on how the annotations are
interpreted. In [11], the authors let the users decide what exactly they want to
express by providing them with a syntax that allows the users to distinguish
between these two cases.

Although it may not be important for the user, for the system design, it
is essential to differentiate tags from tag associations (or “taggings”). Users
connect tags to resources which is reflected in the system by the creation of a

64



tag association, which, apart from the user, the tag and the tagged resource,
may involve additional information such as the time of the tagging event.

Structured tags. Ordinary flat tags are limited in their expressiveness. To over-
come this limitation, different extensions of tagging are currently being proposed:
machine tags3, sub-tags [2] as used in the website http://www.rawsugar.com/,
structured tags [2], etc. Most of the proposals are a variation of keyword:value
pairs, some extend it to full RDF triples [23]. Note that keyword:value pairs can
be seen as triples, too - the resource being annotated is the subject, the keyword
is the predicate and the value is the object of the triple. More complex schemes
which involve nesting of elements might be practical in some cases, e.g. “ho-
tel(stars(3))” could express that the tagged resource is a three-star hotel. These
extensions develop the structure of the tag itself and a set of tags is interpreted
as a conjunction. It is conceivable to allow users to tag resources with a dis-
junction of tags or even with arbitrary formulae. This may be practical for some
applications but it has two drawbacks: 1) reasoning with disjunctive information
is difficult, 2) simplicity and intuitiveness would suffer.

Negative tags. So far, we have only addressed expressing positive information.
In a collaborative context, we may be interested in tracking disagreements which
presupposes some way to express negative information, such as negative tagging.
If the user is allowed to tag a resource with tag “t” he or she may want to tag it
with “not t” as a way to express disagreement or to simply state that the resource
is not “t” or does not have the property “t”. An example may be a medical doctor
tagging a patient’s card as “not lupus” to state that the patient definitely does
not have “lupus”. There are two ways to interpret negative tagging. It might
be seen as classical negation or it may be seen as a kind of voting to express
agreements and disagreements (see Section 5). Although a tag “not t” could be
seen as introducing classical negation into the system, it may in fact be only a
very weak form of negation because we can allow negating only pure tags, not
general formulae (or sets of tags), and the only way to interpret this kind of
negation would be by introducing a rule which says that from tag “t” and tag
“not t” a contradiction symbol shall be derived (for more about reasoning see
Section 6).

Tags as concepts. A hindrance in the transition from tags to more formal knowl-
edge (e.g., RDF triples) is that tags are just keywords (i.e., strings). Often differ-
ent keywords can be used to express the same abstract concept (e.g., keywords
in different languages, synonyms). Similarly, the same keyword might be used
to express different concepts (e.g., homonyms like “bank”). A possibility that
fits well in the Wiki context, is to separate concrete keywords and the abstract
concepts by using content items (which represent the abstract concepts) instead
of keywords for tagging. Keywords still play an important role, as they are what
is entered by the user, but the system will automatically resolve them to cor-
responding content items, possibly interactively asking for clarifications in the
3 http://tech.groups.yahoo.com/group/yws-flickr/message/2736

65



case of ambiguities. In systems supporting semantic browsing over tags, there is
also a natural need to have (partly automatically generated) content items for
tags, e.g., to provide a list of all content items being tagged with a particular
tag.

Using content items as tags also solves some further issues beyond synonyms
and homonyms. Unlike keywords, content items have a URI that can be used
when transforming information of semi-formal tags into formal RDF models
(e.g., by the use of rules). Even more importantly, content items also offer a
place for describing tags further. This encompasses both natural-language ex-
planations for humans on the meaning and intended use of the tag as well as
machine-readable descriptions, e.g., by means of tagging a tag’s content item
(see also tag hierarchies further down).

Links. Links are primarily used for navigation but can also be considered a kind
of annotation. With respect to annotation, links can be seen as a way to specify
some kind of relation between the two linked resources. For an untyped link, this
relation may default to the “is related to” relation. Typed links express a specific
relation between two resources. Link type is a new concept in the usage model
which could be unified with the rest of the system by letting the user specify
the type by tagging the link. Advantages of this approach are the intuitiveness
of tagging and the social, work-in-progress aspect of the environment which
allows the users to converge on a precise meaning of the link only as their work
progresses (e.g. by discussing the link type on the page of the tag). Disadvantages
are unclear meaning of a link with multiple tags and possible user interface issues.
A question that arises with links with multiple tags is how they are interpreted
for reasoning, querying, and translation to formal knowledge (e.g. RDF). For
this consider a link between resources R1 and R2 with tags A and B. Can it
be distinguished from two links between resources R1 and R2, one with tag
A, the other one with tag B? Treating multiple tags as multiple links, i.e. not
distinguishing the two situations, is simpler for translation to RDF because then
each link maps directly to one triple where tags correspond to properties. If on
the other hand they are to be distinguished, a new property has to be introduced
to express that the link is tagged with both A and B.

Tags vs links. When tags as concepts are supported, simple flat tags on content
items can be seen as a kind of link between the tagged resource and the concept
of a tag represented by the content item describing its meaning (see above).
Similarly, structured tags, such as keyword-value pairs, can be seen as expressing
a relation (or a link), with its type given by the keyword, between the tagged
resource and another resource, given by the value. In a Wiki supporting semantic
browsing over such tags, the question may then arise of what differentiates a link
from tags and structured tags. From a technical point of view there may not be
a strict differentiation after all, flat tags can be seen as specialised links between
a taggable resource and the content item describing the concept of the tag, as
a link is then a general way of expressing a relation. The difference usually is
in the way they are presented and used. Tags are usually represented separately

66



from a content item, e.g. in a special area of the page, while links are represented
with anchors inside the content item. Further, tags make a statement about a
single content item, e.g. give it a type, whereas purpose of links is to express an
association between two content items. Finally, while links can be tagged, one
cannot link to or from another link.

Tag Hierarchies. Tag hierarchies constitute a step in the transition from informal
to formal annotation. They are useful for example for reasoning and querying
since they enable the processing of tag relationships. Tag hierarchies could be
created through “tagging tags”, that is, tagging a tag’s content item to indicate
an “is-a” relation.

Semi-formal annotations described in this section provide a means to trans-
form knowledge from human-only content described in Section 2 to machine-
processable information described in the next section. Semi-formal annotations
seem to be an important feature of social software because they provide a low-
barrier entry point for user participation on enrichment of content with meta-
data which are machine processable. Users can use gradually more expressive
and formal methods of annotation as they become familiar with the system.
First, they only create and edit content. Then they can begin using flat tags to
annotate content and later perhaps start using structured tags. Advanced users
or system administrators can further enhance the metadata enrichment efforts
by specifying rules for semi-formal annotations, see Section 6.

4 Formal Knowledge Representation

Currently, the most common format for semantic data is RDF. RDF data are
easily processable by machines but not easily interpretable by Wiki users. They
can use semi-formal annotations which can then be represented directly in RDF
or be later transformed to formal annotations that use vocabularies with well-
defined meanings. This transformation can be supported by rules or by methods
that automatically extract folksonomies from sets of tags. In this approach,
ontologies could naturally emerge based on on-demand basis as a formalisation
of semi-formal annotations of Wiki content. Semi-formal annotations such as flat
tags, structured tags and links can be easily translated into RDF triples, meaning
that RDF is a suitable choice for the representation of all annotations. It may
be the case for the low-level implementation of the system but it is not desirable
to let the user write or read raw RDF data. It is usually obvious how to use a
tag but it is not obvious how to write an RDF triple. Therefore the user should
be rather exposed to higher-level, intuitive concepts such as tag, structured tag
and link which can then be automatically translated into RDF. For practical
applications, support of RDF is important also because of interoperability with
current semantic web applications and linked data [4,3]. A social Semantic Wiki
should therefore support at least import and export of RDF data.

67



5 Social Content Management

To facilitate social collaboration and leverage the social aspects of the Semantic
Wiki, several options and aspects have to be considered.

Groups. User groups can be used among other things for personalisation of wiki
content, for querying and reasoning and to attribute wiki data to a group. Tags
are an easy way to group things which is used in the wiki, so it would be an
obvious choice to form user groups by tagging users’ content items. Every tag
that is used on at least one (or possibly two) user’s content item then constitutes
a group. One possible drawback of this approach is that this proliferation of
groups might be demanding in processing when special mechanisms for treating
groups are established.

The social weight of tags. If several users tag one item with the same tag, it
is natural to aggregate these tag assignments to give a clearer view of all the
tags assigned. Tags then can be seen to have weights depending on how often
they were assigned. On the other hand, other users might not agree with the
assignment of a certain tag to a content item, adding a negative component to
the tags’ weight. The overall social weight of a tag can then be calculated for
example by weighting the number of positive assignments versus the sum of both
positive and disagreeing assignment, or by assigning a value to both actions and
calculating the total. The social weight of a tag then summarizes the users’ views
on the appropriateness of a specific tag assignment and thus provides a valuable
measure that can be used in reasoning and querying. Moreover, reinforcing or
disagreeing about tag assignments constitutes a low-barrier activity in the wiki,
making it easy for beginning users to participate.

Agreement or disagreement could also be expressed with respect to a content
item itself, for example through a specific set of tags which are reserved for this
use.

Access Rights. Users, user groups and rules for reasoning could be used to handle
access rights in the wiki, but this is a complex issue which requires further
investigation. Questions that arise include who owns the rules and what are the
access rights on rules and who can assign the tags that restrict the access. Static
rules would not be suited for rights managements in all environments. For them
to function well, the organization and roles in the wiki have to be relatively
stable, which may be the case in professional applications. In other areas, such
as the development of open source software, such rules may not be desired or
the social organization might not be static enough for rules to be adequate.

6 Reasoning

Reasoning is enabled by the formal and semi-formal annotations in Semantic
Wikis. Wiki content can change frequently, disagreements are common and in-
consistencies and ambiguities can easily arise. This is not only unavoidable but

68



even desirable in a creative environment and reasoning should be able to cope
with it and support users in their work-in-progress. Reasoning that has these
properties was sketched previously in [6]. As indicated in previous sections, it
is also desirable that social software supports a rule language for annotations
that would help users to further annotate content. A rule might for example ex-
press that a tag “elephant” induces an implicit “mammal” tag. Another example
might be a rule expressing that a tag “bug report” without a corresponding tag
“processed” induces an implicit “todo” tag.

The second example of a rule presupposes that the rule language includes
negation as failure. This choice of negation seems to be appropriate for a Wiki.
A Wiki is, in a way, a world of its own. For example, if there is a page describ-
ing a meeting with a list of tasks to be done then it is safe to assume that the
list is complete, i.e. there are no other tasks for this meeting other than the
ones listed on the page. Also, if a meeting is not tagged as “all-hands” then
it is safe to assume that it is not an all-hands meeting. Therefore negation as
failure seems to be the negation of choice for a Semantic Wiki. On the other
hand, negative tagging, as discussed in Section 3, expresses negative informa-
tion explicitly. Therefore the user could express not only positive and negative
information but also refer to missing positive and missing negative information.
The problem of combining classical negation with negation as failure is a field of
its own and it cannot be expected that a regular user would understand it. On
the other hand, recall that, in our approach, negative tags can be just positive
tags with a negative marker that is interpreted only using a rule “from tag t
and tag not t derive a contradiction symbol”. This results only in a very weak
form of negation that should not be too difficult to combine with negation as
failure in an intuitive way. The derivation of a contradiction symbol rather than
a contradiction enables paraconsistent reasoning, see [6] for details. The reason-
ing approach sketched in [6] has also a social aspect in that it allows to track
different inconsistencies to their origin and thus can provide users with useful
information about the cause of each inconsistency which may be a result of a
disagreement within a group of people or simply a mistake.

It may be interesting and beneficial for users to see how a specific group of
users tagged a resource or to compute the ratio of the number of people agreeing
and disagreeing with an item. Therefore the rule language should include aggre-
gation and be sufficiently expressive to allow referring to tags by different users
associated to different content items.

7 Querying

A query language for a Semantic Wiki should enable users to select, access and
reuse data while leveraging the Wiki’s properties to improve retrieval, ranking
and the “mashing-up”/embedding of existing data. Traditional Wikis frequently
use full text search, while several query languages have been proposed for se-
mantic web data, specifically XML and RDF [22]. Full text search is simple but
not powerful. Semantic web query languages on the other hand, are too compli-

69



cated for casual users, although some efforts to enable keyword-based querying
of RDF and XML. Furthermore, relatively little research has been made in the
area of combining querying of textual data and annotations.

However, in the Semantic Wiki, all conceptual building blocks, for example
content items and their structure, tags and tag hierarchies should be amenable to
querying and it should be possible to combine selection criteria for several data
sources in one query, for example expressed as label:keyword terms where the
label specifies a datasource (text, tags) or property (bold, author, time added)
and the keyword is a string.

Further, the query language needs to be versatile and user-friendly, meaning
that users should be able to enter just a keyword and get meaningful results,
while more experienced users should be able to specify complex queries. The
transition between the two needs to be smooth and flexible. A suitable query
language for a Semantic Wiki should allow for aggregation and construction of
results to create views in the form of content items composed of Wiki data.
Similarly, queries embedded in content items may be used to always display
up-to-date query results that change as the Wiki content does.

Finally, the ranking of results could utilise properties specific to the Semantic
Wiki like tag weights, edit frequency, the number of hits or the author’s expertise
or equity value to improve ranking results.

8 Conclusion

In this article, we explored the conceptual bulding blocks of Semantic Wikis and
outlined choices that have to be made when designing a Wiki with advanced
functionalities. There are many options and details we could not discuss here
for space reasons. One vital question we had to omit is how the two kinds of
data – content and annotations– are to be handled with respect to versioning,
such as whether content and annotations should be versioned together or sepa-
rately. We also did not discuss a complex method of measuring social weight of
tags and content items called community equity. Community equity is employed
by Sun Microsystems, a partner in the KiWi project, in their internal portal
SunSpace and is used to encourage user participation by showing them the im-
portance of their contributions to the community (i.e. community equity). This
paper focused on two of the advanced wiki functionalities, namely reasoning and
querying. There are other advanced functionalities such as personalisation and
information extraction which affect the design decisions as well. For example
fragments are an important concept for annotation by means of information ex-
traction and rules and groups play an important role in personalisation. Also,
many Semantic Wikis have already been implemented and it would be worth-
while survey the design decisions that were made in these existing systems; to
the best of the authors’ knowledge no such survey exists yet4.

4 Although recently, there has been a related effort to create a “Semantic Wiki Feature
Matrix”, see http://semanticweb.org/wiki/Semantic Wiki State Of The Art

70



Acknowledgements The research leading to these results is part of the project “KiWi

- Knowledge in a Wiki” and has received funding from the European Community’s

Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 211932.

References

1. S. Auer, S. Dietzold, and T. Riechert. Ontowiki-a tool for social, semantic collab-
oration. International Semantic Web Conference, 4273:736–749, 2006.

2. Judit Bar-Ilan, Snunith Shoham, Asher Idan, Yitzchak Miller, and Aviv Shachak.
Structured vs. unstructured tagging a case study. 2006.

3. T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj, J. Hollenbach,
A. Lerer, and D. Sheets. Tabulator: Exploring and Analyzing linked data on
the Semantic Web. In Proceedings of the 3rd International Semantic Web User
Interaction Workshop, volume 2006, 2006.

4. Tim Berners-Lee. Linked data. W3C Design Issues, 2006.

5. Philip Richard Boulain. Swiki: A semantic wiki wiki web. Master’s thesis, Univer-
sity of Southampton, 2005.

6. François Bry and Jakub Kotowski. Towards reasoning and explanations for so-
cial tagging. Proc. of ExaCt2008 - ECAI2008 Workshop on Explanation-aware
Computing. Patras, Greece, http://www.pms.ifi.lmu.de/publikationen#PMS-FB-
2008-2, 2008.

7. Kensaku Kawamoto, Yasuhiko Kitamura, and Yuri Tijerino. Kawawiki: A
template-based semantic wiki where end and expert users collaborate. In Pro-
ceedings of 5th International Semantic Web Conference (ISWC2006), 2006.

8. Markus Krtzsch, Sebastian Schaffert, and Denny Vrandecic. Reasoning in semantic
wikis. In Reasoning Web Summer School 2007, pages 310–329, 2007.

9. T.H. Nelson. Literary Machines. Mindful Press, 1993.

10. C.K. Ogden, I.A. Richards, B. Malinowski, and F.G. Crookshank. The Meaning of
Meaning: A Study of the Influence of Language upon Thought and of the Science
of Symbolism. Harcourt, Brace & Company, 1938.

11. E. Oren. Semantic Wikis for Knowledge Workers. 2005.

12. Eyal Oren. Semperwiki: a semantic personal wiki. In Proceedings of 1st Workshop
on The Semantic Desktop - Next Generation Personal Information Management
and Collaboration Infrastructure, Galway, Ireland, 2005.

13. C.S. Peirce. On a new list of categories. In Proceedings of the American Academy
of Arts and Sciences, volume 7, pages 287–298, 1868.

14. Niko Popitsch, Bernhard Schandl, Arash Amiri, Stefan Leitich, and Wolfgang
Jochum. Ylvi - multimedia-izing the semantic wiki. In Proceedings of the 1st
Workshop ”SemWiki2006 - From Wiki to Semantics”, Budva, Montenegro, 2006.

15. F. Saussure. Course in general linguistics (W. Baskin, Trans.). New York: Philo-
sophical Library, 1916.

16. Sebastian Schaffert, François Bry, Joachim Baumeister, and Malte Kiesel. Semantic
wikis. IEEE, page 7, 2008.

17. Sebastian Schaffert, Rupert Westenthaler, and Andreas Gruber. Ikewiki: A user-
friendly semantic wiki. In 3rd European Semantic Web Conference (ESWC06),
Budva, Montenegro, 2006.

18. B. Sereno, B. Shum, and E. Motta. Formalization, User Strategy and Interaction
Design: Users’ Behaviour with Discourse Tagging Semantics. 2007.

71



19. Gene Smith. Tagging: People-powered Metadata for the Social Web (Voices That
Matter). New Riders Press, December 2007.

20. R. Tolksdorf and E.P.B. Simperl. Towards wikis as semantic hypermedia. In
Proceedings of the 2006 international symposium on Wikis. ACM New York, NY,
USA, 2006.

21. Max Völkel, Markus Krötzsch, Denny Vrandecic, Heiko Haller, and Rudi Studer.
Semantic wikipedia. In WWW ’06: Proceedings of the 15th international conference
on World Wide Web, pages 585–594, New York, NY, USA, 2006. ACM.

22. K. Weiand, T. Furche, and F. Bry. Quo Vadis, Web Queries? In Proc. Int’l.
Workshop on Semantic Web Technology (Web4Web) 2008, 2008.

23. Jie Yang, Yutaka Matsuo, and Mitsuru Ishizuka. Triple tagging: Toward bridging
folksonomy and semantic web. ISWC07, page 14, 2007.

72



Combining Unstructured, Fully Structured and
Semi-Structured Information in Semantic Wikis

Rolf Sint1, Sebastian Schaffert1, Stephanie Stroka1 and Roland Ferstl2

1 {firstname.surname}@salzburgresearch.at
Salzburg Research

Jakob Haringer Str. 5/3
5020 Salzburg

Austria
2 roland.ferstl@siemens.com

Siemens AG (Siemens IT Solutions and Services)
Werner von Siemens-Platz 1

5020 Salzburg
Austria

Abstract. The growing impact of Semantic Wikis deduces the impor-
tance of finding a strategy to store textual articles, semantic metadata
and management data. Due to their different characteristics, each data
type requires a specialized storing system, as inappropriate storing re-
duces performance, robustness, flexibility and scalability. Hence, it is
important to identify a sophisticated strategy for storing and synchro-
nizing different types of data structures in a way they provide the best
mix of the previously mentioned properties.
In this paper we compare fully structured, semi-structured and unstruc-
tured data and present their typical appliance. Moreover, we discuss
how all data structures can be combined and stored for one application
and consider three synchronization design alternatives to keep the dis-
tributed data storages consistent. Furthermore, we present the semantic
wiki KiWi, which uses an RDF triplestore in combination with a re-
lational database as basis for the persistence of data, and discuss its
concrete implementation and design decisions.

1 Introduction

Although the promise of effective knowledge management has had the indus-
try abuzz for well over a decade, the reality of available systems fails to meet
the expectations. The EU-funded project KiWi - Knowledge in a Wiki project
sets out to combine the wiki method of collaborative content creation with the
technologies of the Semantic Web to bring knowledge management to the next
level. Combining a Wiki with Semantic Web technologies results in three types
of content:

Wiki Articles, which are basically unstructured textual content,
Management Data, like authors, creation dates and revisions, and

73



2

Semantic Metadata, which provide flexibility and spreading of the data
about KiWi ‘s contents.

In this paper we explain the differences of data storage for these data types.
We describe our choice of design and illustrate its usefulness for Semantic Social
Software Applications. Furthermore, we explain how these three different ap-
proaches can be integrated in a single application, which is build with the Java
Enterprise Edition (Java EE)1 platform.

We present and discuss three different kinds of data: structured, unstruc-
tured and semi-structured. We discuss the weaknesses and strengths of each of
them and describe that for a semantic social software application a combination
of them brings advantages in form of an improved flexibility and performance.
Furthermore, we describe several ways and designs how an application can im-
plement the different ways of persisting data. The main challenge by developing
an application which uses different data storages is to define a common interface
for the access of data and to guarantee the synchronization of the different data
storages.

Chapter 2 discusses the benefits, techniques and differences of structured,
unstructured and semi-structured data. For this discussion examples for each
paradigm are compared: An Apache Lucene full-text index for unstructured
data, a relational database for fully structured data and an RDF triplestore for
semi-structured data.

Chapter 3 describes several design patterns, which were used within KiWi to
combine the three different approaches, focusing on the combination of relational
databases and RDF triplestores. This chapter tries to answer the question which
data should be stored where and discusses the decisions taken by the KiWi
project.

Chapter 4 gives an overview of related work and chapter 5 summarizes the
practical relevance of this approach.

2 Structured, Unstructured and Semi-Structured Data

In the semantic wiki KiWi we need all three kinds of data: structured, unstruc-
tured and semi-structured. This chapter presents and compares the different
forms of data and gives examples and state-of-the-art techniques. Finally, a tab-
ular overview of the different kinds of data structures is given.

2.1 Unstructured Data

According to[1], the term unstructured refers to the fact that no identifiable
structure within this kind of data is available. Unstrucured data is also described
as data, that cannot be stored in rows and columns in a relational database.

Storing data in an unstructured form without any defined data schema is
a common way of filing information. An example for unstructured data is a
document that is archived in a file folder. Other examples are videos and images.
1 http://java.sun.com/javaee/

74



3

The advantage of unstructured data is, that no additional effort on its clas-
sification is necessary. A limitation of this kind of data is, that no controlled
navigation within unstructured content is possible.

A common technology to search in unstructured text documents is full-text
search. The advantage of full-text search is, that it is completely decoupled from
the data. This makes it very flexible, because it can be used on every kind of
textual data, even if no schema or structure is defined. One limitation of full-text
search is that it cannot be used to search for pictures or videos.

Full-Text Search can be optimized by generating a full-text index, that in-
creases the performance of a full-text search query. A famous full-text search
engine library is Apache Lucene2 . Other examples are MySql3 and Postgres
indixes4.

2.2 Fully Structured Data

Fig. 1: Sample Table in a Relational Database System

Fully structured data follows a predefined schema. ”An instance of such a
schema is some data that conforms to this specification,”[2]. A typical example
for fully structured data is a relational database system. Designing a database
schema is an elaborate process, because a schema has to be defined before the
content is created and the database is populated. The schema defines the type
and structure of data and its relations. Figure 1 illustrates an Entity Relation-
ship diagram (ER-diagram) and its concrete tables within a RDBMS (relational
database management system).

”The well-defined schema of fully structured data enables efficient data pro-
cessing and an improved storage and navigation of content,”[2, page 122]. The

2 http://lucene.apache.org
3 http://dev.mysql.com/doc/refman/5.0/en/mysql-indexes.html
4 http://www.postgresql.org/docs/7.4/static/indexes.html

75



4

cost for high performance and navigation is flexibility and scalability. It is diffi-
cult to subsequently extend a previously defined database schema that already
contains content. For example, it is not possible to extend a single table row with
a new attribute without creating another table column. This is unprofitable for
tables that contain thousands of other rows that do not need another attribute.

An advantage of relational database applications are the existing tools and
web frameworks, which support the development of database-focused appli-
cations. For instance, Hibernate5 and Oracle TopLink6 are Object/Relational
(O/R) Mapping frameworks, which map classes and objects to relational database
tables and rows. Moreover, there exist several practical tools for maintenance,
management and administration of relational database systems.

2.3 Semi-Structured Data

Fig. 2: Sample RDF Graph

Semi-structured data is often explained as ”...schemaless or self-describing,
terms that indicate that there is no separate description of the type or struc-
ture of the data”[2, page 11]. Semi-structured data does not require a schema
definition. This does not mean that the definition of a schema is not possible,
it is rather optional. The instances do also exist in the case that the schema
changes. Furthermore, a schema can also be defined according to already exist-
ing instances (posteriori). The types of semi-structured data instances may be
defined for a part of the data and it is also possible that a data instance has
more than one type[2].

One of the strengths of semi-structured data is ”... the ability to accommo-
date variations in structure”[2, page 12]. This means that data may be created
according to a specification or close to a type. For instance, fields can be du-
plicated, data can be lacking or there may exist minor changes[2]. Figure 2
illustrates a graph representation of semistructured data. Figure 4 illustrates
the same schema as in Figure 3, with the difference that the instance model has
an additional property, which is not defined in the schema model.
5 http://www.hibernate.org/
6 http://www.oracle.com/technology/products/ias/toplink/index.html

76



5

Fig. 3: RDF Schema (RDFS) and two instances

Fig. 4: RDFS and a flexible instance

77



6

A typical example of semi-structured data is XML, which is a language for
data representation and exchange on the web. In XML data can be directly
encoded and a Document Type Definition (DTD) or XML Schema (XMLS) may
define the structure of the XML document[2].

In the research fields of the Semantic Web, knowledge is encoded in Resource
Description Framework (RDF) triples[3], which store data in the form of subject,
predicate and object nodes. The RDF Schema (RDFS)[4] vocabulary definition
language allows the definition of classes and properties. In the World Wide Web
RDF is used as a language that provides metadata to web resources.

2.4 Transformation of Data

In KiWi, data sometimes needs to be transformed from one structure into an-
other. For instance, fully structured data is converted into unstructured data
when a user generates a PDF out of a wiki article and its management data
like author, creation date and so forth. It is also possible to convert data from
a database into semi-structured data, like an RDF graph. Several modern web
applications use RSS feeds , which are generated by reading data of a relational
database and provide it in RDF format.

On the contrary, it is more complex to transform unstructured informa-
tion into semi- or fully structured information. KiWi structures textual content
with techniques of information extraction and natural language processing. Tags,
which describe the content of a text, are automatically extracted out of a wiki
article. In this way the unstructured data can be converted into semi-structured
data.

2.5 Comparison and relevance for an application

It can be summarized, that the high degree of typing enables a better perfor-
mance and less flexibility.

Serge Abiteboul, Peter Buneman and Dan Suciu define several reasons why
defining a structure is good for[2]:

– to optimize query evaluation,
– to improve storage,
– to construct indexes,
– to describe the database content to the user and facilitate query formulation,
– to proscribe certain updates, and
– to support strongly typed languages.

Table 1 gives an overview over the strengths and weaknesses of the different
storing structures in technology fields that may be important in practice.

2.6 Conceptual Federation of Relational Databases and Triplestores

To know how to combine a relational database and a triplestore we have to
consider what data is stored where. Therefore, we review the strengths and

78



7

Unstructured Fully Structured Semi-Structured

Technology Character and Relational XML/RDF
binary data database tables

Transaction No transaction Matured transaction Transaction management
Management management, management, various adapted from RDBMS,

no concurrency concurrency techniques not matured

Version Versioned as Versioning over Not very common,
Management a whole tuples, rows, versioning over

tables, etc. triples or graphs
is possible

Flexibility Very flexible, Schema-dependent, Flexible, tolerant
absence of schema rigorous schema schema

Scalability Very scalable Scaling DB Schema scaling
schema is difficult is simple

Robustness - Very robust, New technology,
enhancements since not widely spread
30 years

Query- Only textual Structured Query Queries over
Performance queries possible allows complex joins anonymous nodes

are possible

Table 1: Comparison of unstructured, fully structured and semi-structured con-
tent

weaknesses of different data structures and discuss the demand of structure
characteristics for specific data sets. A relational database stores fully structured
data, which necessarily have a predefined schema. Relational databases provide
the application with a high query-performance and fast joins. Vulnerabilities
are rare since more than 30 years of research, development and improvement
eliminated most of them and increased the robustness.

Semi-structured data like RDF data does not have to predefine a schema and
is very scalable and flexible. Furthermore, RDF and OWL7 allow the definition
of logical rules and many applications implement an inference layer that infers
new triples by reasoning over the existing data set.

Thus, data that has a predefined schema, that is sensitive and that is often
queried should be stored in a relational database. Data that is added to the
application lately (e.g. data for extensions or plug-ins) and data that might be
important for reasoning should be stored in the triplestore. Figure 5 provides
a quick overview over the division into relational database data and triplestore
data. As one can see, the data sets are partially overlapping.

7 http://www.w3.org/TR/owl-features/

79



8

Sensitive 
Management 
Data

Non-sensitive Data

Plug-In & 
Extension Data

Data that can 
be access from other
applications or agents

Automatical ly or 
manual ly generated 
data dur ing runt ime

Core Component 
Management Data

Triplestore
Relational Database

Data with a 
predefined 
schema

Versioned Data

Fig. 5: Overlapping data sets stored in the triplestore and in the relational
database

3 Data representation in KiWi

Combining structured and unstructured data is an often applied strategy in web
applications to achieve the advantages of both persistence types. The employ-
ment of all three alternatives, however, is uncommon.

KiWi is a platform for Semantic Social Software applications, implemented
with Java EE technologies. We decided to store data in a semi-structured form,
because we wanted to attain a better flexibility and scalability than provided
by the structured form. We also wanted to store data in a robust database with
good query and join performance. We have to control a big amount of textual
content, which needs to be queried for keywords.

Hence, we decided to combine unstructured, structured and semi-structured
data storage and segmented the data into long textual content (unstructured),
core component data (fully structured) and flexible data (semi-structured). For
a better clarity, Table 2 visualizes the segmentation. The sets of fully structured
and semi-structured data are overlapping, because we represent the non-sensitive
core data additionally in the triplestore to get a complete data set that can be
provided to other Semantic Web Applications (e.g. Linked Data8).

3.1 Three possible Levels of Synchronization

Applications that store data in a triplestore as well as in a relational database
have to implement a synchronization mechanism to keep information consistent.
Such a synchronization mechanism can be implemented on different layers of an
application.
8 http://linkeddata.org

80



9

Content Type Example

Unstructured Textual Content Wiki Articles,
Blog Pages

Fully Structured Sensitive Content & ContentItem,
System Maintenance Data
Core Component Data User data

Semi-Structured Non-sensitive Core ContentItem-extending
Component Data, Flexible Data, Use Case Data
Content & Individual Data

Table 2: Persistence alternatives and apportioned content

Database Layer Synchronization on the database layer is implemented
by forcing a data storage (e.g. database) to update another data storage (e.g.
triplestore) when a data item changed. For instance, every time an application
writes on a database, the according operation could be executed on the triple-
store, which might be hold in the database. This could be implemented using
database triggers or Java EE persistence interceptors. Another possibility is that
the triplestore is generated automatically from the entries within the database.
Hence, the triplestore could be updated regularly. In both variants the database
is defined as master and the triplestore is defined as slave. This design is illus-
trated in Figure 6.

This design benefits from high performance and good integration of relational
databases into existing software technology stacks (e.g. Java EE). Furthermore,
functions provided by a triplestore, like reasoning, are possible, because the data
also exists in a semi-structured form. The disadvantage is that this design does
not offer the flexibility of semi-structured data, and that the application has
read only access to one data storage.

An alternative design is a bi-directional trigger synchronisation between rela-
tional database and triplestore. The triplestore, as well as the relational database
can update each other with database triggers. The advantage of this design is
that it allows writing access to both data storages. This design is illustrated in
Figure 7. The limitation is, that some updates on the triplestore cannot be pro-
cessed on the database and must be forbidden to keep consistency. Therefore,
this design does not support the full flexibility of semi-structured data, too.

O/R Mapping Tool O/R mapping tools provide another layer for synchroni-
sation. This design is illustrated in Figure 8. For instance, the Java Persistence
API (JPA)9 could be extended to persist Java objects in the database as well as
in the triplestore. This encloses the translation of JpaQL (JavaPersistenceApi-
QueryLanguage)10 queries into triplestore queries. This approach decouples the

9 http://java.sun.com/developer/technicalArticles/J2EE/jpa/
10 http://java.sun.com/javaee/5/docs/tutorial/doc/bnbtg.html

81



10

Fig. 6: Database defined as master
and triplestore defined as slave

Fig. 7: Triplestore and database up-
date each other

persistence layer from the application layer, and, therefore, provides the flexi-
bility of semi-structured data. Thus, additional attributes of an object may be
defined during the runtime of an application and persisted in a triplestore. This
may be realized using Aspect Oriented Programming (AOP)11 techniques or
dynamic languages like Groovy12. With this approach, distributed queries over
several datasources could be realized.

Fig. 8: Extension of the JPA with a triplestore module to guarantee consistency

11 http://www.eclipse.org/aspectj/
12 http://groovy.codehaus.org/

82



11

Application Layer / Middleware Layer Another alternative to guarantee
the synchronisation of data is to implement it in the middleware or application
layer. This layer could use normal JpaQL queries for the database as well as
SPARQL commands to query the triplestore. This design is illustrated in Figure
9. A different alternative is to provide a general purpose query language for
both data stores. In this way, distributed reasoning over the triplestore, as well
as over the data in the relational database system could be enabled. This design
is illustrated in Figure 10.

Fig. 9: Middleware layer which han-
dles the persistence of data

Fig. 10: General purpose query lan-
guage

3.2 Integration of a triplestore in the Java EE stack

We decided to choose the Application Layer for synchronization, because it
grants us flexibility to improve weaknesses and to enforce the strengths of each
data structure type. First, we will give you an overview over the triplestore
position inside of KiWi.

Figure 11 illustrates the overall structure of KiWi. The combination of triple-
store and relational database can be found in the Persistence and Data Model
layers. As an RDF triplestore KiWi currently uses Sesame2 13. The relational
database connection is enabled through Hibernate with JPA. Storage configu-
rations for relational database and triplestore can be applied with Java annota-
tions.

13 http://www.openrdf.org/

83



12

Fig. 11: KiWi‘s overall structure, adapted from[5]

Transactional synchronization As Table 1 illustrated, transaction manage-
ment for unstructured and semi-structured data is not very common or ma-
tured. Though, storing data in those federated, heterogeneous databases needs
to be controlled to avoid states of inconsistency. A global transaction manage-
ment is the easiest way to administer all three data structure types in terms of
their transactions. JBoss Seam[6], Hibernate/JPA[7], and Enterprise Java Beans
(EJB)[8] provide us with diverse techniques to control transactions programmat-
ically and declaratively, for example:

Java Transaction API , also called JTA14 specifies standard Java interfaces
for Java Enterprise Applications implemented by the application server[9].

Seam Transactions extend JTA UserTransactions with useful functionality,
for example the registration of a synchronization implementation[6].

EntityManager Transactions are provided by Hibernate/JPA for program-
matic transaction management to start and stop transactions explicitly[10].

Programmatic transaction processing requires the definition of a start and
end time for the transaction. It allows flexible pre- and post-treatment of the
application when the transaction ends. Declarative transaction processing, on the
other hand, is simpler than programmatic transaction management, because the
transaction start and end time is managed by the container[11]. To control the
behaviour before and after a transaction ends in applications using declarative

14 http://java.sun.com/javaee/technologies/jta/index.jsp

84



13

transaction processing, a synchronization implementation can be registered[9]. In
KiWi we use the before-completion phase to synchronize the relational database
state with the triplestore state. Thus, updates to both databases will be executed
simultaneously at the end of a transaction. Figure 12 illustrates the process. If
an update fails, the whole transaction including changes on both databases will
be rolled back.

A more detailed description of the transaction models in Java Enterprise
Applications, the concurrency problems that triplestores must consider and the
database synchronization is given in [12].

T x  s t a r t

r e a d  f r o m  r e l .  d a t a b a s e  

o r / a n d  t r i p l e s t o r e

m a k e  l o c a l  c h a n g e s  

t o  t h e  d a t a  i t e m s

r e a c h  b e f o r e -

c o m p l e t i o n  p h a s e

s t o r e  c h a n g e s  

i n  t r i p l e s t o r e

t r i p l e s t o r e  

upda te  f a i l s    

t r i p l e s t o r e  

  u p d a t e  s u c c e e d s

ro l lback  Tx

T x  e n d

c o m m i t  T x

T x  e n d

re l  DB 

u p d a t e  f a i l s

r e l  D B  u p d a t e  

s u c c e e d s

Fig. 12: Transactional synchronization process

Data Versioning Versioning of unstructured, semi-structured and fully struc-
tured data is an important core functionality of KiWi. RDF triple versioning is
uncommon and few well-established RDF repositories allow versioning. Sesame2
puts RDF triples internally under version control, but it does not enable undo
or redo functions.

With the chosen transaction strategy we can easily implement version-control
of unstructured, semi-structured and fully structured data. At the end of a trans-
action, updates for all kinds of data are creates and stored as revisioning and
update tables in the relational database. This design was chosen to collect all
versioning data in a robust database, to enable easy querying, and, consequently,

85



14

to allow fast undo and redo functionality for all kinds of data. Versioning data
has a pre-defined schema that will not be changed in the future.

Query & Reasoning With the chosen level of synchronization it is possible to
create a query language for all kinds of data. KiWi enables this global querying
that interprets to SQL and SPARQL15 queries. Furthermore, reasoning is not
limited to the RDF repository anymore. The interested reader is referred to [13]
for a more detailed discussion about this issue.

4 Related Work

In the following we provide an overview over implementations of semi-structured
data into existing application stacks. Elmo[14] is a Java library for Semantic Web
applications that maps Java classes to RDFS/OWL classes. Another implemen-
tation of a server which offers access to different representations of data is Vir-
tuoso, ”... which is a database engine hybrid that combines the functionality of
a traditional RDBMS, ORDBMS, virtual database, RDF, XML, free-text, Web
Application Server and File Server functionality in a single server product”[15].

5 Conclusion

The main advantage of fully structured data is the strong typing which enables
high performance and efficiency. On the other hand, unstructured and semi-
structured data allow a higher degree of flexibility. In this paper we compared
unstructured, semi-structured and fully structured information and discussed an
application design which combines all three types of data, based on a relational
database system combined with an RDF triplestore. We illustrated this design on
the concrete implementation of the semantic wiki KiWi. We saw that a challenge
for such an application is to avoid states of inconsistency and present three
different layers where a synchronisation of data within an application could be
implemented:

1 On a low level database layer,
2 On the he O/R mapping layer, and
3 On the application layer.

In KiWi the synchronisation of data is implemented on the application layer
because it offers database independence and enables the implementation of a
common query language for all different data stores.

15 http://www.w3.org/TR/rdf-sparql-query/

86



15

References

1. Blumberg, R., Atre, S.: The Problem with Unstructured Data. http://www.

dmreview.com/issues/20030201/6287-1.html (19.02.2009) (2003)
2. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: from relations to

semistructured data and XML. Morgan Kaufmann Publishers Inc. San Francisco,
CA, USA (1999)

3. Manola, F., Miller, E.: Resource Description Framework (RDF):Concepts and
Abstract Syntax. http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

(19.02.2009) (2004)
4. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema.

http://www.w3.org/TR/2004/REC-rdf-schema-20040210/ (19.02.2009) (2004)
5. Schaffert, S., Sint, R., Grünwald, S., Stroka, S.: The KiWi Architecture. (2008)
6. Allen, D.: Seam in Action. Manning Publications Co. Greenwich, CT, USA (2008)
7. Bauer, C.: Java Persistence with Hibernate. Manning Publications Co. Greenwich,

CT, USA (2006)
8. DeMichiel, L., Keith, M.: JSR 220: Enterprise JavaBeansTM,Version 3.0. http:

//java.sun.com/products/ejb/docs.html (20.02.2009) (2006)
9. Cheung, S., Matena, V.: Java Transaction API (JTA). http://java.sun.

com/javaee/technologies/jta/index.jsphttp://java.sun.com/javaee/

technologies/jta/index.jsp (19.02.2009) (2002)
10. : javax.persistence.EntityTransaction Interface JavaDoc. http://java.sun.com/

javaee/5/docs/api/javax/persistence/EntityTransaction.html (11.02.2009)
(unknown)

11. Connolly, T., Begg, C.: Database Systems: A Practical Approach to Design, Im-
plementation, and Management. Addison Wesley Publishing Company (2005)

12. Stroka, S.: Transaction Management in Federated, Heterogeneous Database Sys-
tems for Semantic Social Software Applications. (2009)

13. Francois Bry, Michael Eckert, J.K., Weiand, K.: What the User interacts with:
Reflections On Conceptual Models For Semantic Wikis. (2009)

14. Leigh, J.: Elmo User Guide. http://www.openrdf.org/doc/elmo/1.4/

user-guide/index.html (19.02.2009) (2008)
15. Virtuoso: Virtuoso Universal Server. http://virtuoso.openlinksw.com (2009)

87



WIKITAAABLE: A semantic wiki as a blackboard for a
textual case-based reasoning system

Amélie Cordier1, Jean Lieber2, Pascal Molli2,
Emmanuel Nauer2, Hala Skaf-Molli2, Yannick Toussaint2

1 Université de Lyon, CNRS,
Université Lyon 1, LIRIS, UMR5205, F-69622, France.

{firstname.lastname}@liris.cnrs.fr
2 INRIA Nancy -Grand Est

Nancy Université
LORIA – UMR 7503. B.P. 239, F-54506 Vandœuvre-lès-Nancy cedex, France.

{firstname.lastname}@loria.fr

Abstract. Semantic wikis enable a community of users to produce for-
malized knowledge readable and usable by machines. To take one step
further, one can use a semantic wiki as a blackboard allowing humans
and machines to interact in order to build knowledge that is useful for
both humans and machines. In this paper, we present a case study of the
use of a semantic wiki (Semantic Media Wiki) as a blackboard to manage
culinary data and knowledge. This case study is performed within the
context of the TAAABLE application, a case-based reasoning web system
aiming at solving cooking problems on the basis of existing recipes. With
WIKITAAABLE, an evolution of TAAABLE based on a semantic wiki, we show
how a semantic wiki assists users in their knowledge management tasks
by taking into account user feedback. The issues related to the integration
of several knowledge management mechanisms in a single application are
discussed at the end of the paper.

1 Introduction

Wikis have demonstrated how it is possible to transform a community of
strangers into a community of collaborators. By integrating Semantic Web tech-
nologies, semantic wikis [1–3] allow this new community of contributors to
produce formalized knowledge readable by machines. Maybe the next step is
to use semantic wikis as a blackboard where humans and machines can interact
together for producing knowledge that is updatable by humans and machines.

We investigate in this paper how this can be achieved using the TAAABLE
system [4] as a case study. The TAAABLE system3 allows users to query a cooking
recipe base to solve cooking problems. For example, a user can submit the
following request: “I want a dessert with rhubarb but without chocolate”. If
no recipe exists with the specified characteristics, an existing recipe is adapted

3 The TAAABLE system is accessible online at http://taaable.fr/

88



in order to answer the request. The system relies on a case-based reasoning
(CBR [5]) engine to perform adaptation. The CBR engine uses different data and
knowledge sources: a set of indexed recipes, an ontology of ingredients, types of
dishes, geographical origins of dishes and types of diets (vegetarian, nut-free,
no alcohol) and a set of adaptation rules. The indexed recipes are computed
from recipes written in natural language. An indexing tool uses the different
ontologies to index the recipes.

If the system is working fine, the maintenance of recipe base and knowledge
is cumbersome. The indexing tool performs natural language processing which
is error prone. In addition, the system is not able to capture the users feedback
to improve its internal adaptation capabilities.

In this paper, we study how a semantic wiki can be helpful in the TAAABLE
system for managing data (e.g. cooking recipes, terminological information in
the domain of cooking) and knowledge (e.g. ontology and adaptation rules)
feeding the CBR engine.The semantic wiki is used as a blackboard where hu-
mans and computers interact to produce knowledge. Humans can add new
recipes, correct indexing of existing ones and give feedback about the results of
adaptation. Machines can perform adaptation of users’ queries and indexing of
recipes. Machines can also take into account user feedback in order to improve
adaptation and indexing.

The paper is organized as follows: section 2 describes the current application.
Section 3 describes how we are building the WIKITAAABLE system based on
Semantic Media Wiki. The last section concludes the paper and points out
future works.

2 The TAAABLE project

The TAAABLE project was initially designed to participate to the Computer Cook-
ing Contest4 (CCC) challenge, an international scientific challenge that aims the
confrontation among systems able to solve cooking problems. Candidate sys-
tems must be able to answer queries expressed in natural language by retrieving
or adapting existing recipes given the user constraints. The recipe book, com-
mon to all participated systems, is a set of textual recipes described by a title, an
ingredient list, and a set of preparation instructions. User requests may include
constraints on ingredients, dish types and dish origins.

The TAAABLE project involves researchers interested in various knowledge-
based systems fields such as case-based reasoning (CBR), ontology engineering,
data and text mining, text indexing and hierarchical classification. TAAABLE
entered the CCC in 2008 and won the vice-champion award. The ongoing re-
searches on this project aim at improving the efficiency and the possibilities of
evolution of the TAAABLE application.

In the next section, we detail how the TAAABLE application addresses the
retrieval and the adaptation of recipes.

4 http://www.wi2.uni-trier.de/eccbr08/index.php?task=ccc

89



2.1 The TAAABLE application

Fig. 1. TAAABLECBR web user interface.

The web user interface allows the user to enter her query. The system answers
a query by returning a set of recipes satisfying the user’s query. If adaptations are
needed, they rare displayed to the user. Figure 1 shows an example of response
for a "pie with orange”.

Adapting a recipe consists in replacing some ingredients by some others.
By clicking on a given recipe, the user will reach the recipe, including the list
of ingredients that have to be substituted. In figure 2, the Key Lime Pie recipe is
adapted by replacing key lime juice and key lime by orange.

The architecture of the TAAABLE system is composed of two distinct parts.
The offline part of the system focuses on the management of the knowledge
base and the indexing of the CCC recipes. Specific tools have been developed
for that purpose. The result of the offline part is a set of data that will be used
for bootstrapping the CBR engine plugged behind the web user interface (in the
online part).

The design of these two parts is detailed in the next section.

90



Fig. 2. An example of recipe adaptation.

Fig. 3. Architecture of the TAAABLE system.

2.2 Knowledge Organization

A hierarchy of ingredients. The CBR engine adapts a recipe by substituting some
ingredients by other ones. However, for sake of simplicity, each ingredient
involved in the adaptation process of a recipe is replaced by one ingredient
(1 to 1 substitution). The underlying idea is that a recipe can be adapted by
substituting an ingredient by another “close” ingredient. Therefore, ingredients

91



are organized in an ontology. This ontology is used by the CBR engine to calculate
the cost of a substitution: the closer the ingredients, the lower the cost. For
instance, orange is closer to lemon than apple.

Hierarchies of recipe types. In order to type recipes, three other hierarchies are
defined. Dish moments such as appetizer, dessert, . . . , dish types such as cake,
pizza, . . . and finally dish origins such as Mediterranean, Chinese, . . . .

We call ontology in the following, the four above hierarchies. The ontology
describes concepts of the domain. The link between the conceptual structure
(the ontology) and the linguistic level (recipes) is performed thanks to the ter-
minological base: each concept of the ontology is associated with its linguistic
forms, i.e. a set of term variations. For instance, the concept litchi is associated
to the terms litchi, lichi, lychee, leechee, and laichee.

The ontology and the terminological base have been built jointly by the
experts. Depending on the results of the indexing process (see below) which
may highlight lacks in the terminology, the expert manually decides which
terms and concepts (associated to terms, if needed) should be added and the
place of the concept in the hierarchy.

In addition to the ontology, the CBR engine may use adaptation rules to
adapt a recipe. An adaptation rule is an ordered pairs of ingredients sets (s1, s2)
with a cost given by the expert. (s1, s2) stating that the set of ingredients s1 can
be replaced by the set of ingredients s2.

Adaptation rules and the ontology form the knowledge base.

2.3 Indexing the recipes according to the terminological base

The indexing process is an automatic process which creates the indexing of
the recipes according to the terminological base. It takes as entry recipes in
their initial textual form. For each recipe, the output of the indexing process is
(1) tagged recipes: an XML (textual) form of the recipe where terms from the
terminological base are tagged, (2) a list of concepts indexing recipes written in
propositional logic (3) Error reports: a set of ingredient lines in the initial recipe
where no term from the terminological base has been identified (possible lack
in the base). We detail below these points.

Tagged recipes. The CCC recipes are given in a loosely structured XML format:
tags are used for identifying the recipe title (TI element), the ingredients (IN
elements), and the preparation (PR element). The indexing process adds tags to
the ingredient part of recipes. It searches into the ingredient lines (tagged IN) the
presence of terms of the terminological base, and introduces for each term the
concept involved. The ingredient line <IN>300 g mashed bananas</IN>will be
tagged as<IN><ING>banana</ING><QT>300</QT><U>g</U><QL>mashed</QL><R/>
</IN> where <ING>banana</ING> is the concept associated with the term ba-
nanas, <QT>300</QT> is the quantity, <U>g</U> is the unit, <QL>mashed</QL> is
a “qualifier”, <R/>is the rest of the ingredient line not recognised by the parser.

92



Here it is empty. The tagged line is used by the expert to control the correctness
of the parsing.

Types (dish types, origins, and moments) of a recipe are not explicitly men-
tionned in the initial form of a recipe. It is automatically computed by three
steps process. First, it searches if a recipe with the same title exists in the
recipesource.com web database with some type information. If it fails, it searches
if the title of the recipe contains terms that represents a type of dish or an origine
(e.g. Banana Butterfinger cake). Finally, if step 2 fails, the process uses a set of
association rules ingredient(s)→ type or origin (e.g. mascarpone∧ coffee→ tiramisu)
to type the recipe. Association rules have been previously extracted from the
complete recipesource.com web database.

Type indexation is quite noisy. 30% of recipes are not assigned to any type,
some types (moment . . . ) are missing, and there are some errors (e.g., "pizza
sauce” is not a pizza). The experts have to check manually these tags for each
recipe.

Indexing recipe in a propositional form. The knowledge representation lan-
guage used by the CBR engine is a fragment of propositional logic. The ontology
is encoded as a set of axioms a⇒ b. For example, the axiom apple⇒ fruit of O
states that any recipe with apples is a recipe with fruits.

All recipes of the recipe book are indexed by a conjunction of literals. For
example, the recipe of the apple pie (denoted by R) is indexed by:

Idx(R) = apple ∧ pie ∧ sugar ∧ pastery
The set of indexed recipes constitutes the case base of the system.

The indexed recipes resulting from the indexing process and the ontology
are exploited by the CBR engine to answer user queries.

Error reports. We deal here with two main types of errors. One is coming from
bad writing of recipes. The other one is due to concept missing in the ontology.
All these errors should be corrected for the CBR engine to run properly.

Bad writing of recipes. Parts of recipes need corrections because of different
typographic mistakes:

– <IN>4 ts Baking power</IN> should be corrected into <IN>4 ts Baking
powder</IN>,

– the two consecutive ingredient elements <IN>1 lb Boneless pork, cut
in 3/4</IN><IN>Inch cubes</IN> should be merge in one ingredient line
<IN>1 lb Boneless pork, cut in 3/4 inch cubes</IN>,

– <IN>Salt; pepper, Worcestershire and lemon juice</IN> should be
split into <IN>Salt</IN><IN>pepper</IN><IN>Worcestershire</IN><IN>
lemon juice</IN>).

Most of these errors have been detected by the experts while checking the
tagged recipes.

93



Missing concepts in the ontology. Some ingredient lines were not indexed by any
terms of the terminological base. This means that no ingredient concept was
recognised in this line. The expert has to check first that the line is correctly
written. If it is correct, the error comes from missing concepts in the ontology or
from missing terms in the terminological base. For example, if the spam concept
5 does exist in the ingredient hierarchy then the ingredient line <IN>1/2 cn
Spam, in 3/4" cubes</IN> cannot be indexed. The expert has to add the new
concept spam in the ontology, defines its position in the hierarchy, and associates
this concept to a list of terms (spam . . . ) in the terminological base. Otherwise,
if the concept exists in the ontology but the term is not recognised. Then, only
the terminological base has to be updated. This error will be corrected at the
next run of the indexing process. The same problem exists for the hierarchies of
types, moments and origins.

2.4 Case-based reasoning

Querying the system. A request expressed in natural language is processed
through the web interface and is formalized in the system by a conjunction
of literals. For example, in TAAABLE, the request “I want a dessert with rhubarb
but without chocolate” is transformed in a query, denoted Q:

Q = dessert ∧ rhubarb ∧ ¬chocolate
Retrieval and adaptation mechanism. The first step of the CBR process consists
in retrieving among the available recipes, a recipe "similar” to the query. The
retrieval is performed by classification on the basis on the query and the recipes
indexes. First, a strong classification is applied: the system searches for a recipe
whose index matches exactly the index of the query. If strong classification fails,
a smooth one is applied: the query is generalized until a satisfactory solution is
found [6]. Smooth classification leads to an approximate matching of the results
and implies an adaptation of the retrieved recipe for answering the query.

The adaptation of a recipe uses adaptation knowledge. In the first version
of TAAABLE, adaptation knowledge is only given by ingredient substitutions.
For example, an apple pie recipe can be adapted in a rhubarb pie recipe by
substituting apples by rhubarb in the recipe. However, one might like to perform
a more complex adaptation of this recipe. This will be possible in a future version
of the application. For example, the adaptation of the apple pie recipe will be
performed by substituting rhubarb to apples and by adding sugar to the recipe
in order to make the recipe less sharp.

2.5 Synthesis

Obviously, the knowledge base used by the CBR engine is neither correct nor
complete and needs to be updated and improved. However, due to the inde-
pendence of the two parts of the TAAABLE system, it is impossible to take into

5 Spam stands for spiced ham, a kind of precooked canned meat.

94



account interactively the user feedback to make evolve the knowledge base of
the system. This is a significant limitation of the current architecture. From a
more practical point of view, it has also been a limitation during the develop-
ment of the first version of TAAABLE: we were not able to improve the knowledge
base online and any modification was time-consuming.

Hence, for the next version of the application, the goal is to link the two
parts, i.e., the CBR engine and the knowledge base management tools, in order
to be more efficient and to be able to take into account user feedback in the
application.

3 WIKITAAABLE: A semantic wiki for TAAABLE

Fig. 4. WIKITAAABLE components.

In this section, we present the new generation of the TAAABLE system, called
WIKITAAABLE.6 In WIKITAAABLE, we address many problems of the TAAABLE
application by using Semantic Media Wiki (SMW) [1] as a blackboard. The
semantic wiki allows users to browse, query, edit, and validate the knowledge
base as pointed out in [7]. In addition, the knowledge base can be updated by
results produced by the CBR engine and by the automatic indexing tool. The
architectural view of the system is presented in figure 4.

6 WIKITAAABLE is not yet available for public because of the Computer Cooking Contest.

95



Fig. 5. WIKITAAABLE ingredient ontology.

Semantic Media Wiki. Semantic Media Wiki is used as a blackboard by users,
the CBR engine and the recipe indexing bot. The CBR engine and the recipe
indexing bot rely on a set of predefined semantic queries to gather their
inputs. The knowledge base is represented by a graph of semantic wiki
pages. We have represented as semantic wiki pages the indexed recipes, the
ingredient ontology and the ontology of dish types (see figure 5).

Mediawiki Web User Interface. This is the regular user interface of semantic
media. Through this interface, users can add new recipes and modify the
ingredients, the types of dishes and the origins of dishes.

Recipe Indexing Bot. The recipe indexing bot crawls the recipe pages, extracts
ingredient information, and updates recipe pages with semantic indexings
and categorization of recipes. The crawling and updates of recipes is done
using the mediawiki API, accessing the knowledge base is done using pre-
defined semantic queries. The following example illustrates the input of the
Recipe Indexing Bot:

== Ingredients ==
* 1 c rice
* 2 c water
* 1/2 c sugar
* 1 ts salt
* 2 c evaporated milk
* 1 c raisins
* 3 eggs separated
* 3/4 ts vanilla

96



Fig. 6. indexed recipe of “ARROZ DULCE”.

* 1/4 ts cinnamon
* 1/4 ts nutmeg

== Preparation ==

* combine the rice water sugar and salt in a large saucepan bring the
water to a boil and cover the saucepan reduce the heat to low and
continue to cook for 12 - 15 minutes or until the water is absorbed
combine the milk and egg yolk add them to the rice then mix in the
raisin vanilla and cinnamon simmer for five minutes remove from the
heat beat the egg white until stiff fold them into the rice chill and
garnish with nutmeg before serving also taste good warm

The above recipe is indexed in the semantic wiki as presented in figure 6.
We used the n-ary relationship of Semantic Media Wiki to represent an
ingredient line.

CBR. The CBR engine retrieves its knowledge base through predefined semantic
queries. Next, it is able to answer requests issued using the CBR web interface

97



Fig. 7. TAAABLE user feedback.

(cf. figure 1). Our idea is that the CBR user interface proposes recipes based
on adaptation of existing recipes. Users are invited to give feedback about
recipes. The figure 7 illustrates how we can capture the feedback of the user.
This interface is currently not functional.
We imagine that the WIKITAAABLE will work like this: Suppose a user
requests "pie” and "orange” thinking about an "orange pie”. The system
presents results as in figure 7. The user chooses “I don’t like it” for the first
proposal because replacing lemon juice by orange in an "apple crumble pie"
does not transform an "apple crumble pie" into an "orange Pie". However,
the proposal 2 and 3 are acceptable. So the user select “I like it” for these
two proposals.
If the feedback is positive, then the new recipe is added to the knowledge
base and a new semantic wiki page is created for it. The new recipe is marked
as "generated”. If the user feedback is negative, then the computed recipe is
also added to the knowledge base and a new page is created. However,this
new page belongs to the category "refused”. These recipes are kept for future

98



reuse. For instance, experts can analysis refused recipes and use them as a
basis for a failure driven knowledge acquisition [8].

TAAABLE Import Scripts. We have written scripts to import the current knowl-
edge base of TAAABLE into Semantic Media Wiki. The recipe base contains
about 888 recipes, the ingredient ontology contains 8506 different classes of
ingredients. We used RAP - RDF API for PHP to parse the ontology.

4 Discussion and future work

The strength of the semantic wiki comes from the facility for the community
to update and enrich a set of annotated recipes as well as the ontology. The
WIKITAAABLE system has many advantages compared to the original one:

– Users can add new recipes.
– Users can correct indexation of recipes.
– Users can browse and navigate through the ontology.
– Ontology maintainers can quickly modify the ingredient ontology or the

dish type ontology and test the effects on the CBR engine.
– The feedback about adaptation of recipes can now be captured and repre-

sented in the semantic wikis. The knowledge base of the system increases
just by using it.

One of the reasons of the success of CBR systems is that they are theoreti-
cally able to "learn from experience” by acquiring additional knowledge with
each problem solving session. In TAAABLE, however, learning from experience
is difficult because of the lack of an embedded mechanism allowing to use feed-
back for improving existing knowledge bases. A strength of the use of Semantic
Media Wiki in WIKITAAABLE is that it facilitates this process by enabling the en-
richment and the update of data and knowledge by a community of users. The
management of the ontology and the annotated recipes have many advantages
compared to this of the previous version of the application. Indeed, users can
add new recipes, correct indexing of recipes, and browse and navigate through
ontologies. Ontology maintainers can as well easily modify the ontologies and
test the impact of the modifications on the results of the CBR engine. Besides, a
major advantage is that the feedback on the adaptations made by the CBR engine
can be captured and represented in the wiki.

However, the development of WIKITAAABLE raises several issues that are
mainly related to the coherence of the system. How can we guarantee the co-
herence of the systems while several users, often having different viewpoints,
are allowed to modify the knowledge coded in the system? How can we effi-
ciently combine a semi-automatic procedure and a manual enrichment process
to build an ontology? These issues are of major importance because the ontology
plays a central role in the TAAABLE system and is mainly used at two different
levels. It guides the indexing process by identifying concepts involved in each
recipe, and it is used by the CBR system to adapt recipes. If any user can freely
modify the ontology, then the CBR engine and the recipe indexing bot might

99



produce unpredictable results. Several strategies can be envisioned to tackle
this problem:

– Restrict the update of ontologies to "administrators”. This is a limitation to
the collaborative work. Moreover, the improvement of the ontology strongly
depends on the availability of the administrators.

– Validation of changes before they are integrated in the running system.
This strategy has also several limitations: poor process support by seman-
tic wikis, synchronization problems between several versions of a single
system, and time consuming for "administrators”. Moreover, this does not
solve the problem of conflicts between several concurrent changes.

– Adaptation of continuous integration approaches used in software engineer-
ing in the context of the WIKITAAABLE system. For example, if an adaptation
of a recipe has been validated by several users, then the ontology should
be modified in order to preserve this adaptation (in this case, user feedback
collected by WIKITAAABLE should generate non-regression tests).

– Toward a peer-to-peer WIKITAAABLE? In such an approach, each user would
have his/her own version of the application, relying on a common knowl-
edge base, and would be able to perform personal adaptation of the knowl-
edge. Adaptation would be shared between users on the basis on the confi-
dence they have in their peers.

The next step of the development of WIKITAAABLE is to fully integrate the
CBR engine to the Semantic Wiki and to set up interaction possibilities at several
levels. One particular focus will be put on the ability of the semantic wiki to
represent and manage complex adaptation rules, including Boolean constraints.

References

1. Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H., Studer, R.: Semantic wikipedia.
Journal of Web Semantics 5(4) (2007)

2. Schaffert, S.: IkeWiki: A Semantic Wiki for Collaborative Knowledge Management.
1st International Workshop on Semantic Technologies in Collaborative Applications
(STICA06), Manchester, UK (2006)

3. Buffa, M., Gandon, F.L., Ereteo, G., Sander, P., Faron, C.: Sweetwiki: A semantic wiki.
Journal of Web Semantics 6(1) (2008) 84–97

4. Badra, F., Bendaoud, R., Bentebitel, R., Champin, P.A., Cojan, J., Cordier, A., Desprès,
S., Jean-Daubias, S., Lieber, J., Meilender, T., Mille, A., Nauer, E., Napoli, A., Toussaint,
Y.: TAAABLE: Text Mining, Ontology Engineering, and Hierarchical Classification
for Textual Case-Based Cooking. In Schaaf, M., ed.: ECCBR 2008, The 9th European
Conference on Case-Based Reasoning, Trier, Germany, September 1-4, 2008, Workshop
Proceedings. (2008) 219–228

5. Riesbeck, C.K., Schank, R.C.: Inside Case-Based Reasoning. Lawrence Erlbaum As-
sociates, Inc., Hillsdale, New Jersey (1989)

6. Lieber, J.: Strong, Fuzzy and Smooth Hierarchical Classification for Case-Based Prob-
lem Solving. In van Harmelen, F., ed.: Proceedings of the 15th European Conference
on Artificial Intelligence (ECAI-02), Lyon, France, IOS Press, Amsterdam (2002) 81–85

100



7. Krötzsch, M., Schaffert, S., Vrandecic, D.: Reasoning in semantic wikis. In Antoniou,
G., Aßmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan, P.L., Tolksdorf, R., eds.:
Reasoning Web. Volume 4636 of Lecture Notes in Computer Science., Springer (2007)
310–329

8. Cordier, A.: Interactive and Opportunistic Knowledge Acquisition in Case-Based
Reasoning. PhD Thesis, Université Claude Bernard Lyon 1 (2008)

101



Engineering on the
Knowledge Formalization Continuum

Joachim Baumeister, Jochen Reutelshoefer, and Frank Puppe

University of Würzburg, Am Hubland
97074 Würzburg, Germany

Abstract. Usually, domain knowledge is available at different levels of formal-
ity, for example such as documents, data bases, and (business) rules. We argue,
that today’s systems limit the knowledge engineering process to a fixed level of
formality and expressiveness, respectively, and that these limitations hinder effec-
tive knowledge acquisition and use. In consequence, we introduce the knowledge
formalization continuum as a metaphor, that embraces the fact that knowledge
is available in different formalities. We motivate that a semantic wiki is a suit-
able tool to work on the knowledge formalization continuum, and we introduce
KnowWE as an example wiki implementation.

1 Introduction

In today’s enterprises we see that knowledge management systems and knowledge-
based solutions are already implemented with reasonable success. There still exists a
great deal of interest to build knowledge-based solutions. Typically, “knowledge” is
already available in different representations ranging from technical documents, con-
struction plans, sheets and experiences of human experts. However, the knowledge ac-
quisition bottleneck, i.e., the problem of formalizing existing knowledge into a machine
processable model, is still present and often prevents successful developments. Experi-
ences in many projects over the last years showed that the implementation often faces
differently favorable but conflicting options, thus creating the following dilemmas:

1. The Single Expert Dilemma. The motivation and sophistication of single domain
specialists are often the driving forces of successful knowledge acquisition and
evolution. Although, high-quality experts can guarantee the construction of a high-
quality knowledge base, these persons are often short in time and motivation. A
distribution of the workload would decrease this problem, but will open the risk
of also reducing the overall quality of the formalized knowledge. Furthermore, the
collaboration among a group of specialists is not supported sufficiently in many
industrial systems concerning the distributed development of a knowledge base.
Here, the dilemma exists of favoring a distributed over a monolithic development
process.

2. The Flexibility Dilemma. Current state-of-the-art tools are often constrained to
a specific knowledge representation and acquisition interface for developing the
knowledge base. In consequence, the tools are commonly not flexible enough to
map the mental model of the domain specialists that are responsible to formalize

102



the knowledge in the given application project. Additionally, “knowledge” can ap-
pear in diverse forms, such as textual and tabular data but also explicit rules. On
the one hand, the mapping of the particular mental model of the specialists to the
provided knowledge representation and interfaces, respectively, often turned out to
be difficult, complex and time-consuming. On the other hand, a tool having the
maximal flexibility regarding the user interfaces and provided knowledge represen-
tations, typically would increase the complexity of its use and therefore decreases
the effectivity of the developers [1, p. 86]. In consequence, we face the dilemma of
demanding for a tool with maximal flexibility vs. a tool with maximal productivity.

This paper introduces approaches to weaken the two dilemmas by first introducing
the metaphor of a knowledge formalization continuum in order to give domain special-
ists a flexible mental model of the knowledge that is planned to be formalized. It frees
the developers to commit to a particular knowledge formalization at an early stage,
but offers a versatile understanding of the formalization process. Second, we propose
the use of a semantic wiki as a suitable development tool for knowledge bases, that is
able to scale from one single domain specialist to the collaboration of multiple domain
specialists without changing the existing working process.

2 The Knowledge Formalization Continuum

A continuum can be seen as “a nonspatial whole in which no part or portion is distinct
or distinguishable from adjacent parts”; alternatively a continuum can be understood
as “anything that goes through a gradual transition from one condition, to a different
condition, without any abrupt changes”1.

We use these definitions of a continuum to explain the idea of a knowledge for-
malization continuum, where gradual transitions on formalization degrees of the same
knowledge are possible, but where the knowledge to be modelled experiences no abrupt
changes or “discontinuities”.

The idea is quite simple: When starting with the development of a knowledge base,
the considered knowledge is already available in varying forms, for example documents,
recorded application cases or often in the heads of the experts. The usual task is to find
an appropriate knowledge model which serves as the target of knowledge formalization.
Here, often the issue arises, when some parts of the knowledge cannot be formalized
into the selected model, or its formalization would be too costly with respect to the
cost/benefit principle [1, p. 56]. The knowledge formalization continuum frees devel-
opers from putting the knowledge into a single, fixed representation scheme at the very
beginning, but asserts that even text and figures are “first class” knowledge objects. The
original nature of the knowledge itself remains the same no matter if it is represented by
a textual document or by a rule base. Thus, the formalization from the textual form to
an explicit rule base means a gradual transition, but the original nature of the considered
knowledge remains unchanged.

It is important to notice that the knowledge formalization continuum is neither a
physical model nor a methodology for developing knowledge bases. It rather should

1 see WordNet/Wikipedia for full definitions/explanations

103



be seen as a metaphor of the knowledge development process. It helps the domain
specialists to see even raw data, such as text and multimedia, as first-class knowledge
that can be transformed by gradual transitions to more formal representations when
required.

In summary, knowledge can be represented at different degrees of formality, and
within the knowledge formalization continuum transitions of these degrees are pro-
posed. In the extreme cases knowledge about a domain is given as data at a very in-
formal level (images, text) or the knowledge is represented by formal knowledge rep-
resentations such as decision trees or functional models. On the one hand, data given
in textual documents denotes the lowest possibility of formality. On the other hand,
functional models store knowledge at a very detailed formality. See Figure 1 for an ex-
ample depiction of the different knowledge representations possible in the knowledge
formalization continuum. This is certainly not an exhaustive enumeration of all possible
representations of knowledge here, and the depicted order of representations between
data and knowledge is not meant to be explicit. In fact, it appears difficult/impossible to
define a total order of the representations in a general manner. The depicted order was
motivated by the level of possible expressiveness with respect to the reasoning power of
built system using the particular representation as knowledge. For example, text can be
used for standard keyword-based search and retrieval, whereas semantically annotated
text allows for semantic queries and navigation. At the right end, knowledge based on
rules allows for even more complex reasoning capabilities.

Knowledge Formalization Continuum

Text

XML

Semantic 

annotations
Fault 

models

Functional 

models

Decision 

trees
Cases

Segmented text

Tabular data

Semantically equivalent 

transitions

Images

Flow charts

Logic
Rules

Fig. 1. Possible knowledge transitions within the knowledge formalization continuum.

Every level of formality has its own advantages and drawbacks. For example, textual
knowledge can be easily elicited and often is already available in the domain. No prior
knowledge with respect to tools or knowledge representation is necessary. However,
automated reasoning using the textual knowledge is not possible with current state–of–
the–art methods, and the knowledge can be retrieved only by using string-based match-
ing methods but not by semantic queries. Logic rules or models are well-suited for auto-

104



mated reasoning, and queries can be processed on the semantic level. In contrast to tex-
tual knowledge, the acquisition of rules and models is a complex and time-consuming
task. Usually, authors need prior training before effectively building knowledge bases
on the explicit level with respect to knowledge engineering principles as well as tools
that support such knowledge modeling. For a given knowledge base, that is formalized
in a particular knowledge representation, there often exist semantically equivalent tran-
sitions (indicated by the second axis in Figure 1). For example, a fault model based on
set-covering models can be often also represented in a rule base which in turn may be
modelled by a special purpose logic dialect. However, representations on the right side
are usually able to store more expressive knowledge. Often, the knowledge is brought
to a semantically equivalent transition in order to simplify the extension by additional
domain knowledge. For example, a knowledge base represented by fault models can be
transferred to a rule base in order to allow for a fine-grained definition of conditioning
findings for a target concept.

Between the two extremes (text vs. logic) there exists a wide range of formats repre-
senting knowledge at different degrees of formality. Any degree can be the most useful
representation for building a knowledge base in a specific application project. For a
given project it is an important and difficult task to select the most appropriate tran-
sition as the target representation. Since often (fragments of) knowledge are already
available in textual or tabular form, the development process focuses on bringing the
existing forms to an appropriate level. Although, it typically becomes necessary to fill
in missing parts of the knowledge, the original nature of the knowledge remains. Thus,
moving to a more formal transition can require the more explicit description of the
knowledge and can enrich the resulting knowledge with additional semantics made ex-
plicit. It is worth noticing, that every transition is a distinct operation that modifies the
knowledge representation. However, the mental model of the knowledge remains basi-
cally the same.

2.1 Methods for the Knowledge Formalization Continuum

The movement between two transitions is supported by already existing and established
methods. Results from the following research areas can be applied, when going from
explicit transitions to less explicit levels of knowledge:

– Natural language generation techniques, for example [2].
– Visualization techniques, for example [3].
– Knowledge explanation methods, for example [4].

The transition of the available knowledge to a less formal level is sometimes required
for a number of reasons: For example, in commercial systems the built knowledge base
needs to be reviewed by external specialists before deployed into practice. The trans-
formation to a natural language text in addition to visualizations can help to present an
understandable but precise version of the knowledge base for non-knowledge engineers.
Furthermore, the presented methods are useful to produce a human-understandable out-
put of the derived facts of the knowledge base, thus giving explanations of the system’s
behavior.

105



Typically, little structured/unstructured information is transformed to a more ex-
plicit level; here methods from the following disciplines will be helpful:

– Text Mining, Ontology Learning, and Natural Language Processing in general for
the machine–enabled extraction of concepts from texts, their taxonomic ordering
and the discovery of basic relations between found concepts, see [5] for example.

– Controlled Languages to automatically interpret a restricted subset of natural lan-
guage text as logic formulas, for example an overview is given in [6].

– Refactoring methods to support manual changes of explicit knowledge without
changing the intended semantics, for example [7]. They are often used to accom-
plish vertical transitions to a semantically equivalent version within the same knowl-
edge representation, but are also helpful to restructure the knowledge to a less/more
formalized level.

– Manual Knowledge Elicitation methods, that are applied when it is not reasonable
or tractable to use (semi-)automated methods sketched above.

In an example application project we have knowledge already available contained in
a textual form such as Word files and semi-structured Excel sheets. By using ontology
learning methods we are able to extract relevant ontological concepts and basic rela-
tions afterwards. In subsequence, strongly formalized models are (manually) defined
to formulate enhanced relations between the concepts. The initial textual knowledge is
still available but now annotated by the added forms of formalized knowledge.

2.2 Implications

The knowledge formalization continuum embraces the fact that knowledge is usually
represented at varying levels of formality. The continuum supports the entrance of the
knowledge engineering process at an arbitrary level of formality and offers possible
transitions of the knowledge to a level where its cost/benefit principle [1, p. 56] is (in the
best case) optimal. In typical projects, prior knowledge of the domain is already at hand,
often in form of text documents, spreadsheets, flow-charts and data bases. These doc-
uments build the foundational reference of the classic knowledge engineering process,
where a knowledge engineer models the domain knowledge based on these documents
in addition to further knowledge provided by domain specialists. The actual utility and
applicability of the knowledge usually depends on the particular application.

The knowledge formalization continuum does not postulate to transform the entire
collection into a knowledge base at a specific degree, but to perform transitions on
parts of the collection when it is possible and appropriate. This takes into account
that sometimes not all parts of a domain can be formalized at a specific level or that the
formalization of the whole domain knowledge would be too complex, considering costs
and risks. In consequence, a system working on the knowledge formalization continuum
need to be able to support the knowledge engineering process at different levels of
formality. However, it also should be able to support the knowledge sharing process,
i.e., its actual usage, at varying formalization levels.

Following, the cost/benefit principle it need to be possible to transform the parts of
the knowledge to a level of formality, where the (knowledge engineering) costs are min-
imized and the benefits of using the system are maximized. Therefore, the knowledge

106



formalization continuum not only needs to support the transitions of particular parts of
the knowledge but also should be able to keep references between the less and more
formalized parts of the entire knowledge collection.

3 A Semantic Wiki as an Integrated Tool to Support the
Knowledge Formalization Continuum

We motivate that an extensible semantic wiki is useful to serve as a knowledge engi-
neering tool on the knowledge formalization continuum, since it allows the integration
of knowledge at different levels of formality. Thus, it tries to weaken the flexibility
dilemma described in the introduction. The use of a semantic wiki additionally helps
to target the first dilemma, i.e., the single expert dilemma. A semantic wiki naturally
allows for a distribution of the development process over a group of domain specialists
due to its open and web-based implementation. Collaboration is supported by many
standard features of wikis, for instance versioning and discussion pages. However, the
dilemma is only weakened by providing a technical platform for a collaborative engi-
neering process, the interesting question of how to ensure a certain level of quality of
the knowledge remains, and needs to be solved by appropriate evaluation methods, for
example see [8]. The following example demonstrates the idea of the knowledge for-
malization continuum by a possible engineering trail of a recommendation system that
is built using the semantic wiki KnowWE [9].

3.1 The Semantic Wiki KnowWE

In most semantic wikis every concept is represented by a distinct wiki page, where the
concept is described by textual documents and multimedia content. Text phrases are
semantically annotated with properties of a given wiki ontology; in most cases new
properties can be defined in an ad-hoc way. Recent examples of semantic wikis are Se-
mantic MediaWiki [10], IkeWiki [11], and SweetWiki [12]. The semantic knowledge
wiki KnowWE [9] further allows for the intuitive capture and use of explicit problem-
solving knowledge that is applied to derive particular concepts. In addition to the pos-
sibility to express strong problem-solving knowledge, such as rules and models, it also
provides alternative interfaces to engineer knowledge at lower levels of formality.

Figure 2 shows a sports advisor wiki, which is an example system for demonstrat-
ing the functionality of KnowWE. Here, the form of sports Swimming is shown by a
describing text, a picture and interactive elements within the text. A visitor can use the
wiki as a recommender system in order to get a proposal of a sports form for an entered
user profile. For example, the vistor enters new facts by clicking on links in the system;
in the shown example (2a) the user enters some values for the question Motivation. The
system instantly derives solutions (recommendations) when new facts (attributes of the
user profile) are entered. Here, the solutions can be inferred based on the given find-
ings (2b). All appropriate solutions are shown in the right pane of the wiki, for example
the solution Swimming was derived as a suitable solution, but the solution Jogging is
also suggested for further consideration. By clicking on the solution names the user can
easily navigate to the corresponding wiki articles describing the sport forms in more
detail.

107



Fig. 2. The semantic wiki KnowWE at a glance: Interactive interviews with the user (a) are used
to derive new concepts as solutions (b). Knowledge is entered, for example, by inline annotations
(d) or explicit problem-solving knowledge such as rules (c).

The derivation knowledge for every solution is entered together with the remaining
content of the wiki article. By clicking the edit button the wiki page and its correspond-
ing content, respectively, can be modified. Here, the user can insert a special knowledge
topic (Kopic) into the standard text, for example, to enter rules describing the domain
knowledge (2c), but he is also able to semantically annotate particular text phrases with
concepts of the application ontology (including solutions and findings of the shown
sports advisor example, see 2d). Existing annotations are used for inline answers in the
view mode of the wiki.

3.2 Building a Sports Recommender based on the Knowledge Formalization
Continuum

The following example shows subsequent steps that describe transitions within the
knowledge formalization continuum. We use the sports advisor demonstration sketched
above in our example. Here, the knowledge already available in the continuum de-
scribes relevant facts about the forms of sports, such as accomplished training goals,
costs, and medical restrictions. In subsequent steps we drive the existing knowledge to
more formalized transitions.
Initial Filling. We start by filling the wiki with text and multimedia (pictures and
movies) describing the different forms of sport, for example Running, Swimming, and

108



Cycling. It is reasonable that for every form of sports a wiki page should be created, i.e.,
after the initial filling phase there exist pages about running, swimming, and cycling.
However, also wiki articles about further domain facts exist, for example allergies or
muscles. In general, it is reasonable to set up one distinct wiki article for each distinct
concept of the domain, thus following a common paradigm of (semantic) wikis. For
example, an excerpt of an article about swimming is as follows

...Swimming is the most common form of water sports. In particular it is rec-
ommended for people with back problems because it trains the back muscles
... However, people with skin allergies should avoid swimming. ...

At this point the wiki can be used as a simple and traditional information system
specialized on sports, where users can search and browse through the available content.

Annotating Articles. We propose to annotate every wiki article with its semantic con-
cept, thus making explicit that a specific article is about a specific concept. For instance,
we annotate the article about swimming with the concept Swimming. At this point, only
a very general ontology of concepts is required to represent the domain concepts already
contained in the wiki. As a benefit of this step it becomes possible to offer a low-end
version of semantic search and navigation, that will be more useful when concepts are
carefully structured in a hierarchy.

Annotation by Properties. The next step tries to identify the typical features of every
concept described in the available text. These findings are then annotated as properties
of the article’s concept. In the example above the text about swimming would then
transform as follows (new/changed text is given in bold letters):

...Swimming is the most common form of [hasFinding::water sports]. In
particular it is recommended for people with back problems because it
[hasFinding::trains the back muscles]. ...
However, people with [isContradictedBy::skin allergies] should avoid
swimming. ...

In the given example, the text phrases water sports, trains the back muscles, and
skin allergies are annotated by the properties hasFinding and isContradictedBy, respec-
tively. Each annotation performs the creation of an RDF triple with the article’s concept
(here, Swimming) as the subject, the property’s name as the predicate, and a reference
to the particular text phrase as the object. The use of properties implies the extension of
the simple domain ontology of sport forms defined before. In the given example, we in-
troduced the properties hasFindings and isContradictedBy. With the properties defined
in the wiki an extended version of semantic search and navigation becomes possible.
For example, we are now able to query findings (as text phrases) that exclude a specific
form of sport, i.e., “return all text phrases that represent the contradiction of a given
sports form”.

In a further step, it is reasonable to “semantify” the text phrases representing the
particular properties of a concept. Thus, we gradually extend the existing annotation by
explicit concepts describing the ranges of the properties.

109



...Swimming is the most common form of water sports [hasFinding::
Medium = in water]. In particular it is recommended for people with back
problems because it trains the back muscles [hasFinding:: Trained muscles
= back]. ... However, people with skin allergies [isContradictedBy:: Medical
restrictions = skin allergy] should avoid swimming. ...

In the shown example, the text phrase trains the back muscles is moved out of
the annotation and replaced by the explicit concept Trained muscles having a concrete
value back. Furthermore, the last annotation describes that the text phrase skin allergies
is annotated by the value skin allergy assigned to the concept Medical restrictions. This
implies the extension of the ontology by appropriate concepts representing the findings
for the different forms of sport. If these concepts are defined in advance, then natural
language processing methods can be used for a semi-automatic annotation of the text.
In consequence, a full-fledged semantic search and navigation becomes possible, where
the relation of a specific finding value to all available sport concepts can be queried, for
example.

Generation of Explicit Problem-Solving Knowledge. In some cases, the use of se-
mantic annotations is not sufficiently expressive for a given application project. Then, it
becomes necessary to transform to a higher level of formality by generating and extend-
ing strong problem-solving knowledge out of the existing annotations. In the following
we aim to define knowledge to actually derive particular forms of sports based on en-
tered user findings. For this reason, we collect all properties, that set a form of sport
in relation with a finding that can be entered by the user. In the given example, we
collect the properties hasFinding and isContradictedBy. The semantic wiki KnowWE
offers scripts that automatically convert these properties either into set-covering models
or rules. For further properties with a different semantics the scripts certainly need to
be adapted. In the initial step, such a conversion denotes the transition of the available
knowledge into an (almost) semantically equivalent version. However, in this case the
target representation allows for richer possibilities to represent further elements of the
knowledge base.

Set-Covering Models. The following shows a transition of the annotation to a set-
covering model [13], where a set-covering model describes all typical/relevant findings
for a solution. The given textual markup to be used in wikis was introduced in [14]. In
our example, the solution concepts are corresponding to the concepts representing the
wiki articles, and findings are defined as the target concepts of the included properties.
Each of the collected properties is compiled by the script into a line of the set-covering
model. The value of a hasFinding property is represented as a simple line (denoting
the positive expectation of this finding), for example Trained muscles = back. For a
isContradictedBy property the conversion additionally adds a [- -] at the end of the
generated line in order to represent the negative expectation of this finding, for example
see Medical restrictions = skin allergy.

110



Swimming {
Medium of sports = water
Type of sport = individual
Trained muscles = back
Running costs >= medium
Medical restrictions = skin allergy [- -]

}

Bold-faced letters are (hand-crafted) additions to the model, that have been made
after the transition. For instance, two further findings are describing the type of sport
and the running costs. The explicit representation in the model points to an extension of
the formalized knowledge, although this information is already available in the text of
the wiki article.

Rules. In the following example block, a simple rule-based version of the annotations
made is shown. In this simple example, one rule is created by a script collecting all has-
Finding properties as well as one rule for every isContradictedBy property. Of course,
this simple conversion not necessarily conforms with the intended semantics of the
made annotations and therefore is meant as a starting point for further (manual) adap-
tations.

if Medium of sports = water
and Type of sport = individual
and Trained muscles = back
and Running costs >= medium

then derive Swimming

if Medical restrictions = skin allergy
then exclude Swimming

The transition to a more expressive knowledge representation such as set-covering
models and rules becomes necessary when artifacts of the domain cannot be expressed
by semantic annotations anymore. As a benefit, the knowledge can then be used for
more effective reasoning ranging from complex semantic queries to the generation of
problem-solving interviews, where appropriate solutions for a given problem are de-
rived based on an interactive interview.

4 Conclusions

Domain knowledge is commonly available at different levels of formality. We intro-
duced the knowledge formalization continuum to cope with this problem, and we sketched
methods to work with the continuum. The semantic wiki KnowWE was introduced as a
tool to support the knowledge formalization continuum, whereas many other seman-
tic wikis also can be used to serve as suitable platform. The presented idea of the
knowledge formalization continuum is related to the ontology classification using a
three-dimensional matrix as introduced in [15]. Here, a categorization of the knowl-

111



edge to be modelled is given when designing a knowledge-based system. Schaffert et
al. distinguish between model scope, model acceptance and the level of expressiveness,
where the latter defines a subspace of the presented knowledge formalization contin-
uum. The level of expressiveness ranges from light-weight ontologies, with term lists
as the least expressive one, to heavy-weight ontologies with very-expressive constraints
as the most expressive representative. Whereas functional models and logic programs
can be interpreted as “very-expressive constraints” in some ways, the knowledge for-
malization continuum also considers textual documents as less expressive occurrences
of knowledge apart from term lists.

References
1. Lidwell, W., Holden, K., Butler, J.: Universal Principles of Design. Rockport Publishers

(October 2003)
2. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge University

Press, Cambridge (2000)
3. Geroimenko, V., Chen, C., eds.: Visualizing the Semantic Web. 2 edn. Springer (2006)
4. Roth-Berghofer, T.R.: Explanations and Case-Based Reasoning: Foundational issues. In

Funk, P., González-Calero, P.A., eds.: Advances in Case-Based Reasoning, Springer-Verlag
(September 2004) 389–403

5. Dale, R., Moisl, H., Somers, H., eds.: A Handbook of Natural Language Processing: Tech-
niques and Applications for the Processing of Language as Text. Marcel Dekker Inc. (2000)

6. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for knowledge represen-
tation. In Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert,
S., eds.: Reasoning Web, Fourth International Summer School 2008. Number 5224 in Lec-
ture Notes in Computer Science, Springer (2008) 104–124

7. Baumeister, J., Seipel, D., Puppe, F.: Refactoring methods for knowledge bases. In:
EKAW’04: Engineering Knowledge in the Age of the Semantic Web: 14th International
Conference, LNAI 3257, Berlin, Springer (2004) 157–171

8. Baumeister, J., Nalepa, G.J.: Verification of distributed knowledge in semantic knowledge
wikis. In: FLAIRS’09: Proceedings of the 22th International Florida Artificial Intelligence
Research Society Conference. (2009)

9. Reutelshoefer, J., Baumeister, J., Puppe, F.: Ad-hoc knowledge engineering with semantic
knowledge wikis. In: SemWiki’08: Proceedings of 3rd Semantic Wiki workshop - The Wiki
Way of Semantics (CEUR Proceedings 360). (2008)

10. Krötzsch, M., Vrandecić, D., Völkel, M.: Semantic MediaWiki. In: ISWC’06: Proceedings
of the 5th International Semantic Web Conference, LNAI 4273, Berlin, Springer (2006) 935–
942

11. Schaffert, S.: IkeWiki: A semantic wiki for collaborative knowledge management. In:
STICA’06: 1st International Workshop on Semantic Technologies in Collaborative Appli-
cations, Manchester, UK (2006)

12. Buffa, M., Gandon, F., Ereteo, G., Sander, P., Faron, C.: SweetWiki: A semantic wiki. Web
Semantics 8(1) (2008) 84–97

13. Peng, Y., Reggia, J.A.: Abductive Inference Models for Diagnostic Problem-Solving.
Springer, Berlin (1990)

14. Baumeister, J., Reutelshoefer, J., Puppe, F.: Markups for knowledge wikis. In: SAAKM’07:
Proceedings of the Semantic Authoring, Annotation and Knowledge Markup Workshop,
Whistler, Canada (2007) 7–14

15. Schaffert, S., Gruber, A., Westenthaler, R.: A semantic wiki for collaborative knowledge
formation. In: Proceedings of SEMANTICS 2005 Conference, Trauner Verlag (2006)

112



MoKi: the Modelling wiKi

Marco Rospocher1, Chiara Ghidini1, Viktoria Pammer2, Luciano Serafini1, and
Stefanie Lindstaedt3

1 FBK-irst, Via Sommarive 18, 38123 Trento Povo, Italy
2 Knowledge Management Institute, TU Graz. Inffeldgasse 21a, 8010 Graz, Austria

3 Know-Center, Inffeldgasse 21a, 8010 Graz, Austria.

Abstract. Enterprise modelling focuses on the construction of a struc-
tured description of relevant aspects of an enterprise, the so-called enter-
prise model. Within this contribution we describe a wiki-based tool for
enterprise modelling, called MoKi (Modelling wiKi). It specifically facili-
tates collaboration between actors with different expertise to develop an
enterprise model by using structural (formal) descriptions as well as more
informal and semi-formal descriptions of knowledge. It also supports the
integrated development of interrelated models covering different aspects
of an enterprise.

1 Introduction

An enterprise model is “a computational representation of the structure, activ-
ities, processes, information, resources, people, behavior, goals, and constraints
of a business, government, or other enterprise” [1]. Often, an enterprise model fo-
cuses in the description of two specific aspects of an enterprise: (i) its processes
and activities, and / or (ii) the business domain within which the enterprise
operates. Other aspects of an enterprise, like goals, human resources, organisa-
tional structure and roles, competencies, etc. may also be important assets to
be described in an enterprise model. This is due to the central role that enter-
prise models are playing in the development of a large number of applications,
including Internet and (Semantic) Web based applications.

Building an enterprise model requires a number of skills. These skills span
from knowing the different aspects that have to be described in the models
to having the ability of encoding such knowledge into formal statements, to
having the ability of integrating different aspects, such as structure, activities,
processes, information, resources, people, behaviour, goals, and constraints into
a uniform and coherent vision. Given the complexity of enterprise modelling,
it is unrealistic to assume that any one person possesses all the above skills,
and the contribution of multiple actors is necessary. For this reason enterprise
modelling is inherently a collaborative activity. Our research focuses mainly on
collaboration between actors with different skills. Naturally we also recognise
the relevancy of other aspects of collaboration such as resolution of conflicts of
opinion or interest (considered for example in Collaborative Protégé [2]), or more
fundamental requirements regarding access rights, simultaneous modification of

113



models, versioning etc., but we plan to consider them at a later stage of our
work.

To support actors with different skills, we envisage a system in which con-
tent can be represented at different degrees of formality. Domain experts need to
create, review and modify models at a rather informal/human intelligible level.
Knowledge engineers need to check the quality of the formal definitions and their
correspondence with the informal parts they intend to represent. In order not
to increase the overhead of human work, translation between different levels of
formality must be as automated as possible. To support a coherent development
and integration of the different components of the enterprise model, such a mod-
elling tool must support the modelling of all the relevant aspects of an enterprise
in a collaborative, cooperative and integrated manner. This is in order to exploit
the synergy of “having to think the same thing out only once”.
MoKi (Modelling WiKi) is developed in order to meet this vision:

1. It supports access to the enterprise model at different levels of formality
(informal, semi-formal, and formal);

2. It integrates modelling of several aspects of an enterprise; and
3. It ensures a coherent development of the formal part.

2 Conceptual framework

The key modelling aspects that MoKi aims to support are collaboration and
integration. This section goes into detail about how we understand these terms
and why they are relevant in the context of enterprise modelling.

2.1 Collaboration

Developing an enterprise model is inherently a collaborative activity, since a
variety of skills are required which are unlikely to be found in a single person, as
has already been argued above. In practice, different actors have very different
expertise in encoding content into formal languages, or may know only of specific
aspects of an enterprise. At this point it is necessary to understand that as a
direct consequence different contributors, as members of a modelling team, also
have different requirements on the modelling environment, especially with regard
to the presentation of the models’ content. The primary goal of our research with
respect to collaboration is to derive requirements on a modeling environment by
actors with different background knowledge and to develop appropriate ways to
access models accordingly.

To support collaboration between the modelling team, and to allow great
flexibility in the cooperative modelling activity, we therefore adopt a collabo-
rative modelling paradigm, illustrated in Figure 1. This paradigm is inspired
by recent Web 2.0 collaborative solutions, of which wikis are one example, and
was already proposed in [3, 4] as a way to support modelling activities. In this
paradigm all the actors asynchronously collaborate toward the creation of an

114



Fig. 1. Collaborative Modelling

integrated enterprise model by inserting knowledge (either formal or informal),
by transforming knowledge (from informal to formal) and by revising knowledge.
The domain experts enter the missing knowledge - using a form of informal lan-
guage - into the models or provide feedback on the formal models created. The
system semi-automatically translates part of the informal knowledge into a for-
mal specification and vice-versa. Asynchronously, the knowledge engineers can
refine the formal model by inserting new elements, by modifying existing knowl-
edge or by asking clarifications to the domain experts. The usage of a robust
collaborative technology, as the one provided by the wiki, allows the provision of
state of the art functionality like simultaneous access and online communication
via the platform.

Another important characteristic of our approach lies in the capability of the
system to maintain the alignment between the informal specification of the en-
terprise model and its formal version. This can provide an added extra value, as
the documentation contained in the informal part is often critical to fully under-
stand its formal version. Traditionally, the main goal of enterprise modelling is
the production of an integrated formal model in which the different aspects of an
enterprise are integrated in a unique model. This integrated formal model is an
artefact that nevertheless requires a strong connection with its informal part in
order to be fully exploited both by humans and machines. Thus, to support the
exploitation of an enterprise model also by humans we adopt a structure (also
referred as the meta-model) which not only contains the formal meta-model of
the enterprise, but also the informal versions of this knowledge.

2.2 Integration

Relevant to our idea of modelling different aspects of one enterprise is that the
various models are interconnected, and thus constitute an integrated model.

115



In the current implementation of MoKi, we focus on an enterprise model describ-
ing the domain, the processes and the competencies of an enterprise; Figure 2
shows the current version of the integrated enterprise meta-model considered.
The choice of these aspects, which constitute typical parts of an enterprise model,

Fig. 2. The current version of the integrated enterprise meta-model considered in MoKi

was originally motivated by the EU-project APOSDLE4 in which MoKi was first
developed and used. Nonetheless, MoKi has also been used in different contexts
already (see Section 4). Also, more complex enterprise models can be consid-
ered, and we have designed our approach with the explicit intent to be open and
extendable to other aspects of an enterprise.

Below, we specify what we mean by domain, process and competency model,
and illustrate how we see integrated modelling using these spcific aspects.
The domain model provides the description of the business domain within which
the enterprise operates. It is a conceptualisation of the entities and the relations
between them, which are relevant to the activities of an enterprise. This de-
scription is provided in terms of concepts, relations and objects. Following the
growing popularity of Semantic Web technologies, we decided to base our rep-
resentation of a domain-specific model upon the OWL ontology language5. This
approach allows one to express classes, properties, instances, and axioms among
them.
The process model provides a description of the patterns and procedures occur-
ring in a business domain of an organisation. The very core of a process model
is a control flow. In the e-learning application scenario described in [3] it was
enough to consider a task to be either atomic or composed of a bag of subtasks,
regardless of any execution control. In this case a simple hierarchical structure
representing the task/sub-task relation was sufficient and we adopted an OWL
ontology that encodes the part-of relation. In a different situation where tasks
were complex structures described in the BPMN6 language [5], a more complex
model was adopted, in which processes are described by means of the primitives

4 See www.aposdle.org.
5 www.w3.org/TR/owlfeatures/
6 Business Process Modelling Notation www.bpmn.org

116



defined in an OWL ontology that represents BPMN7.
The competency model describes the attitudes and the capability of people em-
ployed in an organisation to fulfill their tasks and to reach their objectives
and goals. Elements of the competency model are competencies, which express
knowledge about domain concepts. Tasks are related to competencies, in that
a competency may be required to perform a task, and vice versa the (success-
ful) execution of a task indicates that person possesses a certain competency.
Such a competency model allows describing users in terms of knowledge about
concepts of the business domain and skills to perform the tasks of the process
model. Clearly, such a competency model serves as connection between domain
and process model. Practically, this connection is established by assigning tasks
to competencies (domain model element plus skill type) which are required for
performing the task. In the e-learning application scenario described in [3], the
competency model was built focusing on the support of individual learning in
the process of working tasks [6].

3 Enterprise modelling using MoKi

MoKi is based on Semantic MediaWiki (SMW) [7], extending it to offer partic-
ular support for enterprise modelling. Based on a predefined meta-model as the
one described above, MoKi adds to SMW the following groups of functionali-
ties: (i) import functionalities to load existing models from various formats, (iii)
modeling functionalities for model management and representation (iii) export
functionalities to translate models developed within MoKi into standard formats.
These functionalities are described in more details throughout this section.

The choice of developing MoKi on top of a semantic wiki was made for sev-
eral reasons. Wikis provide a state of the art robust collaborative tool, which
enabled us to focus on the aspect of collaboration between actors of different
skills and still getting an environment with more broad collaboration support.
Due to the growing popularity of wiki-based web sites (e.g. wikipedia), users are
quite familiar with wikis and the editing of wiki pages. Furthermore, the SMW
framework already provides many important functionalities such as access con-
trol and permissions, tracing of the activity, semantic search, and so on, without
the need to install specific client applications. Finally, only a web-browser is
required on the end user side to use the system. The second important reason
for choosing a semantic wiki was the fact that the wiki can provide a uniform
tool and interface for the (informal) specification of the different components of
an enterprise model (domain, processes, and competencies in our case). This is
in opposition to the usual procedure, where dedicated but often disconnected,
modelling tools are used to model each aspect. The usage of a uniform tool for
the integrated modelling of different aspects of an enterprise provides a great
opportunity to make modelling easier for domain experts. It is also a prerequi-
site for modelling different aspects of an enterprise in a truly integrated way, as
described above. As a final reason for implementing MoKi on top of a semantic
7 http://dkm.fbk.eu/index.php/BPMN Ontology

117



wiki, the natural language descriptions inserted in a semantic wiki can be struc-
tured according to predefined templates, with the help of semantic constructs
like properties. As a consequence, the informal descriptions in natural language
contain enough structure to be automatically translated in formal models, thus
allowing the reuse of informal descriptions for automatic ontology creation.

3.1 Describing knowledge in a MoKi page

MoKi integrates different views over portions of knowledge. The main idea behind
MoKi is to associate a wiki page8 to each (simple or complex) element of the
formal models so that this page contains an informal but structured description
of the element itself. The typical page contains9:

– An informal description of the element in natural language (images or draw-
ings can be attached as well). The purpose of this part is to document the
model and clarify it to users not trained in the formal representation (e.g.,
reference to source documents, notes about modelling choices and open prob-
lems, etc.). Comments can be added by each user and are not translated to
the formal model;

– A structured part, where the element is described by means of triples of the
form (subject, relation, object), with the element itself playing the role of
the subject. The purpose of this part is to represent the connection between
elements of the same model (like class/sub-class relation between elements of
the domain model, or task/sub-task relation between elements of the process
model) as well as connections between elements of different models (like a
relation denoting required knowledge between elements of the process and
the domain model).

This natural language based, but also structured, description provides a nat-
ural bridge between formal and informal representation of knowledge. The user
fills a page via forms (see the Semantic Forms extension10), so he/she does not
need to know any particular syntax or language to participate in the creation of
the enterprise model. All the actors involved in the modelling activities can also
interact with each others and exchange further ideas and comments using the
discussion SMW’s built-it functionality. An example of a MoKi page describing
an element of the domain model is shown in Figure 3 while an example of a MoKi
page describing an element (task) of the process model is shown in Figure 4.

8 Wiki categories could have been used as well to represents the concepts of the domain
model. However, when we started developing the tool, the support for categories in
SMW was rather preliminary, so we decided to represent domain concepts using
standard pages.

9 Note that in this section we use the term “model element” to indicate a basic com-
ponent of the model. For instance, a concept or a relation of the domain model is a
model element, a task of the process model, a competency, and so on.

10 http://www.mediawiki.org/wiki/Extension:Semantic Forms

118



The important point to stress here is the usage of semantic forms to realise
appropriate templates to guide domain experts in providing their informal, but
structured descriptions. Templates are the key to customise MoKi for modelling
different kinds of model elements (e.g. domain concept, task, competency etc.)
with respect to which knowledge shall be specified about the kind of element.

3.2 MoKi functionalities

MoKi provides several groups of functionalities to support modelling, all of which
can be accessed via a wiki’s style menu. This section contains a description of
the functionalities currently available11. Concerning future extensions, MoKi is
built in a modular way in order to facilitate the plugging-in of new or existing
state-of-the-art tools.

Import Functionalities. We provide three types of import functionalities:

– Import of available domain/task formal models. With this functionality the
user can set up MoKi with an already available domain or task model instead
of starting modelling from scratch. From the technical point of view, the
XML serialisation of the OWL formal model is parsed in order to obtain its
relevant elements, and a page is created for each one of them. All pages are
collected in a XML file, which then is given as input to the Import pages
functionality available in SMW.

– Input of structured lists of elements. With this functionality the user can
create new elements of the models by inserting lists of concepts (resp. tasks),
organized according to predefined semantic structures, e.g. a taxonomy or
a partonomy (resp. task/subtask decomposition structure). Figure 5 shows
the loading of a list of concepts organized according to a partonomy in the
domain model. Also this functionality takes advantage of the Import pages
functionality available in SMW.

– Text analysis functionalities. To support the utilization of available unstruc-
tured knowledge relevant for the modelling activity, MoKi includes an ex-
tension which allows to extract relevant terms from digital resources, and
to cluster such terms according to their relatedness. These functionalities
are provided by the KnowMiner, an advanced text analysis tool developed
by the Know-Center. The corresponding extension works in analogy to the
extensions realised for Protégé in earlier work [8].

Model Management Functionalities. This set of functionalities provides the
basic functionality each modelling tool necessarily provides: Creating, editing
and deleting model elements. Depending on the type of element, pre-defined
templates are loaded when it is created or edited. Such templates contain for
11 A demo version of MoKi can be tried out on-line at the MoKi web site: moki.fbk.eu. A

detailed description of the current version of MoKi is contained in the MoKi manual,
available at the same web site.

119



Fig. 3. An example of a MoKi page for a concept.

Fig. 4. An example of a MoKi page for a task

120



Fig. 5. Adding a list of concepts organised according to a part of hierarchy, via the
Load list of concepts functionality.

instance properties for specifying a taxonomy or partonomy, or a sequence in
the case of tasks.

Visualization Functionalities. These functionalities allow to produce differ-
ent types of graphical overviews of the models: they help the actors to deal with
the global picture on the models and not only with the single model elements. In
particular, the tool allows two kinds of overviews of the model, a tabular-based
one and a graphical-based one.

In the tabular-based view, the user sees a table listing all the elements of the
domain model or the process model, where for each element some relevant infor-
mation is shown, e.g. its description, the concepts of which it is a specialisation
(for domain elements), its subtasks (for tasks), and more. A short extract of a
list of element in a domain model is shown in Figure 6. This functionality is
based on the ask query mechanism available in SMW.

In the tree-based view, called IsA/PartOf Browser, a tree-like view shows
the hierarchy of the domain elements according to either the subclass or part
of relation. This tree-like view, which can be see in Figure 7, is dynamically
created from the content of the MoKi pages. The user has the possibility to
expand/collapse only parts of the tree, thus allowing him or her to efficiently
browse even large and complex models. Actually, this is not just a visualization,
since the user can easily rearrange via drag ’n’ drop the taxonomy and partonomy
of concepts in the domain model, and the changes performed within the browser
are propagated to the pages describing the elements involved. This functionality
is an adaptation of the DHTMLx-Tree library 12, originally not meant for this
purpose.

12 http://www.dhtmlx.com/docs/products/dhtmlxTree/index.shtml

121



Fig. 6. Extract of a tabular-based view of the domain model.

Export Functionalities. These functionalities support the automatic export
of knowledge of the enterprise model into standard knowledge representation lan-
guages. At the moment, the formal representation of all parts of the enterprise
model is an OWL ontology. On-going work is devoted to the addition of other for-
mal languages especially for task/process specification. The process model and
the domain model can be exported separately. Technically speaking, the starting
point to the automatically created the OWL ontology from the informal domain
model is the built-in Semantic MediaWiki Export pages to RDF functionality.
Using this functionality, it is possible to generate a document in OWL/RDF
format containing information on the properties used in the pages describing
the model. However, since this functionality has been developed independently
with respect to the use of the Semantic MediaWiki that we propose, an auto-
mated postprocessing of this file is necessary in order to be able to generate
an OWL ontology consistent with the informal model designed. For example,
a page describing a domain concept is mapped by the Export pages to RDF
functionality to an instance of a top class smw:Thing, while in our approach it
should be mapped to an OWL class. Similarly, the “is a” relation is mapped
by the Export pages to RDF functionality to an object property named is a,
while in our approach this relation needs to be mapped to the RDFS subClassOf

122



Fig. 7. The taxonomy of the concepts in a domain model shown via the IsA browser.
Note the Save Tree button, which allows to save the class/subclass hierarchy after
changes made via drag ’n’ drop.

relation.

Reviewing MoKi against the claims made in the beginning of the paper, it:

1. Supports access to the enterprise model at different levels of formality (in-
formal, semi-formal and formal) in that it (i) accommodates highly informal
modelling based merely on hyperlink connected wiki pages as well as (ii)
semi-formal modelling where pages and links are raised to a semantic level,
and (ii) enables formal modelling by an easily accessible translation into
formal models via an export functionality.

2. Supports integrated modelling of domain, processes and competences within
an enterprise by providing one homogeneous interface for modelling all rel-
evant aspects of an enterprise, and enabling knowledge engineers to inter-
connect models describing these aspects in a quite natural way.

3. Ensures a coherent development of the formal part by providing an import
functionality which allows a re-translation of formal models into MoKi.

4 Use Cases and User Study

The MoKi has been successfully applied within the EU-project APOSDLE to
develop enterprise models in six different domains: Information and Consulting

123



on Industrial Property Rights, Electromagnetism Simulation, Innovation and
Knowledge Management, Requirements Engineering (the RESCUE methodol-
ogy), Statistical Data Analysis and Information Technology Infrastructure Li-
brary. Some of the experiences of an early usage of the system are described
in [3]. In addition, MoKi is used in applications that go beyond typical enter-
prise modelling: the representation of medical guidelines encoded in the ASBRU
language13, and the collection of data for the Personal Health Record of the
Province of Trento, Italy14. The work done in these projects, as well as the anal-
ysis of the usage of MoKi in APOSDLE constitutes an important step towards
the improvement of the tool and realisation of the full framework.

User study A qualitative evaluation based on the usage of the MoKi between
September 2008 and January 2009 by four application partners modeling five
different enterprise domains in the scope of the APOSDLE project was carried
out. The evaluation took the form of structured interviews with both open and
closed questions. Interview questions targeted not only MoKi but the whole mod-
eling process implemented in APOSDLE [10]. Modeling activities in APOSDLE
involved domain experts, on-site knowledge engineers as well as external knowl-
edge engineers. the interviews were carried out with the on-site and external
knowledge engineers but not directly with the domain experts.
All participants reported a positive experience of MoKi. In particular, the import
(easy integration of previously available knowledge) and export functionalities
(translation into formal models) were highly appreciated. Also, the homogenous
modeling environment for modeling different aspects (domain, task, preliminary
competency model) was found to facilitate the process. Furthermore, the par-
ticipants reported that MoKi did facilitate collaboration among the modelling
team.

5 Related Work

Solutions to the problem of modelling various aspects of an enterprise were
proposed in several works, both in terms of definition of the meta-model and in
terms of methodologies to support the creation of the model itself: a detailed
comparison between state of the art approaches and the one proposed in this
paper can be found in [4].

Many tools are available to support the creation of formal models in general.
Most of them, e.g. Protégé [11], were born as standalone desktop applications.
Despite the development of pug-ins that support collaborative features (e.g.,
Collaborative Protégé ) the tools remain barely usable by users with limited ex-
pertise of formal languages. The MoKi does not directly compare to such tools,
since it is not a modelling tool for a specific formalism but rather for specific
kinds of entities (concepts, tasks etc.). The support for concrete formalisms lies
in the implementation of different export functionalities. Additionally of course,
13 Part of the OncoCure project. See [9].
14 Part of the TreC project. See trec.fbk.eu

124



MoKi aims to collect information about these entities at different levels of for-
mality. Recently, wiki systems, and semantic wikis, have been applied to support
collaborative knowledge creation and sharing. We mention a few of them, and
assume for all that they offer “traditional” wiki functionality, i.e. web-based,
easy text edition and linking to web resources, integration of multimedia con-
tent and versioning.
There is already at least one proposal in which the modelling of processes is
done using the pure Semantic MediaWiki, see Dengler et al [12]. Semantic
MediaWiki+ (SMW+) [13] is a further extension on Semantic MediaWiki with a
focus on enhanced usability for semantic features. Especially, it supports besides
the annotation of whole pages also the annotation of parts of text and offers ad-
ditional funtionalities termed “knowledge gardening” functionalities. The latter
are maintenance scripts at the semantic level, with the aim to detect inconsistent
annotations, near-duplicate entries etc.
IkeWiki [14] and OntoWiki [15] are two more semantic wikis, both however
are completely independent from pre-existing wiki systems. Java-based IkiWiki
supports the semantic annotation of pages and links between pages with seman-
tic. Annotations are used for context-specific presentation of pages, advanced
querying, consistency verification or drawing conclusions. IkeWiki also directly
supports reasoning on its knowledge base. Continued development of IkeWiki
now takes place within the EU-project KIWI [16]. OntoWiki seems to focus
slightly more directly on the creation of a semantic knowledge base, and offers
widgets to edit/author not only single elements/pages but also whole statements
(subject, predicate, object).
AceWiki [17] was developed in the context of logic verbalisation, and is based on
research to verbalise formal logic statements, and inversely translate backwards
English statements into formal logic. AceWiki is based on Attempto Controlled
English - ACE, which allows users expressing their knowledge in near natural
language (i.e. natural language with some restrictions). Note that although such
content may look like natural language, in contrast to the informal fields in MoKi
for instance, it is actually formalised, i.e. follows some rules. In contrast to this,
the content of the informal parts in MoKi, e.g. the descriptions of the model
elements, is completely unrestricted.
myOntology [18] is geared towards the collaborative and community-driven de-
velopment and maintenance of lightweight ontologies. In particularit has been
applied within the context of E-Commerce.

What MoKi offers in addition are two main contributions:

– The support for the integrated specification of multiple aspects (in the use
cases described above, this meant domain, process and competencies).

– The bi-directional transformation between formal and informal models.

6 Conclusions

In this paper we have presented MoKi, a new tool for collaborative enterprise
modelling. The general framework and the tool we envisage constitute a gen-

125



uine contribution towards supporting a fruitful collaboration among people with
different skills and levels of expertise in the modelling activities. The current
implementation of MoKi, developed inside the APOSDLE EU-project already
provides key functionalities towards the modelling of an integrated enterprise
model in a collaborative manner, and constitutes a first version towards the
realisation of the full framework.

Future work focus on improving the tool and make it more general. Exam-
ples of future work include: a better support for domain and process modelling,
including better support to the modelling of all the elements of the formal mod-
els; the integration of the competency model in the MoKi15; better support to
define templates and to adapt to different meta-models; support for validation
of knowledge in the MoKi by means of the domain experts.

Acknowledgements We thank all the people involved in the modelling activities
of the APOSDLE project for their useful suggestions and feedback. This work
has been partially funded under grant 027023 in the IST work programme of the
European Community (APOSDLE IST-project). The Know-Center is funded
within the Austrian COMET Program - Competence Centers for Excellent Tech-
nologies - under the auspices of the Austrian Ministry of Transport, Innovation
and Technology, the Austrian Ministry of Economics and Labor and by the State
of Styria. COMET is managed by the Austrian Research Promotion Agency FFG

References

1. Fox, M.S., Grüninger, M.: Enterprise modeling. AI Magazine 19(3) (1998) 109–121
2. Tudorache, T., Noy, N.F., Musen, M.A.: Collaborative protege: Enabling

community-based authoring of ontologies. In: International Semantic Web Confer-
ence (Posters & Demos). (2008)

3. Christl, C., Ghidini, C., Guss, J., Pammer, V., Rospocher, M., Lindstaedt, S.,
Scheir, P., Serafini, L.: Deploying semantic web technologies for work integrated
learning in industry. a comparison: Sme vs. large sized company. In: Proceedings of
the 7th Int. Semantic Web Conference (ISWC 2008), In Use Track. Volume 5318.,
Springer (2008) 709–722

4. Rospocher, M., Ghidini, C., Serafini, L., Kump, B., Pammer, V., Lindstaedt, S.N.,
Faatz, A., Ley, T.: Collaborative enterprise integrated modelling. In Gangemi, A.,
Keizer, J., Presutti, V., Stoermer, H., eds.: SWAP. Volume 426 of CEUR Workshop
Proceedings., CEUR-WS.org (2008)

5. Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L., Tonella, P.: Rea-
soning on semantically annotated processes. In: Proceedings of the 6th Interna-
tional Conference on Service Oriented Computing (ICSOC’08), Sydney, Australia
(2008)

15 The creation of the competency model was initially envisaged and performed in
APOSDLE via the TAsk-Competency Tool (TACT) [10], developed by the Know
Center outside the MoKi. On-going work is focused on incorporating and extending
the functionalities of TACT in the MoKi to fully support the modelling of domain,
processes and competencies in an integrated manner.

126



6. Lindstaedt, S.N., Ley, T., Scheir, P., Ulbrich, A.: Applying Scruffy Methods to
Enable Work-integrated Learning. Upgrade (2008) in press

7. Krotzsch, M., Vrandecic, D., Volkel, M.: Wikipedia and the semantic web - the
missing links. In: Proc. of the 1st Int. Wikimedia Conference (Wikimania 2005)

8. Pammer, V., Scheir, P., Lindstaedt, S.: Two protégé plug-ins for supporting
document-based ontology engineering and ontological annotation at document-
level. In: 10th International Protégé Conference, Budapest, Hungary, July 15-18,
2007

9. Eccher, C., Ferro, A., Seyfang, A., Rospocher, M., Miksch, S.: Modeling clinical
protocols using semantic MediaWiki: the case of the Oncocure project. In: ECAI
workshop on Knowledge Management for Healthcare Processes (K4HelP). (2008)

10. APOSDLE Deliverable 1.6: Integrated modelling methodology version 2 (forth-
coming in April 2009)

11. Protégé: The protégé project (2000) http://protege.stanford.edu.
12. Dengler, F., Lamparter, S., Hefke, M., Abecker, A.: Collaborative process de-

velopment using semantic mediawiki. In: Proceedings of the 5th Conference of
Professional Knowledge Management. Solothurn, Switzerland, March 2009.

13. Semantic MediaWiki+: Business ready semantic collaboration (2008)
http://wiki.ontoprise.de/ontoprisewiki/index.php/Main Page.

14. Schaffert, S.: Ikewiki: A semantic wiki for collaborative knowledge management. In:
1st Int. Ws. on Semantic Technologies in Collaborative Applications (STICA’06)

15. Auer, S., Dietzold, S., Riechert, T.: Ontowiki - a tool for social, semantic collab-
oration. In: Proceedings of the 5th International Semantic Web Conference, Nov
5th-9th, Athens, GA, USA. Volume 4273., Springer (2006) 736–749

16. The KiWi Vision: Collaborative knowledge management, powered by the se-
mantic web. (2008) Deliverable 8.5 - http://wiki.kiwi-project.eu/multimedia/kiwi-
pub:KiWi D8.5 final.pdf.

17. Kuhn, T.: AceWiki: A Natural and Expressive Semantic Wiki. In: Proceedings of
Semantic Web User Interaction at CHI 2008: Exploring HCI Challenges. (2008)

18. myOntology: Open ontology environment for semantic web-based e-commerce.
(2008) http://www.myontology.org/.

127



Domain 
Processes 

Skills  Roles 

Enterprise Model 

MoKi: the Modelling Wiki  
Marco Rospocher1, Chiara Ghidini1, Viktoria Pammer2, Luciano Serafini1, Stefanie Lindstaedt3 

FormalisaCon of 
acquired knowledge 

FacilitaCon and 
coordinaCon of the 
process of knowledge 

elicitaCon 

ExplicitaCon of new 
knowledge and 

feedback on exisCng 
models 

FORMAL INFORMAL 

1FBK‐irst ‐ Via Sommarive 18 Povo, 38050,Trento, Italy :: surname@Xk.eu  
2Knowledge Management InsCtute, TU Graz ‐ 8010 Graz, Austria :: viktoria.pammer@tugraz.at 
3Know‐Center ‐ Inffeldgasse 21a, 8010 Graz, Austria :: slind@know‐center.at  moki.Xk.eu 

Knowledge engineer Expert 

Expert 
Facilitator 

Enterprise modelling:  

•  Creates a structured descripCon of different aspects of an 
enterprise (business domain, processes, goals, … ) and their mutual 
relaCons 

•  Requires specific modelling skills and involves a team of modellers  
•  Is a truly collaboraCve acCvity carried out under some collaboraCve 
protocol 

Our asynchronous collabora;ve approach: 

MoKi ‐ the Modelling wiKi: 
•  Supports the construcCon of integrated domain and process models 
•  Each  element  of  the  formal  model  is  described,  in  an  informal  but 
structured way, in a wiki page 

Current features: 
•  Easy ediCng of a wiki page by means of forms 
•  Different import funcConaliCes:  

o  AutomaCc import of OWL models 
o  Easy import of lists of elements organized according to  

predefined semanCc structures (taxonomy or partonomy) 
o  Term extracCon funcConality 

•  Graphical browsing/ediCng of the domain and process models 
•  Hints for revision support 
•  AutomaCc export to OWL 

•  Asynchronous collaboraCon of all the actors, who can:  
o  insert knowledge 
o  transform knowledge 
o  revise knowledge 

•  Concurrent specificaCon at different degrees of formality  

•  AutomaCc translaCon  
o  from the informal specificaCon to a formal model 
o  and vice‐versa 

Usage of MoKi: 
•  Six medium sized enterprise models in the EU‐project APOSDLE (www.aposdle.org) 
•  EvaluaCon of MoKi ongoing at the Joint European Summer School on Technology Enhanced Learning 2009 
•  CLIP‐MoKi:  modeling of medical guidelines encoded in ASBRU 
•  BP‐MoKi: modelling of semanCcally annotated business processes 

Graphical editing of processes Graphical editing of 
taxonomy and partonomy 

Editing via forms 

Easy import 

128



Brede Wiki: Neuroscience data structured in a

wiki

Finn Årup Nielsen

Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark;⋆⋆

DTU Informatics, Technical University of Denmark, Lyngby, Denmark;
Neurobiology Research Unit, Copenhagen, Denmark

fn@imm.dtu.dk, http://www.imm.dtu.dk/~fn/

Abstract. Setup in January 2009 the Brede Wiki contains data from
neuroscience, particularly from published neuroimaging peer-reviewed
papers. Data is stored in simple MediaWiki templates and it can au-
tomatically be extracted and represented in an SQL format. Off-wiki
Web-scripts can use the SQL database so items in the wiki can be queried
efficiently, e.g., to find close brain activations to a given coordinate. Tem-
plate content is non-nested and without wiki markup making extraction
simple and complete.

1 Background

The complexity of neuroscience data has resulted in multiple neuroinformat-
ics databases. One particular kind of database records brain activations foci
from published peer-reviewed neuroimaging papers. The foci are reported with
respect to a so-called stereotaxic space, such as the Talairach space [1], so coordi-
nates are reasonably comparable across studies. One of the first neuroinformatics
databases, BrainMap, records this kind of data and had its Web-presence in the
early Web [2]. It continues in a modified version, and a few other coordinate
databases have emerged: AMAT, SumsDB and our own Brede Database [3, 4].
Many of the neuroinformatics databases handle data entry manually. This is time
consuming and may be the reason why databases are not complete. Our Brede
Database uses Matlab for data entry and XML for storage. The scheme does
not encourage collaborative and incremental data entry. We have constructed a
plug-in that searches the database from the popular SPM program [5]. Exten-
sions to the plug-in could potentially upload coordinates to the database, but
that would need a submission interface on the server side.

Bioinformatics has embraced wiki technology, with e.g., the wikis SNPe-
dia, WikiGenes, WikiProtein, WikiPathways.1 Although some neuroinformatics
wikis exist they are mostly text-oriented and used for documentation rather than

⋆⋆ Thanks to the Lundbeck Foundation for funding.
1 The English Wikipedia page Portal:Gene Wiki/Other Wikis presently lists other

bioinformatics wikis.

129



for recording data or describing its content more semantically. Exceptions are
NeuroLex and NeuroCommons.

We have gained some experience in processing the templates of Wikipedia
(more specifically the journal field of the cite journal template for scientific
citations) and for submitting the processed templates to statistical analyses [6,
7]. The DBpedia effort [8] has shown the possibility for large-scale databasing
with data extracted from Wikipedia.

Here I describe a system, the Brede Wiki (http://neuro.imm.dtu.dk/wiki/),
that use MediaWiki and its template functionality to record neuroinformatics
data. Associated scripts can extract the template content from the entire XML
dump of the wiki and automatically construct SQL representation of the data.
The SQL database enables more advanced queries than is possible with the
present standard MediaWiki.

2 Methods

To avoid making data extraction unnecessarily complex and to match with the
SQL language the application of MediaWiki templates has been kept simple:
Present templates do not nest, have lower-case characters (except for first letter)
and wiki markup is avoided within the template field values. The following is an
example of an application of the paper template:

{{Paper

| author1 = Daniela Balslev | author2 = Finn Nielsen

| author3 = Olaf B. Paulson | author4 = Ian Law

| title = Right Temporoparietal Cortex Activation during

Visuo-proprioceptive Conflict

| journal = Cerebral Cortex

| volume = 15 | issue = 2 | pages = 166-169 | year = 2004

| pmid = 15238438 | doi = 10.1093/cercor/bhh119 | wobib = 128

}}

In the present wiki one page may contain multiple templates, e.g., a page
for a specific neuroimaging paper can contain the paper template as well as
multiple templates for brain coordinates: the Talairach coordinate template.
Most template definitions format the template content by construction of an
infobox as known from Wikipedia. What is somewhat different from Wikipedia
is the extensive use of wiki links within the template definitions. For example,
for the paper template wiki links to the authors and journal is constructed, with
MediaWiki template definitions like [[{{{author1}}}]]. External links are cre-
ated from the external database identifiers, such as DOI and the PubMed Iden-
tifier (PMID). For the templates which usually come in sets, such as Talairach
coordinate, each application of a template defines a row in a table.

An example of a page within the Brede Wiki is displayed in Figure 1 on page 4
with the paper template as the upper right infobox and with three formatted
applications of the Talairach coordinate template at the bottom. The x, y

130



and z fields of the template can be combined in a query to external specialized
coordinate search engines. These links are displayed in the right-most column.

As the templates are not nested relatively simple Perl regular expressions
retrieve them with m/{{(.*?)}}/sg and subsequently extract the template name
and its content with

m/([a-z][a-z0-9]*(?:[ _][a-z0-9]+)*)\s*(\|.*)?/si

Spaces are later substituted with underscores. Another regular expression in the
same style extracts name-value pairs from each field. The extracted content is
written to SQL tables, where the master table is presently defined for SQLite as

CREATE TABLE brede(id INTEGER, pid INTEGER, title, tid INTEGER, template,

field, fid INTEGER, value);

id is the row identifier, pid an identifier for the wiki page which title is also
(redundantly) represented in the title column. tid and template are identifier
and name of the template, while field is the field name, fid the field number
and value the value, i.e., the actual content of the field. An insert with the
author2 field from the above displayed paper template example may be issued
as:

INSERT INTO brede VALUES(387, 31, ’Right temporoparietal cortex

activation during visuo-proprioceptive conflict’,

136, ’paper’, ’author’, 2, ’Finn Nielsen’);

Apart from the master table several other tables are built: One for each
template. For the paper template the SQL definition for the corresponding table
may look like the following:

CREATE TABLE brede_paper(__tid, __pid, __title, _author1, _author2,

_author3, _author4, _title, _journal, _volume, _issue, _pages, _year,

_pmid, _doi, _wobib);

The final number of columns will depend on the number of different field
names discovered during reading of the XML dump. The table names are prefixed
with brede and the column names with an underscore to avoid clashes between
Brede Wiki names and SQL reserved words. A specialized search engine use the
constructed SQL database when searching for nearby Talairach coordinates to
a query coordinate [9].

At the time of writing 43 papers were represented in the Brede Wiki, 31
which potentially contain Talairach coordinates. In comparison the Brede and
BrainMap databases have presently 186 and 1711 papers, respectively. Apart
from templates for papers and Talairach coordinates, the Brede Wiki has also
templates for, e.g., brain regions, researchers, subject groups and brain volume
results.

3 Discussion

There are both advantages and disadvantages with the Brede Wiki compared to
our previous system. Some of the advantages are online versioning, immediate

131



Fig. 1. Screenshot of Brede Wiki with a page about
a scientific article.

access to entered data,
incremental addition of
data, the possibility for
free format text descrip-
tions as well as discussion
pages. Furthermore the
data structure is exten-
sible, i.e., it is relatively
easy for editors to add
new ‘columns’ (fields).

Among the disadvan-
tages are the issue of
vandalism, quality con-
trol and database con-
sistency. A paper may
have multiple sets of co-
ordinates that arise from
different brain scanners,
multiple subject groups
and multiple experiments.
If these components are

described on a single wiki page the connection between them will need to be indi-
cated with keys of some kind, e.g., to say that the fourth Talairach coordinate
resulted from analysis of brain scans from the second Subject group.

The wiki does not solve the data entry problem per se. The data in the Brede
Wiki has so far for the most part been entered manually in the raw wiki text. A
small Matlab script can convert results from SPM so they appear in the Brede
Wiki template format. Our small fielded wiki with form entry for personality
genetics association studies [10] can also output its data for inclusion in the
Brede Wiki. Entry with forms within the wiki would be a natural next step
as well as possibly the adding of Semantic MediaWiki functionality [11]. Yet
another option for data entry is scripts that automatically setup wiki pages
from information in other databases, — an approach taking for Gene Wiki in
Wikipedia [12]. Using this scheme it should be possible to augment the Brede
Wiki with information from the Brede Database.

The present consensus on notability in Wikipedia restricts the information
that a Wikipedian can enter: If it is not notable enough another Wikipedian
might delete it. Ordinary researchers and individual research articles do not
have sufficient notability such that individual pages can be constructed for each
of them. When DPpedia relies on Wikipedia then this combination does not
suffice for our purpose.

Compared to true semantic wikis the Brede Wiki cannot perform ‘in-wiki’
semantic queries. However, an off-wiki Web-script using the SQLite database can
search for Talairach foci extracted from the Talairach coordinate templates,
and the wiki and the Web-script link between each others. In the wiki such

132



links are automatically constructed by the template. Similar Web-scripts may
be setup that utilize other parts of the extracted data in more complex ways.

In our small fielded wiki of personality genetics we can perform on-the-fly
meta-analysis and data plotting. The vision is that the Brede Wiki can constitute
the basis for large-scale Web-based meta-analyses similar to that of the (non-
wiki) AlzGene database [13].

4 Conclusion

The Brede Wiki is one of the first steps in neuroinformatics with Web 2.0 and
with a high degree of structured content. It shows the possibility to output
structured MediaWiki content to an SQL database.

References

1. Talairach, J., Tournoux, P.: Co-planar Stereotaxic Atlas of the Human Brain.
Thieme Medical Publisher Inc, New York (January 1988)

2. Fox, P.T., Lancaster, J.L.: Neuroscience on the net. Science 266(5187) (November
1994) 994–996

3. Derrfuss, J., Mar, R.A.: Lost in localization: The need for a universal coordinate
database. NeuroImage, doi:10.1016/j.neuroimage.2009.01.053 (2009)

4. Nielsen, F.Å.: The Brede database: a small database for functional neuroimag-
ing. NeuroImage 19(2) (June 2003) Presented at the 9th International Conference
on Functional Mapping of the Human Brain, June 19–22, 2003, New York, NY.
Available on CD-Rom.

5. Wilkowski, B., Szewczyk, M., Rasmussen, P.M., Hansen, L.K., Nielsen, F.Å.:
Coordinate-based meta-analytic search for the SPM neuroimaging pipeline. In:
International Conference on Health Informatics (HEALTHINF 2009). (2009)

6. Nielsen, F.Å.: Scientific citations in Wikipedia. First Monday 12(8) (August 2007)
7. Nielsen, F.Å.: Clustering of scientific citations in Wikipedia. In: Wikimania. (2008)
8. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:

A nucleus for a web of open data. In: The Semantic Web. Volume 4825 of Lecture
Notes in Computer Science., Heidelberg/Berlin, Springer (2008) 722–735

9. Szewczyk, M.M.: Databases for neuroscience. Master’s thesis, Technical University
of Denmark, Kongens Lyngby, Denmark (2008) IMM-MSC-2008-92.

10. Nielsen, F.Å.: A small wiki for personality genetics. 37th Annual Meeting on
Biochemistry and Molecular Biology: Frontiers in Genomics (October 2008)

11. Krötzsch, M., Vrandečić, D., Völkel, M.: Semantic MediaWiki. In Cruz, I., Decker,
S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L., eds.:
The Semantic Web - ISWC 2006. Volume 4273 of Lecture Notes in Computer
Science., Berlin/Heidelberg, Springer (2006) 935–942

12. Huss, III, J.W., Orozco, C., Goodale, J., Chunlei, Batalov, S., Vickers, T.J., Vala-
far, F., Su, A.I.: A gene wiki for community annotation of gene function. PLoS
Biology 6(7) (July 2008) e175

13. Bertram, L., McQueen, M.B., Mullin, K., Blacker, D., Tanzi, R.E.: System-
atic meta-analyses of Alzheimer disease genetic association studies: the AlzGene
database. Nature Genetics 39(1) (January 2007) 17–23

133



' &

$ %

B
re

d
e

W
ik

i:
N

eu
ro

sc
ie

n
ce

d
a
ta

st
ru

ct
u
re

d
in

a
w

ik
i

F
in

n
Å

ru
p

N
ie

ls
en

T
h
e

L
u
n
d
b
ec

k
F
ou

n
d
at

io
n

C
en

te
r

fo
r

In
te

gr
at

ed
M

ol
ec

u
la

r
B

ra
in

Im
ag

in
g;

D
ep

ar
tm

en
t

of
In

fo
rm

at
ic

s
an

d
M

at
h
em

at
ic

al
M

o
d
el

lin
g,

T
ec

h
n
ic

al
U

n
iv

er
si
ty

of
D

en
m

ar
k,

L
yn

gb
y,

D
en

m
ar

k;
N

eu
ro

b
io

lo
gy

R
es

ea
rc

h
U

n
it
,
R
ig

sh
os

p
it
al

et
,
C
op

en
h
ag

en
,
D

en
m

ar
k.

S
u
m

m
ar

y

T
h
e

B
re

d
e

W
ik

i
ru

n
n
in

g
o
n

M
ed

ia
W

ik
i

so
ft
w
ar

e
re

pr
es

en
ts

d
at

a
in

te
m

p
la

te
s.

D
at

a
is

fr
o
m

p
u
b
-

lis
h
ed

p
ee

r-
re

vi
ew

ed
n
eu

ro
sc

ie
n
ce

ar
ti
cl

es
.

F
u
rt

h
er

in
fo

rm
at

io
n

is
o
n
to

lo
g
ie

s
o
f,

e.
g
.,

br
ai

n
re

g
io

n
s
an

d
br

ai
n

fu
n
ct

io
n
s.

S
in

ce
d
at

a
in

th
e

te
m

p
la

te
s

is
re

pr
es

en
te

d
in

a
si
m

p
le

fo
rm

at
al

l
te

m
p
la

te
d
at

a
ca

n
b
e

ex
tr

ac
te

d
an

d
re

pr
es

en
te

d
in

S
Q

L
.

F
ro

m
an

S
Q

L
d
at

ab
as

e
sp

ec
ia

liz
ed

se
ar

ch
ca

n
b
e

p
er

-
fo

rm
ed

.

B
a
ck

g
ro

u
n
d

N
eu

ro
sc

ie
n
ce

pr
o
d
u
ce

s
a

w
ea

lt
h

o
f
d
at

a
o
f
d
iff

er
-

en
t

so
rt

s.
N

eu
ro

im
ag

in
g

u
se

s
p
o
si
tr

o
n

em
is
si
o
n

to
m

o
g
ra

p
h
y

or
m

ag
n
et

ic
re

so
n
an

ce
im

ag
in

g
br

ai
n

sc
an

n
er

s
an

d
m

ay
re

p
or

t
re

su
lt
s
as

3
D

co
or

d
in

at
es

in
d
ic

at
in

g
fo

ci
o
f
p
ea

k
br

ai
n

ac
ti
va

ti
o
n
.

E
xa

m
p
le

d
a
ta

fr
o
m

L
in

et
a
l.

(2
0
0
8
)1

C
C
-b

y.

S
ev

er
al

d
at

ab
as

es
ex

is
t
fo

r
st

or
in

g
th

es
e

d
at

a,
2

b
u
t

co
n
tr

ib
u
ti
n
g

d
at

a
is

n
o
t

st
ra

ig
h
tf

or
w
ar

d
.

A
st

ru
c-

tu
re

d
w

ik
i
m

ig
h
t
b
e

g
o
o
d

fo
r
or

g
an

iz
in

g
th

is
d
at

a.

E
xa

m
p
le

p
a
g
e

fr
o
m

th
e

B
re

d
e

W
ik

i
B

re
d
e

W
ik

i
te

m
p
la

te
s

T
h
e

te
m

p
la

te
s

u
se

d
in

th
e

B
re

d
e

W
ik

i
m

ay
b
e

g
ro

u
p
ed

in
fo

u
r

ca
te

g
or

ie
s

1
.

N
o
n
-h

ie
ra

rc
h
ic

al

T
em

p
la

te
s

u
se

d
to

d
es

cr
ib

e
th

e
co

n
ce

p
t

o
n

th
e

w
ik

i
p
ag

e.
A

w
ik

i
p
ag

e
m

ay
re

pr
es

en
t

a
re

se
ar

ch
er

an
d

a
R
e
s
e
a
r
c
h
e
r

te
m

p
la

te
is

ad
d
ed

o
n

th
e

to
p

o
f

th
e

p
ag

e
w

it
h

fi
el

d
s

su
ch

as
n
a
m
e
.

O
th

er
si
m

ila
r

te
m

p
la

te
s

ar
e

P
a
p
e
r

an
d
J
o
u
r
n
a
l
.

2
.

H
ie

ra
rc

h
ic

al

T
em

p
la

te
s

u
se

d
to

d
es

cr
ib

e
th

e
co

n
ce

p
t

o
f

th
e

w
ik

i
p
ag

e,
w

h
ic

h
fu

rt
h
er

m
or

e
ca

n
b
e

or
g
an

iz
ed

in
a

h
ie

ra
rc

h
y

—
a

si
m

-
p
le

o
n
to

lo
g
y:

B
r
a
i
n

r
e
g
i
o
n
,
C
o
g
n
i
t
i
v
e

c
o
m
p
o
n
e
n
t
,
O
r
g
a
n
i
z
a
t
i
o
n
,
S
o
f
t
w
a
r
e
.

3
.

O
n
-p

ag
e

—
si
n
g
le

B
es

id
es

th
e

m
ai

n
te

m
p
la

te
o
n

a
p
ag

e
m

u
l-

ti
p
le

o
th

er
te

m
p
la

te
s

ar
e

u
se

d
in

th
e

B
re

d
e

W
ik

i,
e.

g
.,

to
d
es

cr
ib

e
th

e
m

et
h
o
d
o
lo

g
y

in
a

p
ap

er
:
S
u
b
j
e
c
t

g
r
o
u
p
,
M
r
i

s
c
a
n
n
i
n
g
,

P
e
t

s
c
a
n
n
i
n
g
,

P
s
y
c
h
o
e
x
p
e
r
i
m
e
n
t
a
l

c
o
n
d
i
t
i
o
n
.

4
.

O
n
-p

ag
e

—
m

u
lt
ip

le

T
em

p
la

te
s

w
h
er

e
m

u
lt
ip

le
in

st
an

ti
at

io
n
s

ar
e

fo
rm

at
ed

in
to

a
si
n
g
le

H
T

M
L

ta
b
le

:
T
a
l
a
i
r
a
c
h

c
o
o
r
d
i
n
a
t
e
,

B
r
a
i
n

v
o
l
u
m
e
,

G
e
n
e

p
e
r
s
o
n
a
l
i
t
y

a
s
s
o
c
i
a
t
i
o
n
.

T
h
e

te
m

p
la

te
in

st
an

ti
at

io
n
s

ar
e

n
o
n
-n

es
te

d
,

al
l

u
se

lo
w
er

ca
se

fi
el

d
an

d
te

m
p
la

te
n
am

es
an

d
fi
el

d
va

lu
es

ar
e

w
it
h
o
u
t

w
ik

i
m

ar
k
u
p

a
n
d

lin
k
s.

L
in

ks
ar

e
co

n
st

ru
ct

ed
in

th
e

te
m

p
la

te
d
efi

n
it
io

n
s.

134



' &

$ %

S
Q

L
o
f
te

m
p
la

te
d
a
ta

S
Q

L
ca

n
b
e

g
en

er
at

ed
fr
o
m

th
e

d
at

a
in

th
e

te
m

-
p
la

te
s.

S
in

ce
th

e
te

m
p
la

te
in

st
an

ti
at

io
n
s

ar
e

si
m

-
p
le

th
e

ex
tr

ac
ti
o
n

o
f
d
at

a
fr
o
m

th
e

w
ik

i
te

m
p
la

te
s

is
co

m
p
le

te
,

i.
e.

,
al

l
te

m
p
la

te
d
at

a
ca

n
b
e

ex
-

tr
ac

te
d

an
d

re
pr

es
en

te
d

in
S
Q

L
.

T
w
o

ki
n
d
s

o
f
S
Q

L
ta

b
le

s
ar

e
co

n
st

ru
ct

ed
fr
o
m

th
e

B
re

d
e

W
ik

i
te

m
p
la

te
d
at

a:

1
.

O
n
e

m
as

te
r

ta
b
le

w
h
er

e
th

e
te

m
p
la

te
fi
el

d
n
am

es
ar

e
re

pr
es

en
te

d
as

S
Q

L
va

lu
es

.

2
.

S
ec

o
n
d
ar

y
ta

b
le

s
w

h
er

e
te

m
p
la

te
fi
el

d
n
am

es
ar

e
S
Q

L
ta

b
le

co
lu

m
n
s.

H
er

e
is

o
n
e

ta
b
le

fo
r

ea
ch

te
m

p
la

te
d
efi

n
it
io

n
,
e.

g
.,

th
e

{{
P
a
p
e
r

|
.
.
.
}}

te
m

p
la

te
is

as
so

ci
at

ed
w

it
h

th
e

S
Q

L
ta

b
le

ca
lle

d
b
r
e
d
e
p
a
p
e
r

E
xa

m
p
le

te
m

p
la

te
in

M
ed

ia
W

ik
i
m

ar
ku

p
:

{{
P
a
p
e
r

|
a
u
t
h
o
r
1

=
T
i
m

|
a
u
t
h
o
r
2

=

W
e
n
d
y

|
t
i
t
l
e

=
S
e
m
a
n
t
i
c

W
e
b

}}
S
im

p
lifi

ed
m

as
te

r
S
Q

L
ta

b
le

:

C
R
E
A
T
E

T
A
B
L
E

b
r
e
d
e
(
t
i
t
l
e
,

t
e
m
p
l
a
t
e
,

f
i
e
l
d
,

f
i
d
,

v
a
l
u
e
)

w
it
h

si
m

p
lifi

ed
d
at

a
fo

r
in

se
rt

s:

(
"
T
h
e

W
e
b
"
,
"
p
a
p
e
r
"
,
"
a
u
t
h
o
r
"
,

1
,

"
T
i
m
"
)

(
"
T
h
e

W
e
b
"
,
"
p
a
p
e
r
"
,
"
a
u
t
h
o
r
"
,

2
,

"
W
e
n
d
y
"
)

(
"
T
h
e

W
e
b
"
,
"
p
a
p
e
r
"
,
"
t
i
t
l
e
"
,

1
,

"
T
h
e

W
e
b
"
)

D
efi

n
it
io

n
fo

r
se

co
n
d
ar

y
S
Q

L
ta

b
le

s
ca

n
fo

r
ex

am
-

p
le

b
e

C
R
E
A
T
E

T
A
B
L
E

b
r
e
d
e
p
a
p
e
r
(

t
i
t
l
e
,

a
u
t
h
o
r
1
,

a
u
t
h
o
r
2
,

t
i
t
l
e
)

A
n
d

si
m

p
lifi

ed
d
at

a
fo

r
in

se
rt

s:

(
"
T
h
e

W
e
b
"
,
"
T
i
m
"
,

"
W
e
n
d
y
"
,
"
T
h
e

W
e
b
"
)

W
it
h

th
e

S
Q

L
d
at

ab
as

e
co

m
p
le

x
q
u
er

ie
s

ca
n

b
e

m
ad

e
o
n

al
l

d
at

a
en

co
d
ed

in
th

e
te

m
p
la

te
s

o
f

th
e

B
re

d
e

W
ik

i.
S
o

fa
r

o
u
r

o
n
ly

W
eb

-s
er

vi
ce

is
fo

r
se

ar
ch

in
g

fo
r

n
ea

rb
y

br
ai

n
co

or
d
in

at
es

u
si
n
g

S
Q

L
it
e.

A
u
to

m
a
te

d
lin

k
in

g
a
n
d

q
u
er

yi
n
g

fo
r

co
o
rd

in
a
te

d
a
ta

F
u
rt

h
er

is
su

es

F
o
rm

a
ti
n
g
:

B
re

d
e

W
ik

i
te

m
p
la

te
co

or
d
in

at
e

d
at

a
ca

n
b
e

fo
rm

at
ed

fr
o
m

a
M

at
la

b
im

ag
e

an
al

ys
is

pr
o
-

g
ra

m
.

A
n
o
th

er
o
f
o
u
r
st

ru
ct

u
re

d
w

ik
is

ca
n

o
u
tp

u
t

it
s

p
er

so
n
al

it
y

g
en

et
ic

s
d
at

a
in

te
m

p
la

te
fo

rm
at

re
ad

y
fo

r
in

cl
u
si
o
n

in
th

e
B

re
d
e

W
ik

i.
M

ed
ia

W
ik

i
ex

te
n
si
o
n
s

m
ig

h
t

b
e

o
f

in
te

re
st

fo
r

in
-w

ik
i

fo
rm

in
p
u
t.

D
o
w

n
lo

a
d
:

M
ed

ia
W

ik
i
d
u
m

p
s

o
f

th
e

B
re

d
e

W
ik

i
as

w
el

l
as

S
Q

L
an

d
S
Q

L
it
e

fi
le

s
ar

e
av

ai
la

b
le

fr
o
m

th
e

B
re

d
e

W
ik

i
h
o
m

ep
ag

e.
F
ro

m
th

e
o
n
to

lo
g
ie

s
a

S
K

O
S

3
fi
le

is
al

so
pr

o
d
u
ce

d
.

W
h
y

n
o
t
W

ik
ip

ed
ia

a
n
d

D
B

p
ed

ia
?
:

M
u
ch

o
f
th

e
in

fo
rm

at
io

n
in

th
e

B
re

d
e

W
ik

i
w

ill
n
o
t

b
e

n
o
ta

b
le

en
o
u
g
h
,
so

W
ik

ip
ed

ia
ad

m
in

is
tr

at
or

s
w
o
u
ld

d
el

et
e

th
e

p
ag

e.
F
u
rt

h
er

m
or

e,
b
u
ild

in
g

o
u
r

ow
n

w
ik

i
al

-
lo

w
u
s

to
ke

ep
th

e
te

m
p
la

te
s

si
m

p
le

so
ex

tr
ac

ti
o
n

ca
n

b
e

co
m

p
le

te
,
i.
e.

,
al

l
d
at

a
fr
o
m

th
e

te
m

p
la

te
s

ca
n

b
e

ex
tr

ac
te

d
.

O
th

er
d
a
ta

b
a
se

:
T

h
e

B
re

d
e

W
ik

i
lin

ks
to

,
e.

g
.,

B
re

d
e

D
at

ab
as

e,
P
u
b
M

ed
,
N

eu
ro

L
ex

w
ik

i.
S
o

fa
r

it
is

n
o
t

p
o
ss

ib
le

to
au

to
m

at
ic

al
ly

tr
an

sl
at

e
d
at

a
fr
o
m

,
e.

g
.,

th
e

B
re

d
e

D
at

ab
as

e
to

th
e

B
re

d
e

W
ik

i.

A
ck

n
o
w

le
d
g
m

en
t

T
h
an

ks
to

th
e

L
u
n
d
b
ec

k
F
o
u
n
d
at

io
n

fo
r

fu
n
d
in

g
an

d
L
ar

s
K

ai
H

an
se

n
an

d
D

an
ie

la
B

al
sl
ev

fo
r

d
is
-

cu
ss

io
n
s.

R
ef

er
en

ce
s

[1
]

L
in

C
H

,
et

a
l.

B
ra

in
m

a
p
s

o
f

Io
w
a

g
a
m

b
li
n
g

ta
sk

.
B
M

C
N

eu
ro

sc
ie

n
ce

,
2
0
0
8
;

9
:7

2
.

[2
]

D
er

rf
u
ss

J
a
n
d

M
ar

R
A

.
L
o
st

in
lo

ca
li
za

ti
o
n
:

T
h
e

n
ee

d
fo

r
a

u
n
iv

er
sa

l
co

or
d
in

a
te

d
a
ta

b
a
se

.
N

eu
ro

Im
a
g
e,

d
o
i:
1
0
.1

0
1
6
/
j.
n
eu

ro
im

a
g
e.

2
0
0
9
.0

1
.0

5
3
,
2
0
0
9
.

[3
]

M
il
es

A
a
n
d

B
ec

h
h
o
fe

r
S
.

S
K
O

S
S
im

p
le

K
n
ow

le
d
g
e

O
rg

a
n
iz

a
ti
o
n

S
ys

te
m

R
ef

-
er

en
ce

.
W

3
c

ca
n
d
id

a
te

re
co

m
m

en
d
a
ti
o
n
,
W

3
C
,
M

IT
,
2
0
0
9
.

135



Metasocial Wiki - Towards an interlinked

knowledge in a decentralized social space

Amparo E. Cano1, Matthew Rowe2, Fabio Ciravegna3

Department of Computer Science,
University of Sheffield,

Sheffield, United Kingdom
A.Cano1,m.rowe2, F.Ciravegna3@dcs.shef.ac.uk

Abstract. This paper introduces a new approach to semantic wikis. In
this approach users coming from different social networks can be merged
into a common space to enable collaboration. This approach makes use of
the user’s identity representation and keeping track of the user’s interests
according to the type of annotations encountered in the content they add.
Keywords: semantic wiki, digital identity, collective intelligence,
social networks.

1 Introduction

According to Metcalfe’s law[1], the larger the network the more valuable it be-
comes. Although individual thinkers invent and discover, it is groups, which
typically refine and extend innovations. Moreover, highly developed ideas rarely
emerge from single and isolated thinkers, they usually come as a result of a pro-
cess of interaction [2]. Even though semantic wikis have proven to be a successful
tool for collaborative working, there is still a long way to go to fully exploit users
collective intelligence. In this paper we describe a new approach to semantic wiki
systems. In this approach the skills from users coming from different social net-
works are merged into a common collaborative space called MetaSocial. The
MetaSocial project (a resarch proposal) introduces this approach and some of
the challenges it presents.

1.1 Social Networks and Semantic Wiki Systems

Work by [2] and [3] report that users prefer to establish friend relationships
with other similar users in a social space, regarding for instance socio-cultural
traits. This has lead to the aggregation of people from different backgrounds
into common spaces where they share similar interests and tastes. Social net-
works (SN) differ in the services they provide, targeting different demographics
with different purposes. All SN are valuable in terms of aggregating people with
distinguishable features. For instance LinkedIn1 aims for professional exchanges

1 http://www.linkedin.com

136



between individuals, while Orkut targets casual and leisure exchanges between
family and friends. In that sense, SN help to define an individual in terms of a
context that includes the type of people they target. Although research in SN
have demonstrated the great potential that SN present for generating knowl-
edge, less attention has been paid on how to harness users’ knowledge in gener-
ating collaborative content. Some of the current SN offer capabilities for creating
communities within the SN, however they dont provide tools for collaboration.
Moreover, until the appearance of Open Social2, the communication between
independent SN was not possible.

The collaboration has been set aside from SN. Although collaborative sys-
tems, such as a wiki, provide tools for user participation into common tasks, e.g.,
discussion pages, there is still a lack of ties that prevent users from propagating
information and from promoting their participation in a given task, by bringing
this to the attention of the user’s acquaintances. There is also still a gap between
SN and collaborative systems. One possible solution to this situation would be
to enable the capability of managing relationships within semantic wiki engines;
however that would not be enough, as it would leave aside the potential benefit
that the diversity of SN can bring into a common collaborative space.

1.2 Semantic Wiki and the linked Web

The semantic web is not about putting data together but about making links
between the data [4]. So far, semantic wiki engines have acted as isolated content
stores. Although efforts such as [5] have established the existence of links between
same instances of data from different semantic wikis, there is still a broken link
between the author of the data and the identity of the author. The integration
of digital identities into semantic wiki engines can be perceived as an attempt
to break away from one of the wiki principles regarding minimal access control,
which refers to the capability of contributing in an anonymous way or by using
a registered username, which can hold minimal authoring information.

Online identity can be defined as the representation of one’s persona in a
digital context[6]. It is worth noting that in the case of online identity the user has
the ability to define a personal facade that represents him in a particular context.
People in social environments tend to present just a facet of their identity for
others to perceive. The integration of digital identities with wiki engines would
allow the users to select their preferred persona to represent his authorship on
a given wiki, while the wiki engine could still allow the anonymous authoring.

The integration of digital identities into wiki engines open a promising field
in which the contextualization of a persona can be developed according to the
activities carried out by this persona on the Web. Services integrating digi-
tal identities would not only pull information from the user’s identity service
provider, but also push information about the task carried out by the user that
would help to better define the user’s persona’s interests and knowledge. The
aggregation of information containing linked data coming from different data

2 OpenSocial, http://www.opensocial.org

137



silos could help in building up a decentralized digital identity [7]. The openID
version 2.0 OpenID3 protocol for digital identity providers already defines a at-
tribute exchange protocol however it doesn’t provide a standard way of defining
and developing users’ personas’ contexts.

Until now, just a few semantic wiki engines have integrated the openID stan-
dard into their engines however they use it just as an authentication service. On
the other hand, none of them have introduced the use of the social intelligence
included in the users’ FOAF4 files.

Incorporating that information would enable the merging of users’ SN infor-
mation (including profile, social graph and interests for instance). This informa-
tion can help to correlate users coming from different SN. Consider a user who
is part of an alternative rock community within meta-social and is interested in
releasing his first album. He creates a new project with that subject. People with
similar interests can be advised to join the project. The user should be able to
try to establish a relationship with other users, not necessarily a friendship but
a colleague relationship, advertising his project. In this way he could establish
relationships with people from Myspace interested in music, which could advise
him on the design of the album’s cover, or with people from LinkedIn who could
help him to better position his album on the market.

Integrating the user’s identity and social information into semantic wiki en-
gines would enable linkage between user’s identity with the type of contents he
adds (presumably the type of topics he is interested in) and the relationships he
establishes. Keeping track of this information will enable better tracking of users’
interests and would facilitate the improvement of suggestion engines. Moreover
making this information available to the user’s identity service provider, would
help to decentralize the information given by the user, enabling it to be reused
in any other system linked to the user’s identity.

2 Proposed Approach

The proposed functionalities for Metasocial are contained within two separate
parts. Each part depends on semantic technologies to enhance existing services.
A semantic wiki plays a crucial role in bringing the below functionalities together
as we now explain.

2.1 Social Functionalities

Metasocial will allow users to collaborate from multiple social networks, therefore
managing user accounts will be addressed to map individual accounts in different
social spaces. As mentioned, OpenID will be used as a single user identity URI
for each user of Metasocial. Social graphs using both the FOAF and SIOC5

specifications will be imported into Metasocial from multiple distributed social
3 OpenID, http://openid.net
4 FOAF, http://www.foaf.org
5 SIOC, http://www.sioc.org

138



web platforms and linked together. The intuition behind this functionality is
to enhance the information attributed to each user thereby offering intelligent
suggestions based on their prior knowledge. Such social graph interlinking also
contributes to current initiatives to address identity fragmentation and data
portability 6.

Status information of each social network member will be described using
the Online Presence Ontology 7, and with current initiatives such as Smesher 8

it is possible to convert such updates to semantic representations usable by the
system. For example, if a person’s status describes how they are busy working on
a given project task, then Metasocial would not suggest additional work. Possible
collaborations with work colleagues are suggested based on the imported social
graphs, each social network member also has a list of interests extracted from the
hosting service. Suggestions are then made based on such interests for specific
projects. The converse is also true in that users are suggested projects and work
based on their interests described in multiple social graphs. Combining such
identity fragments we build a more complete profile of the user allowing projects
spanning both the Semantic Web and Social Web to be suggested. We use this
example as a very simple indicator of a trivial suggestion task 9.

A semantic wiki provides a useful means to control semantic graphs at-
tributed to individual users, and make inferences based on the type of annotation
the users have used when adding content. Metasocial will maintain a knowledge
base capable of offering a useful collation of knowledge statements expressed
within the wiki. One of the attractions of using a semantic wiki is the ability to
effectively infer suitable projects suggestions and colleagues based on available
semantic information.

2.2 Knowledge Functionalities

Within Metasocial collaborative environment projects will be described using the
DOAP ontology10 including extensions to this specification to capture knowledge
describing more generic projects (at present DOAP is tailored more towards
software based development projects). Looking for a project will be controlled
using a semantic search mechanism by aligning the semantic concepts the user
has expressed an interest in with similar projects. This allows more general and
specialised projects to be returned if the user’s original criteria are not explicitly
matched.

Project management will require tools such as time planners, task managers
and role assigners all usable on the semantic wiki. Social information assigned
to users within the collaborative environment allows suitable roles to be sug-
gested based on the semantics of the user details, i.e., sioc:Role. Managing
6 Date Portability Group. http://www.dataportability.org
7 OPO, www.milanstankovic.org/opo/ontology.html
8 Smesher, http://smesher.com
9 Twine platform already leverages users interests, and track of user’s searches for

suggesting content. See http://www.twine.com
10 Doap, http://usefulinc.com/ns/doap

139



project milestones would be enhanced through interactions with semantically
linked calendars; allowing project members to receive updates and reminders
about upcoming milestones. Reminders would be controlled automatically by
the semantic preferences stipulated by the project member.

Project work will be labeled using free text tagging, which is in turn aligned
with concepts from a knowledge base, thus controlling term ambiguity and cor-
rect co-referencing. External knowledge sources can also be used 11 for greater
availability of concept definitions. The internal knowledge base would allow dis-
course to be developed specific to that project so that knowledge generated as
a result of this process could then be shared with additional projects. Natural
language style queries could be asked, either returning any derived answers or
relevant knowledge from the knowledge base, or allowing project members to
answer the questions themselves. Completed projects tasks would become less
visible to the user on the semantic wiki based on the task being semantically
defined as complete. This would offer the functionality to display all completed
projects of a specific type, enhancing the knowledge management functionality
on the wiki and encouraging reusability of the existing projects.

3 Conclusions

Metasocial introduces various challenges, most of them concerning the represen-
tation of the user context in an standard format, the extraction of information
(interests in particular) from user added data and the inference of information
from the user’s social graph. Offering a platform where people from different
social networks can not only communicate, but also collaborate easily in the
development of semantic-aware projects according to their interests will help in
allocating the right user with the right skills in the right projects.

References

1. Reed, D. P.: That sneaky exponential beyond metcalfes law to the power of com-
munity building. Context Magazine (1999)

2. Rohilla Shalizi, C.: Social Media as Windows on the Social Life of the Mind CoRR
abs/0710.4911: (2007)

3. Newman, M. E. J.: Mixing patterns in networks. Phys. Rev. E. Vol. 67, (2003)
4. Tim Berners-Lee:Linked Data. http://www.w3.org/DesignIssues/LinkedData.html

(2008)
5. Passant, A., Laublet P.: Towards an Interlinked Semantic Wiki Farm. CEUR Work-

shop Proceedings. SemWiki 2008.
6. Russell, Terrell and Stutzman, Frederic :Proceedings of the American Society for

Information Science and Technology. American Society for Information Science and
Technology . Self-representation of online identity in collected hyperlinks. Vol.44,
2007.

7. Rowe, Matthew.: Proceedings of Linked Data on the Web Workshop 2009, Madrid,
Spain. World Wide Web Conference. Interlinking Distributed Social Graphs. 2009.

11 Such as DBPedia, http://dpedia.org and Freebase, http://www.freebase.com

140



Analysis of Tag-Based Recommendation
Performance for a Semantic Wiki

Frederico Durao and Peter Dolog

IWIS — Intelligent Web and Information Systems,
Aalborg University, Computer Science Department

Selma Lagerlöfs Vej 300, DK-9220 Aalborg-East, Denmark
{fred,dolog}@cs.aau.dk

Abstract. Recommendations play a very important role for revealing
related topics addressed in the wikis beyond the currently viewed page.
In this paper, we extend KiWi, a semantic wiki with three different rec-
ommendation approaches. The first approach is implemented as a tradi-
tional tag-based retrieval, the second takes into account external factors
such as tag popularity, tag representativeness and the affinity between
user and tag and the third approach recommends pages in grouped by
tag. The experiment evaluates the wiki performance in different scenar-
ios regarding the amount of pages, tags and users. The results provide
insights for the efficient widget allocation and performance management.

Key words: wiki, recommendation, tags, performance, adaptation

1 Introduction

Wiki is a collaborative knowledge space that can be edited by anybody who is
granted permission [11]. Due to its simple usage, the wiki adoption is less about
learning new technology and more about changing habits. A part from the com-
plexity of existing Web solutions, wiki has instituted a new and democratic way
of usage with simple text syntax for creating pages and cross links between in-
ternal pages on the fly. Although wikis provide an easy way for editing content
pages, user interaction is still on ”one way” i.e. users have to look at wiki pages
to find interesting content to them. In the other direction, wikis could notify
users about what they hide behind the currently viewed page. In this sense,
recommendations can be utilized to lead users to unknown pages and reveal re-
lated topics addressed in the KiWi (KiWi - Knowledge in a Wiki). Furthermore,
the recommendations can be tailored to user tastes and adaptively configured
depending on system needs such as performance. The KiWi system addressed
in this paper is a social semantic wiki in which individuals work collaboratively
by editing content items and sharing knowledge. In serves as a platform for im-
plementing and integrating many different kinds of social software services by
allowing users to connect content in new ways that go beyond the level of the
user interface, e.g. through semantic annotation [14].

141



2 Frederico Durao and Peter Dolog

In this work, we extend the KiWi system with three tag-based recommender
approaches, which suggest links to wiki pages based on the similarity of their
tags. The first approach recommends pages which share tags, the second ap-
proach takes into account external factors such as tag popularity, tag represen-
tativeness and the affinity between user and tag and finally the third approach
groups recommendations by tags. The performance of the approaches is com-
pared in different scenarios, which varies in terms of amount of pages, users
and tags. The outcome from this analysis provides insights for widget allocation
(where the recommendations are placed) and subsequent performance optimiza-
tion. Our development is placed at KiWi [14], a semantic wiki for knowledge
management built on previous experience in areas such as semantic web [5],
semantic wiki [13] and personalization [6].

The paper is organized as follows: In Section 2 we discuss related work. In
Section 3, a motivation scenario is presented. Section 4 introduces the recommen-
dation approaches. Section 5 presents the experimental evaluation and results.
A discussion about the results from the previous section is presented in Section
6 and finally in Section 7, we conclude the study and also point to future works.

2 Related Work

A number of semantic wiki applications have been explored over the last years
and most of them utilize annotations to contextualize the content presentation
and improve the navigation throughout all existing pages. SemperWiki is a se-
mantic personal wiki developed for the Gnome desktop in which users can edit
and annotate pages semantically [12]. In order to navigate through the wiki
pages, users have to query pages containing certain annotation statements. The
retrieval brings a list of links to the existing pages in the system. In addition,
SemperWiki provides a history navigation section that allows users to go back
and forth in their navigation history. The navigation support provided by Sem-
perWiki is enhanced by a search and retrieval mechanism. We observe that the
discovery of new pages in SemperWiki depends more on user’s curiosity whereas
the recommendations in KiWi are always displayed without imposing any addi-
tional work on the users. The history navigation however can be considered as
a positive feature in SemperWiki because it is very practical for rapid naviga-
tion between visited pages. This feature can be adopted in KiWi to generate a
new sort of recommendation triggered by history log of visited pages. Already
IkeWiki [13] as a predecessor of KiWi provided a ”references box” containing
related pages triggered by annotation in the wiki pages. Similarly, Semantic Me-
diaWiki [10] suggests related pages which share similar instances. Recommen-
dations in KiWi are less formal than Semantic MediaWiki and IkeWiki since
they are triggered by tags which are not bounded to any ontology. On the other
hand, the flexibility of tags allows users to spill their personal feelings to a wiki
page so that this generates more personalized recommendations.

Equally to KiWi, OntoWiki interface is surrounded by widgets that provide
meta-information from semantic annotations and navigation support. Although

142



Analysis of Tag-Based Recommendation Performance for a Semantic Wiki 3

OntoWiki does not use tags for processing recommendations, it contains a partic-
ular widget for related pages categorized by the Most Popular and Most Active
[1]. HyperDEWiKi is a semantic wiki intended to support domain ontology evo-
lution [15]. It allows the user to define specific pages for instances of formally
described types. In this sense, users can create a dynamic page that is better
suited to support his tasks. We observe that the end view of KiWi and Hy-
perDEWiKi can be fully customizable and render various set of information in
different places and layouts. Besides the common wiki style editing with anno-
tations, both systems provide personalized features tailored to user’s tastes.

In general, the semantic wiki applications analyzed utilize annotations in
the pages for navigation, rendering and search purposes. However, we observe
that navigation is still centered on dynamically generated lists of related content
with no or few personalized information. Personalization will drive the system
features in accordance with individual tastes and preferences [7]. In addition, it
is observed that adaptive techniques can be more explored in order to support
wikis to present their content more intelligently [4]. Following these premises,
we introduce three personalized tag-based recommendations and evaluate their
allocation in KiWi interface aiming at performance optimization.

3 Motivating Scenario

In general, tags are assigned to Web resources in order to conceptualize, cate-
gorize and organize them in a way that users can be reminded later about the
tagged content [9]. Invariably, tags represent some sort of affinity between user
and the page that is being assigned. Users label pages freely and subjectively,
based on their sense of values. This information provides useful hints about what
a user thinks about the pages [8]. In this sense, we utilize tags to compute sim-
ilarity between wiki pages and generate personalized recommendations without
imposing any extra work on the users. We credit personalized recommendation
as an important feature for supporting the main activity in wiki systems. For
instance, when users are reading or editing a wiki page, recommendations of
similar pages can be processed simultaneously and exhibited so that users can
navigate through wiki pages following the topic that is being addressed. Accord-
ing to [3], recommendations have a significant importance because they expose
alternative ways to the users fulfill their goals. In this sense, we provide recom-
mendations in KiWi whereby users can follow links related to their interests,
which assist them to achieve their tasks or bring further information for what
they are looking for.

Figure 1 shows the current development in KiWi system in which tags as-
signed to the currently viewed page are located on the bottom widget on the left
side (1). The recommendation widgets are highlighted on the right side: the wid-
get number (2) contains the standard recommendation, the widget number (3)
contains the multifactor recommendation and the widget number (4) contains
the recommendations grouped by tags. The recommendations expose a variety of
options for a user to visit just on a single click. If this activity is designed well,

143



4 Frederico Durao and Peter Dolog

Fig. 1. Recommendations in KiWi

then the choice is easy, and the user keeps interacting with the system by vis-
iting the related pages or adding new content. Although each recommendation
approach has its own particularities (See in Section 4), very hardly the three so-
lutions will run in parallel in real life scenario because they occupy much space
in the user’s interface and occasionally issue the same information (at the same
time). In addition of being useless from the usability perspective, to have all
three widgets running together compromise the system performance at all. As
known, wiki is a collaborative space utilized for multiple interactions and any
performance concern is always advisable. Based on these premises, the perfor-
mance analysis is undertaken in order to find out widget combinations so that
the overall performance is optimized and users take advantage of better widget
arrangements.

3.1 Tags as semantic annotations for personalization

In this work we are mapping semantics of user activities based on tagging ac-
tivity. Using uncontrolled tags, users are able to annotate pages without any
restriction constrained by ontology vocabularies. In this sense, users are free to
express their feelings about the page as they like on any purpose. The outcome
of this tagging activity is a relation between user and a page through a tag
property, as seen in the Figure 2.

Fig. 2. Relation between user and a page through a tag property

144



Analysis of Tag-Based Recommendation Performance for a Semantic Wiki 5

From the tag-based relationships, we are deriving personalized recommen-
dations by computing similarities between tags, however, in later stages, other
relevant information can be derived and utilized to annotate the wiki pages
using RDF properties such as ont:mostFrequentTag, ont:userMostInterested and
ont:mostSimilarPage. These properties would create a semantic network between
content items in KiWi, and also could be utilized for other personalization goals
such as group formation, semantic search and creation of link structures.

4 The Recommendation Approaches

This section depicts the standard, multifactor and recommendation grouped by
tags addressed in this work.

Standard Tag-based Recommendation. In this approach, all pages that share tags
with the currently viewed page are recommended. In this standard approach no
further similarity processing is carried out therefore the list of recommendation
is not ranked. The advantage of this approach is the performance since the
recommendations relies simply on a data retrieval task. On the other hand, a
single tag shared by pages may not be sufficient means to determine a similarity
between pages. This approach however cannot be discarded without analyzing
its applicability in the different possible KiWi scenarios. Figure 3 shows standard

Fig. 3. Widget with Standard Recommendations

recommendations in KiWi with their respective authors.

Multifactor Recommendation. The multifactor recommendation approach com-
putes similarity between pages considering multiple factors. The recommenda-
tions rely on calculus of cosine similarity, tag popularity, tag representativeness
and affinity user-tag. We utilize a cosine similarity measure between tag vectors
to calculate basic similarity of the pages. We measure tag popularity as a count
of occurrences of a certain tag in total number of wiki pages. The term frequency
measure is used to compute tag representativeness for a certain wiki page. The
tag affinity between a user and a tag is calculated as a count of how many times
the user utilized the tag at different web pages. We propose a formulae which

145



6 Frederico Durao and Peter Dolog

consider all these factors in a normalized way and gives a ranking of pages for
particular user.

We define a page score as:

Ps =
n∑

i=1

weight(Tagi)+
n∑

i=1

representativness(Tagi), where n is the total num-

ber of existing tags in the repository.
We define the tag user affinity as:

Affinity(u,t) = card{p ∈ Pages | (u, t, p) ∈ P, P ⊆ U × T × P}/card{t ∈ T |
(t, u) ∈ Pu, Pu ⊆ U × T}, where t is a particular tag, u particular user, U is a
set of users, P set of pages and T set of tags.

Finally, similarity is computed as:
Similarity(Pi,Pii) = [PsPi

+ PsPii
∗ cosine similarity(Pi, Pii)] ∗Affinity(u,t).

Informally, each one of the factors in the above formulas is calculated as
follows:

i. Cosine Similarity — Our tag similarity is a variant on the classical cosine
similarity from the text mining and information retrieval [2] whereby two
items are thought of as two vectors in the m dimensional user-space. The
similarity between them is measured by computing the cosine of the angle
between these two vectors.

ii. Tag Popularity — Also called tag weight, is calculated as a count of oc-
currences of one tag per total of resources available. We rely on the fact that
the most popular tags are like anchors to the most confident resources. As
a consequence, it decreases the chance of dissatisfaction by the receivers of
the recommendations.

iii. Tag Representativeness — It measures the relation between the tag and
the resource it belongs to. It is believed that the most frequently occurring
tags in the document can better represent the document. The tag represen-
tativeness is measured by the term frequency, a broad metric also used by
the Information Retrieval community [2].

iv. Tag Weight — it is calculated as a number of occurrences of a tag divided
by the overall number of tags in a repository.

v. Affinity between user and tag - It measures how often a tag is used by
a user. It is believed that the most frequent tags of a particular user can
reveal his/her interests. This information is regarded as valuable informa-
tion for personalization means. During the comparison of two resources, the
similarity is boosted if one of the resources contains top tags of the author
from the other resources around.

Figure 4 shows the same recommendations as Figure 3 however sorted differ-
ently due to the quality factors calculus. In terms of performance, the multifactor
approach is worse than the standard one however the ranked list provides cred-
ibility to the recommendations. Pages ranked higher are personalized to user’s
tastes and closer to the content discussed in the currently viewed page. Although
the recommendations are more effective than the standard approach, its applica-
bility also depends on further performance analysis in different KiWi scenarios.

146



Analysis of Tag-Based Recommendation Performance for a Semantic Wiki 7

Fig. 4. Multifactor Recommendations

Recommendations Grouped by Tags. In this approach, the recommendations are
grouped by the tags which are assigned to the currently viewed page. Similarly to
the standard approach, no further similarity processing is undertaken and the list
of recommendation is not ranked. On the other hand, the user can go directly to
the recommended wiki page just following the tag he/she is interested. The tag-
based distribution explicitly provides a justification why the recommendations
were generated and assist users to find related specific wiki pages.

Fig. 5. Widgets with recommendations grouped by tags

The disadvantage however is the possibility of existing duplicated recommen-
dations since two different pages can share two distinct tags as well. Figure 5
shows two tags xml and Semantic Web with their respective linking recommen-
dations. The duplication problem is outlined since both tags recommend a link
to the RDF wiki page. The performance analysis therefore will answer whether
this duplication problem affects the performance to the point of discarding the
applicability of this approach.

147



8 Frederico Durao and Peter Dolog

Scenarios Pages Tags Users

1º 20 225 5
2º 50 500 10
3º 100 700 15

Table 1. KiWi Scenarios assembled for the experiment

5 Experimental Evaluation

The experimental evaluation assessed the performance of the recommender ap-
proaches by simulating a mix of scenarios regarding the amount of pages, users
and tags. In addition, we discussed which widgets of recommendations should be
displayed or suppressed in accordance with the performance findings. Although
having in mind that standard approach is theoretically the most advisable ap-
proach in terms of performance, we evaluated when and in which conditions the
other approaches become suitable and necessarily required. The goal therefore is
to propose insights for widget adaptation aligned with running scenarios without
compromising the system performance.

The proposed scenarios were created aiming at simulating realistic usage
of KiWi. Nevertheless there is no ”pattern” or ”standard” about wiki activity.
This is more about politics from where the system is deployed, maturity of
whom is using it and time of activity. Although understanding that building
wiki scenarios is a little subjective, we proposed three growing scenarios that are
likely envisioned in KiWi life cycle as described in Table 1.

The variables addressed by each scenario are:

– Amount of Pages – each page has a set of tags that are compared for pro-
cessing the recommendations. Therefore the more pages exist, the more time
will be spent to calculate the similarity between the pages.

– Amount of Tags – the similarity of the pages is given by their tags. The
whole set of tags of each page must be compared to verify which ones are
similar. In particular, the amount of tags of an user impacts directly in the
time for the computation of the affinity between user and tag.

– Amount of Users – the more users KiWi contains, the more are the chances
of tagging activity. As a consequence, more time will be necessary to process
the personalized recommendations.

These variables were chosen justified because they are row material for cal-
culating the recommendations. This process is time consuming and invariably
affects the system performance however it does not mean that other factors
such as page size should not be considered. Finally, the scope of this work only
comprises these three variables.

5.1 Methodology

Initially, the KiWi system was populated with pages and tags using a random
generator to produce sufficient amount of content. The users were created man-
ually since they were only 15 at most. The content of the pages and tags were

148



Analysis of Tag-Based Recommendation Performance for a Semantic Wiki 9

extracted from Web sites on the Internet and local documents. Similarly, we
utilized a random generator to assign tags to wiki pages tagged by a particular
user. In this study, it is not important to speculate about the random function
we have utilized as we look at overall performance of the system and not the
method for distributing the content. We needed just to generate adequate num-
ber of satisfactorily different pages and sufficiently different assignment of tags
to them. To each scenario created, we collected the response time necessary to
load the recommendations. We repeated this procedure for 10 times in order
to have a more real and democratic results. In KiWi, the recommendations are
processed every time a page is called, then we tested the performance after the
user login, accessing a page from page link and from the own recommendations.
The tests ran in machine equipped with processor Intel (R) Core (TM) 2 Duo
CPU T7500 @2.20Ghz.

Expected Results Our assumption is that at some point due to the high
amount of recommendations, the standard approach become ineffective although
the performance continues better than the other approaches. The quality achieved
with the multifactor recommendation will be needed even though the perfor-
mance is decreased. Moreover, we believe the group recommendation is always
useful due to its facility of identifying similar pages by tags however its per-
formance may discourage its adoption due to the high number of duplicated
pages.

5.2 Results from the First Scenario

The first scenario was setup with 20 pages, 5 users and 225 tags. Figure 6 shows
10 time stamps collected from KiWi system to calculate the recommendations
for the three approaches. The average column from Figure 6 shows that standard
recommendations were computed in 28 ms; multifactor recommendation in 77
ms and recommendations grouped by tags in 29.1 ms.

Fig. 6. Results from the First Scenario

The standard and grouped approaches had better performance than the mul-
tifactor approach. While standard and grouped approaches achieved rates quite
close to one another (about 28ms), the multifactor approach spent 175% more
time than both approaches to calculate the recommendations. As already known,
the multifactor recommendation generates a ranked list of recommendations
more personalized and reliable. The point to be assessed therefore is whether

149



10 Frederico Durao and Peter Dolog

the ranking compensates this time necessary for ranking the recommendations.
In this particular case where only 20 wiki pages are considered, the multifactor
approach may be ignored depending on the visibility of the recommended pages
to the users. If the widgets of standard and grouped recommendations are able
to expose the whole recommendations with easy access, they will be continu-
ously exposed and hardly forgotten. In this sense no ranked recommendation is
necessary.

5.3 Results from the Second Scenario

The second scenario was setup with 50 pages, 10 users and 500 tags. Figure shows
10 time stamps collected from Kiwi system to calculate the recommendations for
the three approaches. The average column from Figure 7 shows that standard
recommendations were computed in 97 ms; multifactor recommendations in 121
ms and grouped recommendations in 45.3 ms.

Fig. 7. Results from the Second Scenario

The grouped approach achieved the best performance followed by standard
and finally by the multifactor approach. The multifactor approach lasted approx-
imately 25% more than the standard approach to generate the recommendations.
Comparing to the first scenario, it is observed a considerable approximation be-
tween standard and multifactor approach (from 125% to 25%). The issue to be
discussed therefore is whether the standard recommendation approach is still de-
sired due to the low performance variation between the standard and multifactor
approach. In this scenario, 50 wiki pages are addressed and the recommendation
widgets tend to enlarge with the increase of recommendations. In this case, there-
fore, a ranking approach becomes useful since the most similar pages are placed
at the top of the list of recommendations. In addition, very hardly the recommen-
dation widget will provide an ample visibility of whole set of recommendations.
In this sense, the 24 additional milliseconds to generate the multifactor recom-
mendations compensate the probability of having ineffective recommendations.
The high performance of the group based approach can be justified by the low
amount of duplicate recommendation. Furthermore, it is important to observe
that although the amount of pages of this scenario is the double comparing to
the first one, the current performance was decreased of only 55.6% (or 16.2 ms)
from the first measure. This approach therefore becomes a strong candidate to
be utilized in this particular scenario even in combination with the multifactor
recommendations.

150



Analysis of Tag-Based Recommendation Performance for a Semantic Wiki 11

5.4 Results from the Third Scenario

The third scenario was setup with 100 pages, 15 users and 700 tags. Figure 8
shows 10 times stamps collected from KiWi system to calculate the recommen-
dations for the three approaches. The average column from Figure 8 shows that
the standard recommendations were computed in 98.1 ms; multifactor recom-
mendation in 145 ms and grouped recommendations in 53.1 ms.

Fig. 8. Results from the Third Scenario

Similarly to the second scenario, the grouped approach achieved the best
performance followed by standard and finally by multifactor recommendation.
In this turn the standard approach was approximately 50% faster than the mul-
tifactor approach. This is a considerable difference that stands face-to-face two
goals: performance and effectiveness. On one side, KiWi process lots of recom-
mendations very quickly however unsorted, on the other hand the same recom-
mendations last at least 50% more but they are ranked. A qualitative experiment
in which the users show their satisfaction in terms of performance and effective-
ness would indicate in which direction to go. A possible solution however is to
combine the multifactor approach with the fastest group recommendation, which
attenuates the overall loss of performance for this scenario. The group approach
performance decreased only 17% from the second scenario (from 45.3 ms to 53.1
ms) and still provide a special distribution of the recommendations.

5.5 Overall Results

The performance of the approaches in each scenario analyzed are presented in
the Figure 9.

Fig. 9. Evolution Graph

151



12 Frederico Durao and Peter Dolog

In the first scenario, the multifactor approach was considerably more expen-
sive (in terms of performance) than the others. This significant cost for gen-
erating recommendations discourages its adoption. In the second scenario, the
standard approach reduces significantly its performance, which encourages the
use of the multifactor approach. From the first to the second scenario, the group
approach maintains a satisfactory level of performance. In the third scenario,
standard and grouped approaches keep their performance approximately equal
to the previous scenario, whereas multifactor approach presents a significant loss
of performance.

6 Discussion

The performance outcomes from the scenarios analyzed allow us to suggest intel-
ligent widget allocations without compromising the system performance. For the
first scenario, the standard and group approaches are the most advisable to run
together spending in total about 57.1 ms to calculate the recommendations. For
the second scenario, we suggest the multifactor and group approaches running
in parallel spending in total 166.3 ms and for the third scenario, due to the need
of quality, again the multifactor and group approaches are the most advisable
spending together about 198.1 ms to calculate the recommendations. Figure 10
shows the performance with the suggested combination to each scenario ana-
lyzed.

Fig. 10. Suggested Performance Graph

According to Figure 10, the performance for the first scenario is 57.1 ms,
which is significantly low since two approaches of recommendation are being
computed. In the second scenario, it is observed an expressive loss of performance
(from 57.1ms to 166.3 ms) mainly due to the utilization of the multifactor ap-
proach. In the third scenario however the loss of performance was 31.8 ms, which
is much less than the loss of performance from the first to the second scenario
(109.2 ms). In fact, the multifactor approach utilized in both second and third
scenarios reduced the performance, however, we assure that the best recommen-
dations will be placed in the top of the list of recommendations. In general,

152



Analysis of Tag-Based Recommendation Performance for a Semantic Wiki 13

the overall result obtained shows the tendency of the performance whenever the
amount of user, page and tag grows. Although the more scenarios are advis-
able for confirming this tendency, this preliminary outcome can be employed for
predicting the system performance in emergent scenarios.

Other advantage from the results obtained, besides the widget allocation, is
that they show a tendency of the performance whenever the amount of user,
page and tag grows. The achieved numbers can be utilized for predicting the
system performance in emergent scenarios. On the other hand, the amount of
the scenarios analyzed is still low to confirm this tendency. More experiments,
with a bigger setup and with multiple users using the system at the same time
would provide a more realistic feedback about the performance.

7 Conclusion and Future Works

This paper analyzes the performance of three tag-based recommender approaches
for a semantic wiki. Three different scenarios were assessed varying in terms
of number of pages, amount of tags and users. To each scenario assembled,
it was analyzed which recommendation approaches could be more appropriate
taking account the system performance and user needs. The results showed that
the combination between standard and group approach is feasible for scenarios
up to 20 pages, which are constantly accessed. For scenarios with 50 and 100
pages with more than 10 users, the multifactor and group approaches are more
advisable in spite of being more expensive in terms of performance. The grouped
recommendation approach is always adequate since it provides justification for
recommendation and visual support for navigating among the recommendations.

As future works, first, pre computation of some factors in multifactor recom-
mendation will be studied to further increase performance of recommendation
computing. Furthermore, semantic relatedness between tags must be considered
since current recommendations in KiWi only consider the tag syntax to iden-
tify similarities. The next step therefore is to combine the tag algorithms with
some reasoning on the annotations to provide more efficient recommendations.
Another direction is to annotate tags with their role (or purpose) in order to for-
malize the relationship between tags and pages. The semantic recommendation
will likely be more efficient by capturing precise needs of the users expressed by
the annotations.

8 Acknowledgment

The research leading to these results is part of the project ”KiWi - Knowledge
in a Wiki” and has received funding from the European Communitys Seventh
Framework Programme (FP7/2007-2013) under grant agreement No. 211932.

References

1. S. Auer, S. Dietzold, and T. Riechert. OntoWiki - A Tool for Social, Semantic
Collaboration. In I. F. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe,

153



14 Frederico Durao and Peter Dolog

P. Mika, M. Uschold, and L. Aroyo, editors, The Semantic Web - ISWC 2006, 5th
International Semantic, volume 4273 of Lecture Notes in Computer Science, pages
736–749. Springer, 2006.

2. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, May 1999.

3. K. Bischoff, C. S. Firan, W. Nejdl, and R. Paiu. Can all tags be used for search?
In J. G. S. et al., editor, Proc. of the 17th ACM Conference on Information and
Knowledge Management, CIKM 2008, pages 193–202, Napa Valley, California,
USA, Oct. 2008. ACM.

4. P. Dolog. Designing adaptive web applications. In V. Geffert, J. Karhumäki,
A. Bertoni, B. Preneel, P. Návrat, and M. Bieliková, editors, Proc. of Sofsem 2008:
The 34th Intl. Conference on Current Trends in Theory and Practice of Computer
Science, volume 4910 of LNCS, pages 23–33, Novy Smokovec, Slovakia, Jan. 2008.
Springer Verlag.

5. P. Dolog, B. Simon, T. Klobucar, and W. Nejdl. Personalizing access to learning
networks. ACM Transactions on Internet Technologies, 8(2), Feb. 2008.

6. P. Dolog, H. Stuckenschmidt, H. Wache, and J. Diedrich. Relaxing rdf queries based
on user and domain preferences. Journal of Intelligent Information Systems, 2009.
published online.

7. F. A. Durao, P. Dolog, and K. Jahn. State of the art: Personalization. Technical
report, 2008. KIWI project FP7, Project Number: ICT-2007.4.2-211932 Document
number: ICT211932/SFRG/D2.7/D/PU/b1.

8. H. Halpin, V. Robu, and H. Shepherd. The complex dynamics of collaborative
tagging. In C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider, and P. J. Shenoy,
editors, Proc. of the 16th Intl. Conference on World Wide Web, WWW 2007, pages
211–220, Banff, Alberta, Canada, May 2007.

9. R. Jschke, L. Marinho, A. Hotho, L. Schmidt-Thieme, and G. Stumme. Tag rec-
ommendations in folksonomies. In A. Hinneburg, editor, Workshop Proceedings
of Lernen - Wissensentdeckung - Adaptivitt (LWA 2007), pages 13–20. Martin-
Luther-Universitt Halle-Wittenberg, sep 2007.

10. K. Lassleben, D. Vrandecic, and M. Vlkel. Semantic mediawiki. In The Semantic
Web - ISWC 2006, pages 935–942, 2006.

11. A. Majchrzak, C. Wagner, and D. Yates. Corporate wiki users: results of a survey.
In WikiSym ’06: Proceedings of the 2006 international symposium on Wikis, pages
99–104, New York, NY, USA, 2006. ACM.

12. E. Oren. SemperWiki: a semantic personal Wiki. In S. Decker, J. Park, D. Quan,
and L. Sauermann, editors, Proceedings of the 1st Workshop on The Semantic
Desktop, 4th International Semantic Web Conference, Galway, Ireland, November
2005.

13. S. Schaffert. Ikewiki: A semantic wiki for collaborative knowledge management.
In WETICE ’06: Proceedings of the 15th IEEE International Workshops on En-
abling Technologies: Infrastructure for Collaborative Enterprises, pages 388–396,
Washington, DC, USA, 2006. IEEE Computer Society.

14. S. Schaffert, F. Bry, P. Dolog, J. Eder, S. Grünwald, J. Herwig, J. Holý, P.-A.
Nielsen, and P. Smrž. The kiwi vision: Collaborative knowledge management,
powered by the semantic web. Technical report, August 2008. FP7 ICT STREP
KiWi project Deliverable D8.5.

15. D. Schwabe and M. R. da Silva. Unifying semantic wikis and semantic web appli-
cations. In C. Bizer and A. Joshi, editors, International Semantic Web Conference,
volume 401 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

154



An Extensible Semantic Wiki Architecture

Jochen Reutelshoefer, Fabian Haupt, Florian Lemmerich, Joachim Baumeister

Institute for Computer Science, University of Würzburg, Germany
email: {reutelshoefer, fhaupt, lemmerich, baumeister}@informatik.uni-wuerzburg.de

Abstract. Wikis are prominent for successfully supporting the quick
and simple creation, sharing and management of content on the web.
Semantic wikis improve this by semantically enriched content. Currently,
notable advances in different fields of semantic technology like (para-
consistent) reasoning, expressive knowledge (e.g., rules), and ontology
learning can be observed. By making use of these technologies, semantic
wikis should not only allow for the agile change of its content but also
the fast and easy integration of emerging semantic technologies into the
system. Following this idea, the paper introduces an extensible semantic
wiki architecture.

1 Introduction

Semantic wikis have become an attractive solution for collaborative knowledge
formalization and sharing. One major challenge at that task is the fact that
knowledge can be represented on many different levels of formality and in a
wide variety of formalisms [1]. Further, the requirements for a semantic wiki
application strongly depend on the domain and the targeted community. In con-
sequence, a wide range of diverse semantic wiki approaches has evolved employ-
ing different techniques, e.g. different types of formalized content or reasoning
capabilities. While, for example, Semantic Media Wiki [2] focuses on efficient
reasoning on large data, IkeWiki [3] allows for easy ontology editing with rich
expressiveness. SweetWiki [4] provides an elaborated Wiki Object Model. The
OntoWiki system [5] supports the combination and visualization of multime-
dia data. AceWiki [6] follows a different knowledge acquisition strategy using
a controlled language. Further wikis work with mathematical, prolog-based or
classification knowledge [7–9]. All these systems were created having various dis-
tinct application scenarios in mind. Accordingly, they are utilizing a wide range
of strategies and technologies, e.g., efficient reasoners, specialized reasoners, con-
trolled languages, various markups, different content browsers and visualizations.
Each of these systems is fitting well to its particular intended purposes but if
one intends to support a specific (novel) semantic wiki application each of the
systems reveals advantages and disadvantages. Without a suitable extensible
semantic wiki one has to choose a suboptimal solution or implement an entire
new semantic wiki system from scratch. We claim that the optimal solution to
support a semantic wiki application needs to be adapted precisely to its require-
ments, considering the domain, the targeted user community and the envisioned

155



use-cases thoroughly. This analysis reveals the appropriate formalisms, reasoning
support, visualization and querying capabilities needed. But in order to serve a
wider range of these possible requirements and to be able to optimize each se-
mantic wiki application to its domain and community it is beneficial to have
an extensible semantic wiki architecture with a basic toolkit for knowledge for-
malization, knowledge visualization and reasoning. We envision that this kind
of extensible semantic wiki architecture enables the customization of a seman-
tic wiki system to a particular application at low (software) engineering costs
offering various reusable and extensible components. Providing optimal support
to any (non-technical) domain and community will raise the general acceptance
and spread of this technology. Beside selection and integration of existing tech-
niques into a semantic wiki also the agile integration of novel technologies can
improve the general semantic wiki functionality and customization to specific ap-
plications. We presume, that especially advanced reasoners and NLP-techniques
employed for semi-automated knowledge formalization can bring considerable
benefit when being combined with the existing wiki technology.

In this paper we describe the concept of an extensible semantic wiki archi-
tecture and motivate the emerging possibilities. With the system KnowWE we
present a prototype of an extensible semantic wiki architecture and show its
current extensions.

2 Challenges and Dimensions of extending Semantic
Wikis

We briefly outline a conceptual view on semantic wikis in general followed by the
discussion of the possibilities and challenges extending semantic wikis. Figure 1
shows the three components of what we call the “knowledge pipeline” in seman-
tic wikis. It shows the flow of the formalized knowledge from the contributing
user role to the consuming user role through the Knowledge Formalization Com-
ponent, the Reasoning Component, and the Knowledge Presentation Component.

Fig. 1. Sketch of the “knowledge pipeline” of a semantic wiki.

– Knowledge Formalization Component: The knowledge formalization
component allows the user to formalize parts of the (textual) knowledge.
This usually is done by markups or (semantic) forms. These markups are
extracted and transformed into a target representation which is commonly

156



stored explicitly (e.g., in RDF) to allow for efficient reasoning. This transfor-
mation implicitly defines the semantics of the formalized knowledge having
the target reasoner and the ontology in mind.

– Reasoning Component: A reasoning component uses the formalized know-
ledge created by the knowledge formalization component and is able to de-
duce higher-level information from it. While most semantic wikis employ an
RDF-reasoner, there are several other reasoning approaches present, that are
beneficial in particular application scenarios.

– Knowledge Presentation Component: This component describes the
method how the additional functionality provided by meta-data and reasoner
is used to supply the user with the right (high-level) information in a suitable
form. This includes as an important aspect the visualization of the results
or functionality. The reasoning capabilities can be used to provide semantic
navigation, querying, rendering fact sheets, meta-data browser, and more.

These components together provide the additional value of a semantic wiki. In
the following the possibilities of extending each of these components are discussed
in more detail.

2.1 Dimensions of Semantic Wiki Extensions

As mentioned in Section 1 the possible extensions of semantic wikis are manifold
and cannot be foreseen in general. In order to allow for many kinds of extensions
we discuss each of the three components separately:

1. Formalization extension: Given any methods (e.g., markup) to insert
atomic formal relations, in a technical point of view any knowledge base can
be created. However, the widespread employment of semantic technology is
hindered by the formalization task being not simple and efficient enough
(Knowledge Acquisition Bottleneck [10]). One way to counteract is lowering
the barriers of knowledge formalization. The development of (domain spe-
cific) high-level markup languages with comfortable editing support can help
to make knowledge definition compact, transparent and efficient. The use of
controlled language is one approach in this direction [11]. Another possi-
bility for reducing the workload of the domain specialists is the integration
of (preconfigured) text mining methods, that propose formalizations based
on the informal text content. Thus, the users only have to decide whether
to confirm or dismiss a formalization proposition.

2. Reasoning extension: Although basic reasoning engines are currently avail-
able there are still challenges with respect to scalability and expressive-
ness [12] to be addressed. Further, there is ongoing research to cope with
inconsistent knowledge, incompleteness and uncertainty [13–15]. For some
applications it will be valuable to replace or enhance the basic reasoning
engine by an early prototype result from such research work.

3. Presentation extension: The challenge of these kinds of extensions is to
present the user the right high-level information in the right form at the

157



right time (without overflowing him). These extensions must be specified
according to the use-cases addressed by the intended application. One fre-
quent application might be precompiled (possibly parameterized) use-case
specific queries decorated by a GUI component for execution and having a
visualization component attached for result presentation (e.g., table-based,
graph-based, highlighted).

When designing an extensible semantic wiki architecture these three levels
of extension need to be considered as shown in Figure 2.

Fig. 2. Sketch of the “knowledge pipeline” of a semantic wiki with extensions.

Examining the possibilities of the extensions of each level it becomes evident,
that an extension on one component can extend the entire functionality of a se-
mantic wiki system. Thus, the three components can be extended separately or
combined. This results in the semantic wiki extension space sketched in Figure 3.
Assuming that the core semantic wiki system itself already provides some func-
tionality in each component/dimension extensions on the three dimensions can
separately or combined contribute to the total functionality of the semantic wiki.
Hence, an extensible semantic wiki architecture should allow for (independent)
extension of these three dimensions. If the core functionality of the extensible
semantic wiki nearly fits the requirements single dimensions can be extended
denoting “refining” extensions. Heavy-weight extensions along all three dimen-
sions might have their own language, reasoning and presentation functionality.
To clarify the threefold distinction in a more practical context we present three
extensions along three, two and one dimensions respectively in Section 3.

2.2 Decorating Semantic Wikis

As already mentioned in the introduction we claim, that a semantic wiki system
should be precisely tailored to a semantic wiki application considering the do-
main, community, and use-cases. This method is in compliance with the ideas
presented recently by Yaron Koren at the semantic wiki mini series1. One can
assume that there are many domains where semantic wiki technology could be
employed beneficially. One must not assume that every possible user in any do-
main is able and willing to get used to concepts like Semantic Wiki, ontology,
1 http://ontolog.cim3.net/cgi-bin/wiki.pl?ConferenceCall 2008 12 11

158



Fig. 3. The semantic wiki extension space.

RDF-triple, SPARQL or DL-Reasoning. Nonetheless it is possible to create se-
mantic wikis that allow for efficient knowledge sharing and use for these user
groups at the cost of some customization. The intended use cases and the user’s
mental model of the knowledge need to be identified in advance. Then, the on-
tology capturing the knowledge that is necessary to support the use cases can be
modeled. Further, a method for knowledge formalization (e.g., user and domain
specific markup) is designed that fits the mental model of the users. This markup
or editing component implicitly creates (possibly complex) RDF-structures. At
last an extension of the knowledge presentation component is implemented. This
extension exactly supports the use cases revealed be the requirements analysis.
It executes the necessary calls of the reasoning engine and presents the result in
a visualization matching to the mental model of the user. One example might
be some buttons with underlying predefined SPARQL queries with result sets
rendered in some (domain specific) visualization. Any technical details (e.g.,
property names, creation of triples, SPARQL queries) are completely hidden
from the user. The typical extension pattern for decorated semantic wikis is
shown in Figure 4.

Fig. 4. Extension pattern of a “decorated” semantic wiki application.

159



The core functionality for knowledge formalization and knowledge presen-
tation should be hidden from the untrained user to reduce confusion. This ap-
proach has been implemented on the HermesWiki project that is described in
more detail in Section 3.

2.3 Challenges towards an Extensible Semantic Wiki

In the following we discuss the three most important aspects when designing an
extensible semantic wiki:

1. Basic functionality: In order to allow powerful extensions with advanced
features with little implementation costs, it is necessary to decide what se-
mantic core-functionality comes along with the basic semantic wiki architec-
ture. Enabling applications that have to deal with large data sets and high
user activity, requires a slim and scalable text-processing and reasoning en-
gine. Reasoners that focus on processing of more expressive or inconsistent
knowledge are often consuming more computational power and need to be
included by an extension if necessary.

2. Usability: One of the most important reasons for the wide acceptance and
success of wikis is their high usability and the low training costs for new users.
Semantic wikis are bringing new possibilities to wikis and thus are inevitably
adding some complexity to its usage. Adding these new functionalities to the
Wiki interface with the least mental overload is a critical issue in semantic
wiki design. The core strength of the Wiki approach being simple otherwise
can easily vanish. In every case it is sensible to enable ’non-semantic’ users
to work like in a ’non-semantic’ wiki with no adaptation allowing them to
discover single additional functionalities step by step. We propose the idea
of a ’shadow’-semantic wiki hiding all of its advanced functionality at the
beginning. Advanced features (e.g., fact sheets, meta-data browsers) can be
added to pages using tags or configuration settings by more experienced
users when necessary.

3. Extension mechanism: Various extension mechanisms on the software en-
gineering level are applicable to create feature-rich and flexible software.
However, there are several challenges specific to the context of semantic wiki
functionality. The mechanism should be able to support light-weight “refin-
ing” extensions in a very simple way and at the same time still allow for
complex extensions (e.g., with own markup, meta-data representation, rea-
soners and result visualization). In general, an unpleasant issue in modular
software engineering in general is the (programming-)language barrier. For
technical reasons combinations of software components written in different
programming languages are often insufficiently manageable and inefficient.
Unfortunately, this poses some kind of barrier for employing various imple-
mentations of semantic technologies to an extensible semantic wiki architec-
ture.

The best solutions to all these aspects cannot be stated straight forward con-
taining several trade-offs that might have to be revised after future experiences.

160



3 The Extensible Semantic Wiki KnowWE

We have designed and implemented the extensible semantic wiki KnowWE (Know-
ledge Wiki Environment) aiming to the concept of extensibility as stated in
Section 2. As many software components on NLP and reasoning engines are im-
plemented in Java, it appears helpful having our system also implemented in this
language. We especially focused on the simple definition of new markups and
tools allowing for easy text-based refactoring of these. In this chapter we intro-
duce the core functionality of KnowWE. Additionally, three existing extensions
are presented to demonstrate our approach.

Currently, KnowWE runs on top of JSPWiki2, but it can be easily used
with any (java-based) wiki engine having an extension mechanism similar to
JSPWiki’s PageFilter concept. Only the wiki connector providing page- and
user-management has to be reimplemented accordingly.

3.1 The KnowWE Core

In KnowWE each article content is held in a tree-based data-structure. This tree
can be used for refactoring, rendering (e.g., personalization, syntax highlighting),
navigation, external editors and also allows the mapping between the textual
content and the extracted meta-data. Arbitrary semantic extensions along any
dimensions can be created without touching the core components of KnowWE.
For any declared formalization extension (e.g., custom markups) the parse-tree
is generated and hang up into the article content tree.

To provide a flexible library of reusable components, we integrated tools
that are valuable for a wide range of possible scenarios managing formalized
knowledge in a Wiki:

– A semantic renaming tool and an annotation browser which is demonstrated
Section 3.4

– Table editing functionality allowing for visual editing of structured data.
– A flexible include mechanism for reusing arbitrary page snipplets across wiki

pages for modular content and knowledge management.
– Parsing components for table-based, line-based, xml-based and regex-based

markups to simplify the declarative definition of markup without or low
efforts on parsing functionality.

Without any extensions, KnowWE comes with a set of basic functionality
comprising the general features of a semantic wiki. To include formalized knowl-
edge the KnowWE core version provides simple markup and the possibility to
import knowledge from external sources. New properties can also be introduced
ad-hoc to the system by the use of property definition sections on every wiki
page. The properties defined within these tags are not created as standard OWL
properties but rather as N-ary relations3. This allows us to automatically add
2 http://www.jspwiki.org
3 http://www.w3.org/TR/swbp-n-aryRelations/

161



supplementary information to the created knowledge. One of the automatically
added nodes is a TextOrigin node that contains a reference to the textual position
within the wiki text where the annotation was made, as well as revision informa-
tion of the annotation’s creation. There are several predefined properties which
can be used to create annotations. Those key properties like subClassOf,type
and subPropertyOf are treated separately from the user created properties.
They are imported into the wiki-knowledge as their RDFS counterparts, allowing
the reasoner to work on the generated knowledge without further translations.

An annotation is created by a simple link-like markup syntax. In its basic
form an annotation is similar to the markup used in Semantic MediaWiki [2]. The
following example is taken from a consumer domain describing digital cameras
and shows the annotation of the concept associated with the local page by the
property hasBrand with the value Canon.

Canon released the new 50D [hasBrand::Canon] a while ago.

In this form the subject of the annotation’s property is the default concept
of the page. Beside the double square brackets the differences to a Semantic
MediaWiki annotation is that the annotation in this form has no explicit textual
representation in the page view. Thus there is no Link to Canon created in the
text but the formal knowledge is attached to the preceding word in this case.
The markups can be extended by optional components like a subject different
from the current page concept. Another way of modifying an annotation is by
including a specific piece of text to be annotated. The following example shows
the annotation of the text phrase “new camera” by a formal relation connecting
the camera instance Canon EOS 50D and the brand instance Canon by the
hasBrand relation.

Canon released the [new camera <=> Canon EOS 50D hasBrand::Canon]

a while ago.

This additional syntax provides more flexibility compared to the standard an-
notation. It allows to define relations outside the wiki page representing the in-
stance. Although recommended in KnowWE, it is technically not necessary that
every concept has its own wiki page. Further, it allows for precise attachment of
a formal relation to a text phrase for documentation. This also enables queries to
find all text phrases that for example were annotated with a hasBrand relation.
KnowWE also provides a basic fact sheet markup to define multiple relations in
a compact manner.

Our wiki uses the Sesame RDF storage4 for saving and querying the created
knowledge. The reasoning capabilities of our system are provided by the OWLIM
engine (version 3.0b9)5. The default setting on the reasoning level is owl-max
providing full RDFS reasoning as well as OWL-Lite semantics.
4 http://www.openrdf.org
5 see http://www.ontotext.com/owlim/

162



The reasoning and the N-ary representation of properties provide the back-
ground to answering SPARQL queries on the wiki ontology and imported ontolo-
gies. A SPARQL query is embedded into a wiki page using the simple XML-tag
sparql. The query itself is being processed by the sesame query engine and the
results are rendered in a table on the wikipage. For example, the following rather
simple query produces a list of all concepts, in this case all cameras which are
produced by Canon.

partial product list described in this wiki:

<sparql render="links">

SELECT ?cam

WHERE {

?t rdf:subject ?cam .

?t rdf:predicate lns:hasBrand .

?t rdf:object lns:Canon .

} LIMIT 5

</sparql>

The abbreviation lns is replaced by the local namespace which is constructed
from the url of the wiki installation. The results are rendered as links to the pages
where they are defined as shown in Figure 5. Omitting the render attribute
creates a simple table of the Canon products.

Fig. 5. The result of a simple query for Canon products.

3.2 The d3web Extension

The d3web extension is a KnowWE extension to enable the definition and use
of classification knowledge. We outline this extension only briefly since it has
previously been described in detail [9].

– Knowledge formalization extensions: Different markup languages have
been developed to capture various types of classification knowledge, e.g.,
covering models, rules, decision trees [16]. Here, the KnowWE architecture

163



allows for the integration of context sensitive editing support and syntax-
highlighting. The textual markup is compiled into two different representa-
tions. First it is transformed into the proprietary object structure that is
used by the integrated d3web6 reasoning engine. To exploit querying capa-
bilities, it additionally is compiled into an OWL-ontology using an upper
ontology for classification which is explained more detailed in [17].

– Reasoning extensions: The d3web project summarizes a set of reasoners
for diagnostic problem-solving. The reasoning engine is employed in this
extension to work on explicit knowledge created by the use of the markup
languages described above.

– Knowledge presentation extensions: Beside visualization and browsing
mechanisms for the formalized problem-solving knowledge several possibili-
ties for the execution of knowledge bases are included. A user can initiate a
problem-solving session either by starting a structured interview or by freely
answering questions that are rendered in the wiki pages. After each entered
answer the currently most appropriate solutions (calculated by the d3web
reasoning engine with the knowledge base) are displayed. Such a problem-
solving session can be considered as an incremental personalized query to a
classification system.

The d3web extension represents a heavy-weight form of a semantic wiki ex-
tension coming along with libraries containing reasoners, parsers and dialog com-
ponents. However, this extension is especially intended for small to medium sized
data sets and small user communities.

3.3 The HermesWiki Extension

The HermesWiki is a KnowWE-based Wiki in the historical domain developed in
German language. It is built in cooperation with historians from the University
of Würzburg. The main purpose of the HermesWiki is to provide an overview on
ancient Greek history for teaching purposes of (undergraduate) students. Addi-
tionally, the Wiki provides direct links from the descriptions of historical events
to translations of their (historical) sources. The Wiki consists of three parts: A
collection of about twenty essays giving a comprehensive domain walkthrough,
translations of the describing ancient sources, and an extensive glossary. En-
tries in the glossary are semantically tagged, e.g., as “politician” or “poet”. The
project, started in summer 2008, currently features more than 500 wiki articles,
often illustrated with maps and pictures.
Technically, the wiki implements extensions along the dimension of formaliza-
tion and presentation. The most important formalization extension of the Her-
mesWiki is a specialized markup to explicitly define historical events in the main
essay articles. This markup was developed in cooperation with the historians to
allow for maximum usability in this community. Each historical event is defined
in its own text block, structured as the following example:

6 www.d3web.de

164



<<Lamian War (2)

323b-322b

After Alexanders death the Greeks revolted against Macedonian rule

under the lead of the Athenians.

[...]

SOURCE: Paus.::1.25.3-6

SOURCE: Diod.::18,8-18

>>

Each event is enclosed with double angle brackets. In the first line the title of
the event (“Lamian War”) is given, followed by a single number in parenthe-
ses, which describes the importance of the event. For example, events with an
importance rating of ’1’ are considered essential while events with a rating of
’3’ are categorized as “additional knowledge”. In the second line of the markup
the point or interval in time when the event occurred is noted in a compressed
form, e.g., the string “323b-322b” points out, that the event occurred from 323
BC until 322 BC. Further annotations can reflect more precise dating as well as
uncertainty. After one empty line a free text description of the event follows. At
the end of each event block ancient sources of the event are mentioned, explicitly
marked by the keyword “SOURCE:” as the first word of a new line. This markup
for historical events is currently used around 600 times in the HermesWiki. A
time event will be modeled in OWL using a small ontology containing a class for
timeline events with the properties as hasImportance, hasTimeDesignation, has-
Description and hasSource. Having this information extracted to OWL allows
for several forms of exploitation in the presentation dimension. HermesWiki can
generate different views on the timeline events by filtering them on constraints
regarding the time, in which an event occurred, on event importance, and on the
article, where an event was defined or on sources occurring. Figure 6 shows an
exemplary generated view on the timeline in the HermesWiki featuring parts of
the conquests of Alexander the Great (in German language). The importance of
the events is color coded. One (domain-specific) use case supported by this ex-
tension is the (semantic) navigation “through the time” using the links provided
by the ordered time line views. This Wiki project demonstrates how a rather
light-weight domain specific extension along the dimensions of formalization and
presentation can yield a “decorated” wiki as described in Section 1 that is usable
by domain specialists which are not familiar with semantic techniques in general.

3.4 A POS-Tagger Extension

To demonstrate the possibilities achieved with low efforts extending KnowWE
we have implemented a small toy-extension to enable Part-Of-Speech-Tagging.
Further, it serves as a tutorial for the KnowWE extension mechanism. To point
out the simple integration of NLP-tools and libraries we employed the Stanford

165



Fig. 6. A generated timeline in the HermesWiki

POS-tagger7 to analyze the wiki content. Figure 7 shows the resulting wiki view
with this extension activated.

In this example configuration the extension calls the POS-tagger and marks
all verbs found as VerbType nodes in the content tree. To show the results in
the wiki a yellow highlighting-renderer is attached to the node type VerbType.

Fig. 7. The view of a wiki article with the POS-Tagging-Demo extension enabled.

This extension, consisting of a few lines of code calling a POS-Tagger library,
enables to use the following tools coming along with KnowWE:

7 http://nlp.stanford.edu/software/tagger.shtml

166



The annotation browser This tool shown in Figure 8 allows for browsing the
wiki by annotation-types. For each annotation a link to the occurrence in the
wiki page is provided. The column ancestors shows the types on the path of the
content tree depicting the semantic context of the finding, which is of course
TaggingDemo in this example. In this verb-tagging scenario this could be used
to review the POS-tagging results manually. The browser can also be extended
to support a two-step semi-automated workflow, where users can confirm or
dismiss annotations to create verified meta-data. In general, this tool can serve
as a statistical overview on formalized content.

Fig. 8. Annotation browser listing all existing annotations in the wiki for a selected
type

The semantic renaming tool The semantic annotation given to words by
the POS-Tagger can be used for text refactoring. The semantic renaming tool
is basically a standard global search and replace tool but additionally enabling
semantic type-filtering. Thus, we can globally rename a string, but only if the
string has a certain “role” in a particular markup, that is VerbType in this exam-
ple. One use case which is enabled by this simple single-dimensional extension
(Formalization) is that one could start some disambiguation efforts on the given
content (e.g., for further processing by other NLP-techniques). Since this article
is about crop fields we might like to rename the verb “crop” to a synonym like
“cut” or “truncate” ensuring no confusion between the verb “crop” and the noun
“crop” can arise. The renaming tool allows for sorting and filtering the replace-
ments of the searched string by annotation-type and by articles. One can search
for the string “crop” and all occurrences in the wiki are listed with annotation-
context. Thus, one can select to replace all occurrences that are annotated as

167



VerbType in a subset of Wiki articles. In this way all nouns of “crop” stay un-
touched - this of course only works assuming that the POS-Tagger successfully
separated the verbs from the nouns.

This semantic renaming tool working on all installed formalization extensions
of a KnowWE system forms a basic refactoring tool for knowledge at different
degrees of formality tagged by various formalization techniques.

4 Discussion

In this paper we motivated and discussed the concept of an extensible semantic
wiki architecture. As an example implementation we introduced our extensi-
ble semantic wiki KnowWE and presented some of its current extensions. In
our work we focus on supporting complex markups and the interconnection
of formalized and textual content. The support of refactoring methods on the
semi-formalized contents is the subject of our current research. The probably
most popular semantic wiki Semantic MediaWiki shows numerous extensions
on formalization and presentation. It is employing the “Decoration” pattern in
different applications by the use of extensions like semantic templates, semantic
forms and semantic queries. We think, that project-oriented customization of
the tools towards the needs of the targeted domain and user community will
become a more and more important challenge in the future. To demonstrate
and evaluate our approach on this task we presented some case studies. Beside
the HermesWiki project we are also applying this approach to the BIOLOG 8

project in order to optimally support the management of biological knowledge
collected there. In this project we plan to use KnowWE to develop methods for
semi-automated knowledge formalization using the agile employment of ontol-
ogy learning methods. Considered from the other side, for researchers developing
such ontology learning methods semantic wikis are attractive as an evaluation
platform if simple integration of these methods is possible. We hope, that ex-
tensibility in general will reduce the setup-costs of semantic wiki solutions and
therefore help to further establish this technology.

We will drive the KnowWE implementation towards even more flexibility
and stability. For the latest news we refer to the project page of KnowWE on
sourceforge9.

References

1. Schaffert, S., Gruber, A., Westenthaler, R.: A semantic wiki for collaborative
knowledge formation. In: Proceedings of SEMANTICS 2005 Conference, Trauner
Verlag (2006)

2. Krötzsch, M., Vrandecić, D., Völkel, M.: Semantic MediaWiki. In: ISWC’06:
Proceedings of the 5th International Semantic Web Conference, LNAI 4273, Berlin,
Springer (2006) 935–942

8 www.biolog-europe.org
9 http://sourceforge.net/projects/knowwe/

168



3. Schaffert, S.: IkeWiki: A semantic wiki for collaborative knowledge management.
In: STICA’06: 1st International Workshop on Semantic Technologies in Collabo-
rative Applications, Manchester, UK (2006)

4. Buffa, M., Gandon, F., Ereteo, G., Sander, P., Faron, C.: : A semantic wiki. Web
Semantics 8(1) (2008) 84–97

5. Auer, S., Dietzold, S., Riechert, T.: OntoWiki – A Tool for Social, Semantic
Collaboration. In: ISWC’06: Proceedings of the 5th International Semantic Web
Conference, Berlin, Springer (2006) 736–749

6. Kuhn, T.: Combining Semantic Wikis and Controlled Natural Language. In Bizer,
C., Joshi, A., eds.: Proceedings of the Poster and Demonstration Session at the
7th International Semantic Web Conference (ISWC2008). Volume 401., CEUR
Workshop Proceedings (2008)

7. Lange, C., Kohlhase, M.: A semantic wiki for mathematical knowledge man-
agement. In Völkel, M., Schaffert, S., eds.: Proceedings of the First Workshop
on Semantic Wikis – From Wiki To Semantics. Workshop on Semantic Wikis,
ESWC2006 (June 2006)

8. Nalepa, G.J., Wojnicki, I.: Proposal of a prolog-based knowledge wiki. In Nalepa,
G.J., Baumeister, J., eds.: KESE. Volume 425 of CEUR Workshop Proceedings.,
CEUR-WS.org (2008)

9. Baumeister, J., Puppe, F.: Web-based Knowledge Engineering using Knowledge
Wikis. In: Proceedings of Symbiotic Relationships between Semantic Web and
Knowledge Engineering (AAAI 2008 Spring Symposium). (2008)

10. Wagner, C.: Breaking the knowledge acquisition bottleneck through conversational
knowledge management. Information Resources Management Journal 19(1) (2006)
70–83

11. Kaljurand, K.: ACE View — an ontology and rule editor based on Attempto
Controlled English. In: 5th OWL Experiences and Directions Workshop (OWLED
2008), Karlsruhe, Germany (26–27 October 2008)

12. Krötzsch, M., Schaffert, S., Vrandecic, D.: Reasoning in semantic wikis. In: Rea-
soning Web. (2007) 310–329

13. Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontolo-
gies. In: Proceedings of the Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI’05), Edinburgh, Scotland (August 2005)

14. Ma, Y., Hitzler, P., Lin, Z.: Algorithms for paraconsistent reasoning with owl. In
Franconi, E., Kifer, M., May, W., eds.: The Semantic Web: Research and Appli-
cations. Proceedings of the 4th European Semantic Web Conference, ESWC2007,
Innsbruck, Austria, June 2007. Volume 4519 of Lecture Notes in Computer Sci-
ence., Springer (JUN 2007) 399–413

15. Klinov, P., Parsia, B.: Pronto: Probabilistic ontological modeling in the semantic
web. In: Proceedings of the Poster and Demonstration Session at the 5th Euro-
pean Semantic Web Conference (ESWC2008). Volume 401 of CEUR Workshop
Proceedings., CEUR-WS.org (2008)

16. Baumeister, J., Reutelshoefer, J., Puppe, F.: Markups for Knowledge Wikis. In:
SAAKM’07: Proceedings of the Semantic Authoring, Annotation and Knowledge
Markup Workshop, Whistler, Canada (2007) 7–14

17. Reutelshoefer, J., Baumeister, J., Puppe, F.: Ad-hoc knowledge engineering with
semantic knowledge wikis. In: SemWiki’08: Proceedings of 3rd Semantic Wiki
workshop - The Wiki Way of Semantics (CEUR Proceedings 360). (2008)

169



Architecture 

Knowledge Formaliza0on 
in the Age of Wikis 

Markups and Editors 

Overview 

•  Wiki edi7ng (proprietary 
markup) 

•  Addi7onal editors 
•  Table/Inline‐edi7ng 
•  Visual editors  

•  Syntax highligh7ng 
•  Verbose syntax‐check 
•  Integrated refactoring 
tools 

•  Unit‐test‐cases 
•  Extensibility 

d3web Engine 
•  Open‐source reasoning for diagnos7c 
problem‐solving, e.g. heuris7c scoring rules, 
heuris7c decision trees,  set‐covering fault 
models 

•  Implemented as KnowWE extension 
•  Compa7ble knowledge interchange  with 
d3web.KnowME 

•  Wiki‐based workflow: 
collabora7ve fast and simple 
edi7ng with immediate 
feedback. 

•  Combina7on of 
unformalized (startup 
documents) and (semi‐) 
formalized knowledge.  

•  Problem‐solving knowledge 
is instantly compiled into a 
knowledge base aQer saving 
a wiki page. It can be tested 
via star7ng test cases in user 
interviews.  

KnowWE is a seman7c wiki 
designed for the integra7on of 
components for diagnos7c 
problem‐solving. To support the 
development of (diagnos7c) 
knowledge systems, components 
for formaliza7on (markup, editors), 
for reasoning (rules, decision‐trees, 
fault models) and for execu7ng/
tes7ng have been implemented.  
The goal is to combine the strength 
of knowledge‐based systems with 
the ease of Wikis to support 
collabora7ve knowledge 
engineering. 

KnowWE 
Jochen Reutelshöfer,  Joachim Baumeister, Frank Puppe 

Flowchart Edi0ng 

Table Edi0ng  

Refactoring User Interviews 

Textual Edi0ng 

170



KiWi – A Platform for Semantic Social Software

Sebastian Schaffert, Julia Eder, Szaby Grünwald, Thomas Kurz, Mihai
Radulescu, Rolf Sint, Stephanie Stroka

Salzburg Research Forschungsgesellschaft
Jakob Haringer Str. 5/II, A-5020 Salzburg, Austria

firstname.lastname@salzburgresearch.at

Abstract. Semantic Wikis have demonstrated the power of combining
Wikis with Semantic Web technology. The KiWi system goes beyond Se-
mantic Wikis by providing a flexible and adaptable platform for building
different kinds of Social Semantic Software, powered by Semantic Web
technology. This article describes the main functionalities and compo-
nents of the KiWi system with respect to the user interface and to the
system architecture. A particular focus is given to what we call “content
versatility”, i.e. the reuse of the same content in different kinds of social
software applications. The article concludes with an overview of different
applications we envision can be built on top of KiWi.

1 Motivation: From Semantic Wikis to KiWi

Semantic Wikis have been under investigation in the research community since
2005 (see e.g. [1,2]). Although there are many different systems with many dif-
ferent properties, a common trait between all Semantic Wikis is that they aim to
combine ordinary wiki content and technology with Semantic Web technologies,
either in order to provide better wikis (“Semantic Web for Wikis”) or to ease
the creation of Semantic Web data (“Wikis for the Semantic Web”) [3]. Many
also see Semantic Wikis as the “Semantic Web in a Nutshell”, because – like
Wikis show similar traits to the Web as a whole – Semantic Wikis share many
properties and also problems with the envisioned Semantic Web.

The EU-funded project KiWi (“Knowledge in a Wiki”)1 takes the Semantic
Wiki approach to the next level by providing a platform that allows to build
many different kinds of Social Semantic Software, based on the conviction that
most social software follows the “Wiki Principles”. By “Wiki Principles”, we
mean that the term “Wiki” does not refer to technology alone. It is more a new
philosophy of working with Web content influenced by ideas in the OpenSource
community. These principles have revolutionised the way we work with content
in the (Social) Web:

– Wikis allow anyone to edit: The core principle is that there are no access
restrictions or strict hierarchies on the content of a wiki. Anyone can easily
contribute his or her own knowledge, his or her own ideas, and his or her
own content.

1 http://www.kiwi-project.eu

171



– Wikis are easy to use: Anyone who is sufficiently familiar with the basic
functionalities of word processing software (write, delete, save) has all the
skills required to edit, correct and expand a wiki.

– Wiki content is linkable: By allowing users to create links between words
and as such between concepts, wikis also allow for the creation of semantic
relations, i.e. of meaning.

– Wikis support versioning: Never does information disappear on a wiki.
If a page is edited, the previous version is still stored somewhere. This has
an important psychological effect as it takes away the wiki writer’s block:
the fear that something might get lost through editing.

– Wikis support all media: Wikis are web-based. So whichever type of con-
tent you have, be it text, images, audio, spreadsheets, documents – anything
that can be displayed in a web browser can be displayed in a wiki. And even
if a file cannot be displayed in the browser itself, it can still be downloaded.

This same philosophy is underlying not only Wikis (technically-speaking),
but also a large array of other Social Software applications: e.g., a weblog or
social networking platform can be seen as just a different user interface (and
different way of using), but is otherwise very similar concerning the underlying
principles and also technology.

In the following, we describe how we realised the KiWi vision in the KiWi
System, a generic Semantic Social Software platform based on the Wiki princi-
ples. We begin in Section 2 with introducing the concept of what we call “Content
Versatility”: content with flexible structures that can be reused in different ap-
plications. In Section 3, we then describe KiWi Core Applications: the Wiki,
the Dashboard, TagIT, the KiWi Search, and the KiWi Inspector. Section 4 is
dedicated to the more technical aspects of the KiWi platform: the system archi-
tecture, the data model, the KiWi entity manager, and façading. We conclude
this article with an outlook and summary in Section 5.

2 Content Versatility: Same Content, Different Views

As we have already outlined in the introduction, what we call the “Wiki Princi-
ples” is actually applicable to many Social Software applications. It is therefore
close at hand to build generic platforms for developing different kinds of So-
cial Software. And indeed, there are several products already available that aim
to deliver a platform that allows to combine wikis, weblogs, social networking,
etc. Such platforms are for example Clearspace Community2 from Jive Software,
Community Server3 from telligent, and Liferay Social Office4 from Liferay.

However, all these systems only provide integration on the user interface level
and still see wiki articles, blog posts, etc. as separate kinds of content that is
visualised in a specific way. This has a number of serious disadvantages. For

2 http://www.jivesoftware.com/products/clearspace-community
3 http://communityserver.com/
4 http://www.liferay.com/web/guest/products/social_office

172



instance, something that started as a wiki article can never become a blog post,
it will never be possible to attach comments to a wiki article if not foreseen in the
data model, and new kinds of content (like our TagIT locations, cf. Section 3.3)
cannot be added easily without also doing fundamental changes to the system.

KiWi follows a completely different approach which we call “Content Versatil-
ity”. The underlying principle is that every piece of information is a combination
of human-readable content and associated metadata, and that the same piece
of information can be presented to the user in many different forms: as a wiki
page, as a blog post, as a comment to a blog, as a photo, or even in a bubble in
a map-based application. The decision how the information is displayed is taken
based on the metadata of the content, and the context of the content and the
user (e.g. metadata, user preferences, different applications). Metadata is repre-
sented using RDF and thus does not require a-priori schema definitions, so the
data model of the system can be extended even at runtime.

In KiWi, we call the smallest piece of information a “content item”. A con-
tent item is identified by a URI and consists of human-readable content in the
form of XHTML and associated metadata in the form of RDF. The KiWi core
system provides means to store, update, search, and query content items, and
offers automatic versioning of all updates (content and metadata). Whereas core
properties of a content item (like the content, the author, and the creation date)
are represented in XML and persisted in a relational database, all other prop-
erties can be flexibly defined using RDF properties or relations. The URI of a
content item is generated in such a way that it is possible to make a KiWi system
part of the Linked Open Data cloud [4]. This allows to easily integrate KiWi
content with other services on the Semantic Web.

3 KiWi Core Applications

Content Versatility makes it possible to offer completely different views on the
content inside the KiWi system without any modifications to the core system or
data model. We call such views “KiWi Applications”, and they are one kind of
extension offered by the KiWi system (others are currently: KiWi Services, KiWi
Widgets, KiWi Actions, and Exporters/Importers). In the following, we describe
the set of applications that are part of the KiWi System to illustrate how the
Wiki Principles and Content Versatility are realised in KiWi. The applications
have been selected based on the requirements identified in the two KiWi use
cases and accompanying SNML projects; additional applications are conceivable
and reasonable. Additional applications will be offered as separate packages in
later stages of the project.

KiWi applications share the same context, i.e. when the user browses a con-
tent item in the Wiki or Dashboard, she can switch to the TagIT application
and view the same content item on a map or to the Inspector and get debugging
information on the content item.

173



Fig. 1. The KiWi Wiki: A Semantic Wiki built on top of KiWi

3.1 The KiWi Wiki

The primary and most generic interface to the KiWi system is a Semantic Wiki.
The layout and functionality (Figure 1) of the KiWi Wiki is inspired by its
predecessor IkeWiki[5]: the left column offers navigation functionality, the centre
column contains the main (human-readable) wiki content, and the right column
contains dynamic widgets that display additional information about the content
item based on its metadata (e.g. a map or incoming and outgoing links).

The centre column by default displays the content of the content item. The
section below the page title contains maintenance information about the item
as well as the list of tags that have been associated with it. By clicking on the
“Action” menu in the top right corner, the user can select to edit the content,
edit the metadata (i.e., OWL Datatype Properties), edit the relations (i.e., OWL
Object Properties) to other content items, edit the list of tags, and access the
history of the item’s content and metadata as provided by the versioning subsys-
tem. In principle, the KiWi Wiki interface can thus be used in the same way as
IkeWiki. Additional actions can be registered using KiWi’s extension mechanism
(e.g. domain specific actions like “Geolocate” or “Share”).

The widgets in the right column are visually part of the content box to em-
phasise that they contain additional information about the currently displayed
item. Currently, the KiWi system offers to display the list of references (based
on RDF relations with other items) and a “Stream of Activities” listing the

174



Fig. 2. KiWi Dashboard: personal user page with stream of activities, history,
personal tag cloud, social networking, and recommendations

recent activities associated with the content item (e.g. modification, tagging,
annotation).

3.2 The Dashboard

The Dashboard is a user’s personal(ized) start page in the KiWi system. Figure
2 shows an early stage of its user interface, which is currently still under devel-
opment. The Dashboard follows the same general layout as the Wiki, i.e. the left
column provides generic navigation while the centre and right columns contain
the actual content. While the look of the Dashboard is freely customisable by
the user, the KiWi core system by default provides the following information:

– the Stream of Activities is the most important part of the Dashboard: it con-
tains an aggregated list of activities that happened in the user’s “universe”,
i.e. updates to content items that are either explicitly watched by the user
or implicitly added to the user’s universe e.g. because they have been edited
by the user, because they have been edited or rated “good” by one of the
“friends” of the user, or because they have been recommended to the user
based on previous activites by the personalisation component of KiWi

– the Recommendations widget provides a list of additional content items that
might be relevant to the user; different recommendation algorithms are in-
vestigated as part of the KiWi project [6]

175



Fig. 3. TagIT: description of locations / geolocation of content; double circles
indicate clusters of points, single circles single points of interest

– the History widget lists the content items the user visited or worked on
recently to give quick access to the issues the user is currently concerned
with

– the Tags widget lists the tags used by the user and is a quick and flexible
means of structuring and accessing the content items that are relevant to
the user; clicking on a tag redirects to the search interface described below

Besides the main view, the Dashboard is also the place where the user man-
ages his own profile. The most important part of the user’s profile is the list
of friends, which is the primary way to use the social networking functionality
of KiWi. The requirements analysis carried out as part of the KiWi use cases
showed that social networking is a crucial aspect in a modern knowledge man-
agement system like KiWi as it helps define the context the user works in.

3.3 TagIT

TagIT is an application originally developed in a separate project with the goal
to create the “Youth Atlas of Salzburg”5, which has been running as a prototype
successfully for over a year and has now been ported to the KiWi platform (Fig-
ure 3). In TagIT, users browse through a map (based on Google Maps) where
they can “tag” locations with descriptions and provide interesting information
5 http://tagit.salzburgresearch.at

176



Fig. 4. KiWi Search: generic, facetted search over KiWi content

about them, e.g. cafés, bars, sports parks, hiking tours, etc. Such tags can be as-
sociated with categories from a SKOS thesaurus and with additional multimedia
data like photos or videos. Other users can then browse or search for interesting
locations using the same interface. In addition to the web-based platform, TagIT
also offers a mobile client that can run on a GPS-enabled mobile phone. When
visiting an interesting location, users can then start the TagIT application, take
a picture of the location, add a short description and directly upload the “tag”
using UMTS. The tag is automatically geolocated and immediately available for
other users.

Although quite different on the user interface and in the way it is used, TagIT
actually closely follows the wiki principles: everyone can add and edit tags, the
system is easy to use, tags can be linked, tags are versioned, and different kinds
of content are supported. On top of KiWi, tags are realised as content items
and can thus be displayed in both the TagIT user interface and the previously
described KiWi Wiki (in which case a small map widget is displayed in the right
column showing the position).

3.4 KiWi Search

In addition to these different ways of presenting content, the KiWi core sys-
tem also provides a generic search functionality accessible from within all KiWi
applications. When a user switches to search and selects a content item, he is
redirected back to the previous application afterwards. KiWi currently allows

177



a combination of full-text search, metadata search (tags, types, persons), and
database search (date, title). A more sophisticated search language is currently
under development [7].

The KiWi search interface implements a so-called “facetted search” (see Fig-
ure 4): the user starts with a keyword search, resulting in a list of content items
ordered by relevance or time. In case the user is not satisfied with the results, he
then has the option to refine his search using one or more of the facets offered in
the right column of the search result box. Currently, the KiWi system offers the
facets “tags”, “types”, and “persons”, which we have identified as the core facets
needed in any system. For each facet, only the criteria occurring in the currently
displayed search results are listed, together with a count of the content items
matching the criterion. Selecting one of the criteria narrows down the search.

All search facets are included in the full-text search box; this decision has
been made to provide all search functionality in one place without confusing the
user and to allow advanced users to directly search using the text field. Also, it
makes it much simpler to bookmark searches or include them in a user’s personal
stream of activities on the Dashboard.

In later stages of the project, it is planned to make the set of widgets cus-
tomisable to adapt it to different application domains. For example, in a biology
scenario, an interesting facet could be different protein structures, in a music
scenario it could be different instruments, and in a history scenario it could be
different countries.

3.5 KiWi Inspector

The KiWi Inspector is an application developed for advanced users and devel-
opers. It provides a more technical insight into the current context. It currently
provides the following functionalities:

– Content Item Inspector : displays the RDF data associated with the current
content item as RDF/XML; the shown RDF data is the same as would be
displayed to a Linked Open Data client when accessing the KiWi system

– Tag Inspector : displays a list of all tagging actions of the current content
item and the RDF data generated by them as RDF/XML

– User Inspector : displays the RDF data associated with the currently logged
in user as RDF/XML

In addition, the KiWi Inspector will later also provide more details about
the revisions (particularly metadata revisions) of the current content item and
additional debugging information as needed.

4 The KiWi Platform

The applications described in the previous section are built on top of the KiWi
Platform, which provides all the core functionalities needed by most Semantic
Social Software applications. In the following, we briefly describe architecture,
core data model, and core services offered by the KiWi platform.

178



RDF Store 
(Relational DB)

Tagging 
Service

Content
Item

Service

Ontology
Service

EditAction Annotate
Action

admin.xhtml edit.xhtml annotate.
xhtml

metadata.
xhtml

KiWiEntityManager

EntityManager TripleStoreService

Tagging
Action

Entity Database 
(Relational DB)

RevisionService TransactionService

Vi
ew

 L
ay

er
:

JS
F,

 F
ac

el
et

s
Co

nt
ro

lle
r L

ay
er

Se
am

 A
ct

io
n 

Be
an

s
Se

rv
ic

e 
La

ye
r:

EJ
B 

St
at

el
es

s 
Be

an
s

M
od

el
 L

ay
er

:
En

tit
ie

s 
+ 

Tr
ip

le
s

Fig. 5. KiWi Service-Oriented Architecture: Model Layer, Service Layer, Con-
troller Layer, View Layer

4.1 Architecture: Service-Oriented and Component-Based

The KiWi system is implemented on top of JBoss Seam6 and Java Enterprise
Edition (Java EE 5), and thus follows a component- and service-oriented archi-
tecture. Figure 5 depicts the overall structure of the KiWi system:

The model layer comprises the KiWi data model (see below) and is repre-
sented in a relational database, a triple store, and a full-text index. Entities
are persisted using the Hibernate framework7, which maps Java objects to rela-
tional tables. The KiWi triple store is a custom implementation also based on
the relational database, because existing triple store implementations provide
insufficient support for features like versioning and additional metadata about
triples that are needed by KiWi. The full-text index is implemented using Hi-
bernate Search and currently allows to search over title, textual content, tags,
authors, and RDF literals.

The service layer provides services to other components in the KiWi sys-
tem. Of central importance is the KiWi Entity Manager, which provides unified
access to content items and RDF metadata (see below). Further core services
are the revision service – taking care of versioning, and the transaction service,

6 http://www.seamframework.org
7 http://www.hibernate.org

179



allowing to manage all updates to KiWi content in reliable transactions. Both
services are heavily used internally by the KiWi Entity Manager and usually
not used by further components. Besides these core services, the service layer
may contain additional services that offer certain common functionalities. For
example, the KiWi system currently offers an “ontology service” that provides
convenient access to the triple store using higher-level concepts like “classes”
and “properties”, and a “content item service” that allows to easily access all
functionalities associated with content items (creating, loading, updating).

The controller layer consists of action components that implement a specific
functionality in the KiWi system. For example, the Semantic Wiki application
contains a “view action”, a “edit action”, a “annotation action”, and a “history
action”, and the TagIT application contains a “explorer action” and a “tagging
action”. Action components are usually very close to some functionality offered
in the user interface, and they make use of service components to access the
content in the KiWi system.

The view layer is implemented using Java Server Faces (JSF), which are
used to generate the HTML presentation of the KiWi user interface and the
user interaction with the system. JSF pages are linked with action components
in the controller layer. Also part of the view layer are web services offered by
KiWi. Currently, there are web services for accessing the triple store and SKOS
thesauruses, and there is a “linked open data” service offering the content of the
KiWi system to linked open data clients.

4.2 Data Model: ContentItems, Tags, and Triples

KiWi’s core data model makes use of few concepts, namely Content Items, Tags,
and Triples. Additional functionality is added by “KiWi Façades” (Section 4.3).

Content Items. The content item is the core concept of the KiWi system. It
represents a “unit of information” in KiWi, e.g. a page about a certain topic, a
user profile, etc. When a user accesses the KiWi system, he is always interacting
with exactly one (primary) content item, the context content item. The con-
text content item can be viewed, modified, and annotated by the user. Though
changes might also affect other content items, the context content item is always
the primary content item.

Each content item has both, a machine readable symbolic representation and
a human readable textual or multimedia representation.

– content items are all different kinds of content and data items that are stored
in the KiWi system, i.e. (wiki) pages, multimedia, users, roles, rule defini-
tions, layout definitions, widgets, and possibly more. The KiWi system is
not restricted a priori to specific content formats.

– URIs or blank nodes serve as machine-readable symbolic representations of
resources, to be used in extended triples in the triple store. The URI is used
to embed a resource in its context and provide machine-readable meaning,
e.g. by annotation with formal annotations, reasoning, etc.

180



– the textual / media content related to a resource is meant for human con-
sumption. The content resembles a wiki page, is easy to edit, supports link-
ing, and is versioned. In the current design each wiki article in a specific
language is represented as an own content item describing a single concept.
The assumption for this design is that the content about a topic and its
authors may differ from language to language. The definition of connections
between content items with equivalent content but different languages can
be accomplished with metadata relations.

These assumptions distinguish the KiWi data model from other wikis and con-
tent management systems. Most important, it treats all kinds of resources equally,
leading to a very clean and simple model where every resource has both, a
machine-readable and a human-readable description. A consequence of the di-
rect relationship between content items and RDF resources is that every RDF
resource, even those representing widgets, layouts, users, or even rules, can also
be described in human readable form.

Textual content is represented internally as (structured) XML documents
that can be queried and transformed to other representations like HTML or
XSL-FO (for PDF and other print formats) using standard XML query languages
(XQuery, XSLT ) or using the rule-based reasoning language developed in KiWi.
The XML format used for page representations resembles a subset of HTML,
taking into account only core structuring elements.

Tags. Tagging is one of two ways of annotating content items in the KiWi sys-
tem. In KiWi, tags serve many different purposes, for example associating con-
tent items with certain topics or grouping content items in “knowledge spaces”.
There are two kinds of tags: explicit tags are explicitly added to a content item
by a user; implicit tags are created by the system, e.g. based on automatic mech-
anisms like information extraction from text or reasoning on existing tags.

Conceptually, an explicit tag is a 3-ary relation between two content items
(the tagged content item and the tagging content item) and a user (the tagging
user or tagger). An implicit tag is a binary relation between two content items, a
tagged and a tagging one. Tagging content items are identified using one or more
labels that are available for annotating content items. In case of ambiguous tag
labels (i.e. the same tag label for different content items), the KiWi system asks
the user to choose the appropriate content item. If the user enters a new label
that is not yet used elsewhere, it is displayed like a wiki-link to a non-existing
page; when the user clicks on it, he is given the choice to either associate the
label with an existing content item or to create a new content item explaining
this tag label. Internally, a tag is furthermore given maintenance information
like creation time and date and a URI for uniquely identifying a tag.

For example, the content item that describes “Mickey Mouse” could be
tagged with the label “Mouse”, thereby associating it with the content item
describing “Mouse” (the animal). The tagged content item would be “Mickey
Mouse”, the tagging content item would be “Mouse”, and the tag label used for
tagging would be “Mouse”, which is a tag label of the content item “Mouse”.

181



Inside the system, a tag is mapped to an RDF structure that can be used
for deriving additional RDF metadata by means of reasoning. Also, tags can
be “lifted” to taxonomy or ontology concepts by advanced users, e.g. by using
the “meaning of a tag” (MOAT)8 or “social semantic cloud of tags” (SCOT)9

ontologies. In this case, more information about the meaning and context of a
tag becomes available, e.g. for reasoning or querying.

Tags can be used by the KiWi system for many different purposes. For ex-
ample, tags can help with searching by offering a facetted search interface or by
offering tag clouds. Furthermore, it is possible to derive user preferences from
the tags she has used or to identify users with similar interests via clustering.
Similarly, tags can also be used for grouping related content items, e.g. for defin-
ing group work spaces or for clustering thematically related items. Beyond that,
the way how tags are used is left to the application developers and users that
implement a specific instance of the KiWi system.

Extended Triples. Machine-readable metadata is represented using what we
call extended triples. Extended triples contain additional maintenance informa-
tion that is used internally by the KiWi system for various tasks like versioning,
transactions, associating a triple with a certain workspace, user, or group, or
for reason maintenance (i.e. storing why a certain triple has been asserted). In
principle, an extended triple can thus be seen as a “triple with attributes”.

Note that these attributes could also be represented as a RDF subgraph using
triples and reification. However, such a representation has several disadvantages
compared to the extended triples proposed for KiWi:

– it requires reification, meaning that the original triple, which assumingly
provides the most interesting information, is broken up into parts that have
to be reassembled, and

– it mixes up several levels of abstraction, which is inconvenient not only for
machines and reasoning, but also for the user

– it makes it difficult to filter out the information that is used for internal
purposes and this not supposed to be exchanged with external systems

The implementation of extended triples is straightforward and fits easily with
already existing tools and standards without disguising the original meaning.
Triple attributes containing maintenance information are only represented pro-
grammatically inside the system, avoiding problematic situations. To the outside
world, extended triples look like ordinary triples and can be exported into the
usual Semantic Web formats like RDF.

In the current implementation, extended triples are represented in special
tables in the relational database, and queries to the triple store are executed in
Hibernate’s object oriented query language HQL. We chose not to use one of the
existing triple store implementations because they are restricted to simple triples

8 http://moat-project.org/
9 http://scot-project.org/scot/

182



without the possibility to add additional metadata, they have only basic trans-
action support [8], and they offer poor scalability if one wants to use reasoning.
Building KiWi on top of these systems has proven to be extremely difficult and
has been abandoned in favour of the more flexible database solution. Mapping
SPARQL queries to Hibernate is currently under development.

4.3 KiWi Entity Manager and KiWi Façades: Content Versatility
in Java EE

The KiWi system offers a number of core services that are needed in many situ-
ations. Of particular importance is the KiWi entity manager (named in analogy
with the Java EE entity manager, as it provides the technological background
for realising content versatility. In the following, we briefly introduce its func-
tionality and then discuss a technique we call KiWi Façades.

KiWi Entity Manager. The KiWi entity manager is a central service provid-
ing unified access to data stored in the relational database, in the triple store,
and in the fulltext index. It provides functionalities for storing, querying and
searching entities (content items, triples, tags) in different languages:

– Storing of entities is handled through the methods persist() (for new enti-
ties) and merge() (for updated entities). Both methods take care of forking
the data associated with a Java entity appropriately into relational database,
triple store, and fulltext index.

– Querying of entities is handled by the method createQuery(), which takes
as argument a query string in either HQL (Hibernate’s object oriented query
language) or SPARQL and returns a Query object that can be used in the
same way as the ordinary Java EE Query object for retrieving results.

– Searching of entities is handled by the method search(), taking as argument
a label-keyword search string and then delegates – depending on the label –
to either the fulltext index, the relational database, or the triple store.

All KiWi Entity Manager methods support façading, described below. Addi-
tionally, all updates performed through the KiWi entity manager are automat-
ically wrapped in appropriate transactions that support transaction isolation
and commit/rollback functionality. Also, KiWi entity manager transactions are
automatically versioned using KiWi’s revision service and can be reverted indi-
vidually. The KiWi transaction system is discussed in [8].

KiWi Façades. A particularly salient aspect of the KiWi system is its façading
mechanism. Façading can be seen as a way of providing different application-
dependent Java views on content items. They are thus a way of realising content
versatility in Java in a way natural to developers. A KiWi Façade is specified
as a Java interface, annotated with Java 5 annotations that map Java meth-
ods to RDF properties (see Figure 6). When calling an annotated method, an
appropriate query to the triple store is issued instead of accessing the Java field.

183



@KiWiFacade

@RDFType( Constants.NS_GEO+"Point" )

public interface PointOfInterestFacade extends ContentItemI {

@RDF(Constants.NS_GEO+"long")

public double getLongitude ();

public void setLongitude(double longitude);

@RDF(Constants.NS_GEO+"lat")

public double getLatitude ();

public void setLatitude(double latitude);

}

Fig. 6. A Java interface annotated as KiWi Façade; the methods get/setLongi-
tude() map to the RDF property geo:long, whereas get/setLatitude() map to
geo:lat. A content item façaded with this interface is automatically assigned
the geo:Point type.

For a Java developer working with the system, a façaded content item behaves
exactly like an ordinary content item with the additional methods specified in
the façade interface, and can be used in any context a content item can be used,
e.g. as backing bean for user interface components. This functionality is realised
using Java’s dynamic proxy mechanism (implemented in the KiWi invocation
handler). All methods in the KiWi entity manager may optionally take or return
a KiWi Façade instead of a content item if they are passed a façade interface as
additional argument.

5 Outlook and Conclusion

KiWi is an ongoing research project of which we have only demonstrated the
first results. Many more salient aspects are still to come. Particularly, KiWi will
be extended with “enabling technologies” in the following areas:

– Reasoning and Reason Maintenance: in this area, the KiWi system
will be extended with a custom, rule-based querying and reasoning com-
ponent where advanced users will be able to add custom inference rules to
the knowledge base; reasoning will be based on content as well as metadata
[9]. In addition, there will be a reason maintenance component that allows
users to get explanations why a certain information has been inferred; reason
maintenance is also beneficial for update performance and might even allow
for different users having different rule sets.

– Information Extraction: the KiWi system will furthermore provide a com-
ponent that semi-automatically extracts metadata from the content that is

184



stored in the knowledge base. Information Extraction will be performed in
interaction with the user to minimise the number of errors.

– Personalisation: based on the metadata for a content item, a user model,
and the rule-based reasoning, KiWi will also offer a personalisation com-
ponent that allows to further customise the presentation of a content item.
The personalisation component will further demonstrate the flexibility of the
Content Versatility approach taken by KiWi.

TagIT is now further developed as part of the Salzburg NewMediaLab project
“Future Content Platforms” together with our partner Salzburger Nachrichten.
The goal is to integrate in the same interface not only wiki content and TagIT
locations but also news articles, blog posts, and small advertisements from our
partner. For the purpose of the demonstration, we have already imported 20.000
online news articles, but the system is designed to scale to hundreds of thousands.
Acknowledgement. This research has been partly funded by Salzburg New Media

Lab and by the the European Commission within the 7th Framework Programme

project KiWi - Knowledge in a Wiki (No. 211932). The latest KiWi source code is avail-

able as Open Source at the KiWi website http://www.kiwi-project.eu. The demon-

stration system is published from time to time at http://showcase.kiwi-project.eu.

References

1. Völkel, M., Schaffert, S., eds.: 1st Workshop “From Wiki to Semantics”
(SemWiki’06) – colocated with ESWC’06, Budva, Montenegro (2006)

2. Lange, C., Schaffert, S., Skaf-Molli, H., Völkel, M., eds.: 3rd Workshop “From Wiki
to Semantics” (SemWiki’08) – colocated with ESWC’08, Tenerife, Spain (2008)

3. Schaffert, S.: Semantic Social Software: Semantically Enabled Social Software or
Socially Enabled Semantic Web? In: Semantics 2006, Vienna, Austria (2006)

4. Bizer, C., Heath, T., Ayers, D., Raimond, Y.: Interlinking Open Data on the Web.
In: 4th European Semantic Web Conference (ESWC2007) – Posters Track, Inns-
bruck, Austria (2007)

5. Schaffert, S., Westenthaler, R., Gruber, A.: IkeWiki: A User-Friendly Semantic
Wiki. In: Proceedings of the 3rd European Semantic Web Conference (ESWC06) –
Demonstrations Track, Budva, Montenegro (2006)

6. Durao, F., Dolog, P.: Analysis of tag-based recommendation performance for a se-
mantic wiki. In: Fourth Workshop on Semantic Wikis (SemWiki2009) in conjunction
with the 6th Annual European Semantic Web Conference (ESWC2009), Heraklion,
Greece, CEUR.org (2009)

7. Weiand, K., Furche, T., Bry, F.: Quo vadis, web queries. In: Proceedings of In-
ternational Workshop on Semantic Web Technologies, Belgrade, Serbia (29th–30th
September 2008). (2008)

8. Stroka, S.: Transaction management in federated, heterogeneous database systems
for semantic social software applications. In: submitted to 20th Int. Conference on
Database and Expert Systems Applications (DEXA’09), Linz, Austria (2009)

9. Bry, F., Kotowski, J.: Towards reasoning and explanations for social tagging. In:
Proceedings of 3rd International Workshop on Explanation-aware Computing, Pa-
tras, Greece (21st–22nd July 2008). (2008)

185



VPOET Templates to Handle the Presentation
of Semantic Data Sources in Wikis

Mariano Rico1, David Camacho1, Óscar Corcho2

1 Computer Science Department, Universidad Autónoma de Madrid, Spain∗
{mariano.rico, david.camacho}@uam.es

2 Ontology Engineering Group, Departamento de Inteligencia Artificial,
Universidad Politécnica de Madrid, Spain

ocorcho@fi.upm.es

Abstract. We describe VPOET templates, web templates to present or
request semantic data to or from end users. These templates can be used
by web developers with no competencies in Semantic Web by means of
simple HTTP messages. Although its application to wiki environments
is only pointed, a real application oriented to end users is shown. This
experience shows that VPOET templates can be easily integrated in web
applications written in any programming language.

1 Introduction

Besides semantic annotation [1], some general-purpose wikis also provide support
to create semantic web applications [2,3]. VPOET 3 [4] is one of these semantic
web application, aimed at web designers without knowledge in Semantic Web. It
allows them to create web templates designed to display semantic data (output
templates) or to request information from the user to convert it into semantic
data (input templates).

All the information is stored as semantic data that can be recovered through
simple HTTP messages, in a much simpler way than SPARQL endpoints (which
require SPARQL language skills to create the HTTP message), aimed at lowering
the adoption barrier for common web developers. An additional benefit of using
HTTP messages, compared to traditional programming libraries, is that it can
be exploited by developers in any programming language, expanding further the
developers scope.

As a usage example for testing how a common developer can exploit the se-
mantic information stored in VPOET, we have created a Google Gadget that
allows users with minimal knowledge of Web technologies (end users) to incorpo-
rate semantic information in their web sites and in applications such as Google
Pages, Google Desktop, etc. This example shows that VPOET templates can be

∗This work has been partially funded under the projects HADA (TIN2007-64718),
METEORIC (TIN2008-02081), and DEDICON (TIC-4425)

3See http://ishtar.ii.uam.es/fortunata/Wiki.jsp?page=VPOET

186



easily integrated into any web application. In a wiki framework, a simple com-
mand (in “edition mode”) with few arguments, can be used to render (in “view
mode”) semantic data, allowing users browse through the semantic relations.

2 Related work

The way in which templates can help users to homogenize semantic data pre-
sentation has been addressed before. Semantic Media Wiki allows users creating
templates, but employs an intricate syntax and parsing functions 4. Therefore,
it is not easy to handle by a web designer, usually with lower competences in
programming languages.

A template infrastructure for semantic data is Fresnel [5], used by Longwell,
a faceted semantic web browser. However the Fresnel syntax 5 requires skills in
semantic web technologies that cannot be accomplished by most web designers.

Rhizomer [6] is an infrastructure to browse and edit semantic data. The
presentation of RDF data is achieved by means of XSLT. The competences
required to create Rhizomer templates are not aimed at web designers either.

Therefore, the current state of the art does not provide web designers with
authoring tools to create attractive an reusable templates for semantic data.
There must be a balance between expressiveness, to address RDF features (e.g.
multi-valued properties, properties with no value) and complexity, in order to
reduce the required level of competencies. VPOET provides web designers with
OMEMO6, another application that generates simplified versions of a given on-
tology, specifically oriented to web designers. By reading the information pro-
vided by OMEMO, web designers can know the sub-components of a given on-
tology component, requiring only basics of semantic web technologies such as
class, property, value or relation. Details such as restrictions, inverse functional
properties, etc. are hidden on purpose.

3 VPOET as a templates source

VPOET has two faces, on the one hand it is a web application oriented to
web designers ranging from amateur users to professional ones. Following a 20
min. online tutorial 7 is enough to start creating templates embedding sim-
ple macros in the client-side code (HTML, CSS, or Javascript) generated by
the web designer favorite authoring tool (e.g. Dreamweaver). These macros
are detailed in the aforementioned tutorial. Figure 1 shows an output tem-
plate for FOAF:Person. Macros are framed within a thick rectangle (OmemoGetP,
OmemoConditionalVizFor, among others), and reused templates are framed

4A template source code and usage example can be found at http://en.wikipedia.
org/wiki/Template:Infobox_Settlement

5See an example at http://www.w3.org/2005/04/fresnel-info/manual/
6See http://ishtar.ii.uam.es/fortunata/Wiki.jsp?page=OMEMO
7See http://ishtar.ii.uam.es/fortunata/Wiki.jsp?page=VPOETTutorial

187



Fig. 1. Template example showing macros (thick rectangles) and templates reuse
(thin rectangles).

within a thin stroke. It must be noticed that, unlike other templates systems, the
code is essentially client-side code, substituting programming issues by simple
macros, easier to understand by web designers. These macros allow a variable
number of arguments and can be evaluated in design time, warning web designers
when some of the arguments is wrong.

On the other hand, it is a semantic data source fed by the templates created
by a community of web designers sharing and reusing templates. This source can
be exploited easily by common web developers, in any programming language,
by means of HTTP messages (GET and POST) like “render the semantic data
at URL Z by using the output template X created by designer Y”, codified as a
HTTP GET message by means of the following URL:

http://URL-to-servlet/VPoetRequestServlet?action=renderOutput
&designID=X&provider=Y&source=Z.

An additional argument can specify a given individual in the source. In this
case, only the individual is rendered. The full syntax of these HTTP messages
can be found in the aforementioned tutorial.

188



Fig. 2. Using GG-VPOET. Left: facilities to supply the HTML code that must
be inserted by end users into a regular web page. Right: using this gadget in end
user oriented application (Google Pages).

4 Using VPOET templates in wiki pages

Exploiting VPOET templates by means of the aforementioned HTTP messages
is easy. As an usage example, a Google Gadget named GG-VPOET 8 has been
created. By using this gadget, any end-user can render a semantic data source
(by means of an output template) or provide a web interface to create semantic
data (by means of an input template). GG-VPOET, as any other Google Gadget,
can be inserted into a regular web page or in Google products such as iGoogle,
Google Desktop or Google Pages. Figure 2 shows this gadget in action, rendering
a given data source by means of the template shown in figure 1.

Following the same principles, the integration of VPOET templates in a given
wiki framework (let us say JSPWiki) depends on the existence of a mechanism
to add new tags in the wiki syntax and associate functionality to the tag. For
example, JSPWIki implements these features by means of plugins, and getting
the renderization shown in figure 2 (right side) is as easy as creating a JSPWiki
plugin (let us name it VPOETPlugin) and use it like this in any JSPWiki page:

[{VPOETPlugin action=’renderOutput’ designID=’X’ provider=’Y’
source=’Z’ width=’400’ height=’300’}]

8Available at the Google Gadgets Directory (look for GG-VPOET in http://www.
google.com/ig/directory).

189



The implementation of VPOETPlugin reads the input parameters (action,
designID, provider etc.), builds a HTTP message (a simple URL for HTTP
GET messages like the one shown in section 3), and sends it to a running VPOET
application (to a specific well-known VPOET servlet).

5 Conclusions and further work

The experience with GG-VPOET shows that the integration of VPOET tem-
plates into wikis could be easy in terms of wiki development effort and required
competencies (basic skills in any programming language to create HTTP mes-
sages). This feature is specially remarkable in the wiki world in which wiki
engines are written in most programming languages such as Java, Ruby, PHP or
Perl. In any one of these languages it is easy to create and send a HTTP mes-
sage. Additionally, wiki users benefit from professional web designs, providing
attractive wiki pages which handle semantic data.

Our future work is to improve the features of VPOET in two directions:
containers and user profiles. The former are intended to allow web designers
create graphical containers (e.g. a tabs based agenda) to render multiple seman-
tic individuals. The current implementation renders the individuals sequentially.
The latter extends the HTTP messages to include a parameter pointing to a
semantic description of the user profile. This profile can specify the user device
(e.g. PC, handheld, TV) or the user interactive characteristics (e.g. color blind-
ness, reduced visual sharpness). By providing this information, VPOET could
return the “best”template for a given situation. An hypothetical wiki exploiting
VPOET templates could request users to provide their user profile (URL) or
provide an ad hoc user interface to create it and store it, providing wiki users
with an interface adapted to their needs.

References
1. Oren, E., Delbru, R., Moller, K., Volkel, M., Handschuh, S.: Annotation and

Navigation in Semantic Wikis. In Proc. SemWiki. CEUR-WS vol. 206, (2006)
2. García, R., Gimeno, J.M., Perdrix, F., Gil, R., Oliva, M.: The Rhizomer Semantic

Content Management System. In Proc. WSKS. LNAI Series, vol. 5288, pp. 387–
394. Springer (2008)

3. Oren, E., Haller, A., Mesnage, C., Hauswirth, M., Heitmann, B., Decker, S.: A
Flexible Integration Framework for Semantic Web 2.0 Applications. IEEE Software
24(5), pp. 64–71, (Sept-Oct 2007)

4. Rico, M., Camacho, D., Óscar Corcho: VPOET: Using a Distributed Collaborative
Platform for Semantic Web Applications. In Proc. IDC2008. SCI Series vol. 162,
167–176. Springer (2008)

5. Pietriga, E., Bizer, C., Karger, D., Lee, R.: Fresnel: A Browser-Independent Pre-
sentation Vocabulary for RDF. In Proc. ISWC. LNCS 4273, pp. 158–171. Springer
(2006)

6. García, R., Gil, R.: Improving Human–Semantic Web Interaction: The Rhizomer
Experience. In Proc. SWAP’06. CEUR-WS vol. 201, pp. 57–64, (2006)

190


	Preface
	Programme
	How Controlled English can Improve Semantic Wikis Tobias Kuhn
	Poster (AceWiki -- Natural, Usable, Expressive, Understandable)

	Information Extraction in Semantic Wikis Pavel Smrz and Marek Schmidt
	Undo in Peer-to-peer Semantic Wikis Charbel Rahhal, Stéphane Weiss, Hala Skaf-Molli, Pascal Urso, and Pascal Molli
	Enabling cross-wikis integration by extending the SIOC ontology Fabrizio Orlandi and Alexandre Passant
	What the User Interacts With: Reflections on Conceptual Models for Semantic Wikis François Bry, Michael Eckert, Jakub Kotowski, and Klara Weiand
	Combining Unstructured, Fully Structured and Semi-Structured Information in Semantic Wikis Rolf Sint, Stephanie Stroka, Sebastian Schaffert and Roland Ferstl
	WIKITAAABLE: A semantic wiki as a blackboard for a textual case-base reasoning system Amélie Cordier, Jean Lieber, Pascal Molli, Emmanuel Nauer, Hala Skaf-Molli and Yannick Toussaint
	Engineering on the Knowledge Formalization Continuum Joachim Baumeister, Jochen Reutelshöfer, and Frank Puppe
	MoKi: the Modelling wiKi Marco Rospocher, Chiara Ghidini, Viktoria Pammer, Luciano Serafini, and Stefanie Lindstaedt
	Poster

	Brede Wiki: Neuroscience data structured in a wiki Finn Årup Nielsen
	Poster

	Metasocial Wiki -- Towards an interlinked knowledge in a decentralized social space Amparo E. Cano, Matthew Rowe, and Fabio Ciravegna
	Analysis of Tag-Based Recommendation Performance for a Semantic Wiki Frederico Durão and Peter Dolog
	An Extensible Semantic Wiki Architecture Jochen Reutelshöfer, Fabian Haupt, Florian Lemmerich, and Joachim Baumeister
	Poster (KnowWE -- Knowledge Formalization in the Age of Wikis)

	KiWi -- A Platform for Semantic Social Software Sebastian Schaffert, Julia Eder, Szaby Grünwald, Thomas Kurz, Mihai Radulescu, Rolf Sint and Stephanie Stroka
	VPOET Templates to Handle the Presentation of Semantic Data Sources in Wikis Mariano Rico, David Camacho and Oscar Corcho

