
Towards a Type System for Semantic Streams?

(Extended abstract on work in progress)

Michael Mendler and Stephan Scheele

Informatics Theory Group
University of Bamberg

{michael.mendler,stephan.scheele}@uni-bamberg.de

Abstract. This paper proposes an approach to use constructive description logics as a
typing system for streaming data in the domain of auditing. We introduce the constructive
description logic cALC and show how it can serve as a semantic type system and knowledge
representation formalism for data streams and give a direct interpretation of proofs as
computations following the Curry-Howard-Isomorphism.

1 Introduction

Description Logics(DLs) [1] are a family of knowledge representation languages that can be used
to represent the terminological knowledge of a specific application domain in a structured and
formally well-understood way. DLs have become important in the Semantic Web as a formal
base for the W3C-endorsed Web Ontology Language (OWL).

In some domains like auditing, complications with the standard arise and one has to deal
with partial knowledge that is evolving and incomplete. Auditors need to understand the flow of
information (streaming data) and their related control activities to be able to ensure the validity
and reliability of business transactions. Classical DLs, however, are insufficiently expressive to
deal with streaming information (auditing knowledge) which is highly evolving and incomplete.
The entities building up the domain may not be determined and concrete but are abstractions of
real individuals whose properties are evolving and defined only up to construction. Classical DLs
assume that a concept is static and at the outset either includes a given entity or not. However,
in auditing either option may be inconsistent, if the entity or the concept is not fully defined until
a later stage of the auditing process where lower levels of detail become available. Because the
semantical meaning is context-dependent and possibly involves many levels of explication, DLs
for auditing must support a constructive notion of abstraction which permits that concepts and
entities evolve. Audit statements about the validity of the streaming information, e.g., accounting
data, absence of fraud or conformance to financial process standards must constructively take
account of many dimensions of abstraction and refinement [4].

Towards this goal we have developed a new constructive description logic [4], called cALC,
which is meant to form the core of a family of semantic type systems for the static analysis
of audit processes but also to support the automated generation of executable audit processes
themselves. cALC is based on DLs but its semantics are refined to a constructive notion of truth
which is capturing the uncertainty aspects for dealing with data streams. The idea is that cALC
would be extended to represent semantic ontologies for streaming data in the domain of auditing
and operationalised in terms of a type-theoretic specification language for a data-flow execution
model of audit streams. In the following we recall the definition of cALC [4] and we suggest its
application as a type system showing a direct interpretation of proofs as computations following
the Curry-Howard-Isomorphism. This is inspired by the work of Bozatto et al. [2].

2 Syntax and Semantics of Constructive Description Logic cALC

Concept descriptions in cALC are based on sets of role names NR and atomic concept names
NC and formed as follows, where A ∈ NC and R ∈ NR:

C,D → A | ⊥ | ¬C | C uD | C tD | C v D | ∃R.C | ∀R.C.
? Research project funded by the German Research Foundation (DFG) under ME 1427/4-1.

2 M. Mendler, S. Scheele

In contrast to standard ALC [1] this syntax includes subsumption v as a concept–forming
operator. Being a first class operator, subsumption can be nested arbitrarily as in ((D v C) v
B) v A. Negation ¬ can be represented as ¬C = C v ⊥. Concepts describe a “class” of objects
or individuals, a role represents a binary relation on these classes.

Example 1. To explain what we have in mind let ∆ be a class of database tables over attributes
NR. These tables are collections of records r = [R1 = v1, R2 = v2, . . . , Rn = vn] where Ri ∈ NR

and each vi is either a basic value vi ∈ D or a (reference, key) to another table. The domain D of
basic data might comprise, e.g., Booleans B = {T, F}, naturals N and strings S, i.e., D = N]B]S.
The record r has type type(r) = {R1:D, R2:D, . . . , Rn:D}.

E.g. assume a record rw = [hasName = Petit Chablis, hasOrigin = Alsace, isV intage =
1999, awarded = F] describing a single wine which is of the type type(rw) = { hasName:S,
hasOrigin:S, isV intage:N, awarded:B }. This record is an instance of the concept description
WINEr = ∃hasName.Su∃hasOrigin.Su∃isV intage.Nu∀awarded.B. Therefore, this concept
description can be thought of as a weak type specification of rw. Note, that there is the possibility
to represent null-values by use of ∀ instead of ∃. ut

Constructive interpretations I of concept descriptions extend the classical models for ALC
by a pre–ordering �I for expressing refinement between individuals and by a notion of fallible
entities ⊥I for interpreting contradiction. As explained in [4], entities of the domain ∆I are
partial descriptions representing incomplete information about individuals. The relationship
a � b says that a “is an abstraction of” b, i.e., that it has “contains no more information”
than b. Fallible elements b ∈ ⊥I may be thought of as over–constrained tokens of information,
self-contradictory objects of evidence or undefined computations. E.g., they may be used to
model the situation in which computing a role–filler for an abstract individual a fails, i.e.,
∀b. R(a, b)⇒ b ∈ ⊥I , yet when a is refined to a′ then a non-fallible role-filler b′ ∈ ∆I exists with
R(a′, b′). In [4] several examples are given illustrating this.

The refinement relation � accommodates a range of different applications [3], one important
interpretation is the stream interpretation. In this way a database table t ∈ ∆I can be presented
as a stream of records as follows. Let t be a stream of records. In this case t = t1 · t2 · . . . is a
finite or infinite stream where � is the suffix ordering, which is the least relation closed under
the rule

v ∈ D
v · s � s

where v · s is the stream s ∈ (D∗ ∪ D∞) prefixed by value v ∈ D. For instance,

1 · (2, T) · T · F �I (2, T) · T · F �I T · F �I F �I ε,

is a stream of naturals, booleans and their pairings, where ε denotes the empty stream. Under this
interpretation, concepts CI , which must be closed under � express future projected behaviour
of streams. The empty stream is a fallible entity and has no future behaviour, it represents a
computational deadlock, i.e., ⊥I = {ε}. Fallible elements ⊥I correspond to divergent or dead-
locked reactions which do not produce any value. Viewed as stream computations these produce
ε which is universally polymorphic, i.e., naturally contained in any type. This corresponds to the
fact that fallible entities in cALC are information-wise maximal elements and therefore included
in every concept, i.e., ⊥I ⊆ CI for all C.

Definition 1. A constructive interpretation of cALC is a structure I = (∆I ,�I ,⊥I , ·I) con-
sisting of a non-empty set ∆I of entities, the universe of discourse; a refinement pre-ordering
�I on ∆I , i.e., a reflexive and transitive relation; a subset ⊥I ⊆ ∆I of fallible entities, and an
interpretation function ·I mapping each role name R ∈ NR to a binary relation RI ⊆ ∆I ×∆I
and each atomic concept A ∈ NC to a set ⊥I ⊆ AI ⊆ ∆I , which is closed under refinement. ut

The crucial point about the constructive semantics is that each entity implicitly subsumes
all its refinements and truth is inherited. Specifically, if entity x satisfies a concept description
C and x �I y then this implies that y satisfies C as well, for all concepts C. Robustness under
refinement is a natural prerequisite of type systems. Suppose p is a program of type τ , where

Towards a Type System for Semantic Streams 3

τ expresses some static properties of the computations performed by p. The statement that “p
guarantees τ” is usually written p:τ . Now, if p v−→ p′ is a computation step in which p produces
a response value v and then transforms to the continuation program p′, then soundness of typing
requires that p′, too, satisfies the type specification τ . This is known as the subject reduction
property. Thus, if we wish to view cALC concepts C as type specifications then it is natural to
consider computation steps p v−→ p′ as a form of refinement �I . The typing statement p:C then
corresponds to the condition p ∈ CI and subject reduction is for free. Deadlocked programs are
represented by fallible entities and do not produce any value, i.e., p:⊥ iff p 6−→.

In other words, if streams are considered as abstract entities then cALC concepts can act as
a typing system to specify the static semantics of streams of business data such as as linearised
database tables or time–series of financial market transactions. Note that in this model database
tables are first class values. In standard relational databases tables do not usually contain refer-
ences to tables but merely references (keys) to entries in other tables. This is a first-order model
of data. Here we will permit that attribute values inside an abstract entity or concept may be
described by its own database table. In this way we obtain a second-order semantics in which
the data to be manipulated are tables (i.e., collections of records) rather than records of atomic
data. This is in line with the idea of an hierarchical data model in which objects are composite
and arising by abstraction of lower level parameters.

3 A Constructive Term Assignment System

With each concept C we associate a set of realisers or information terms IT(C). Information
terms [2] can be thought of as constructive explanation of logical connectives, i.e. they are
mathematical objects explaining the truth of a formula by providing a witness in the form of a
construction or program. Latter can be obtained by use of a calculus as has been demonstrated
in [3].

Example 2. To illustrate information terms, let us reconsider the Food-Wine knowledge-base
by Brachman et.al. (1991) as reported by [2]. First a knowledge-base consists of the termino-
logical knowledge and is called in short TBox. In our case this is given by the atomic con-
cepts FOOD,WINE,COLOR, roles isColorOf, goesWith and the following axioms: Θ =
{Ax 1,Ax 2} where

Ax 1 =df food v ∃goesWith.color

Ax 2 =df color v ∃isColorOf.wine.

Intuitionally AX 1 specifies that for all individuals of the concept food exists a role–filler over
relation goesWith that belongs to the concept color, AX 2 can be explained similarly. Instances
of TBox concept descriptions are specified as assertional knowledge and form the so-called ABox:
For the Food-Wine ontology we give the following ABox, which satisfies the axioms AX 1 and
AX 2:

fish : FOOD red : COLOR (red, barolo) : isColorOf

meat : FOOD white : COLOR (white, chardonnay) : isColorOf

chardonnay : WINE (fish, white) : goesWith

barolo : WINE (meat, red) : goesWith.

The Curry–Howard–Isomorphism can be customised to realise any Hilbert-proof of AX 1 and
AX 2 as a program construction. For instance, AX 1 can be read as a function transforming
food-entities u into color-entities x such that goesWith(u, x), similarly AX 2 is a function
from colors c to wines w so that isColorOf(c, w). ut

These realisers are then taken as extra ABox parameters so that instead of I |= x:C we
declare what it means that I |= x:〈α〉C, relative to a given interpretation I, for a particular
realiser α ∈ IT(C). This so-called realisability predicate gives additional constructive semantics
to our concepts in the sense that I |= x:〈α〉C implies I |= x:C.

The sets IT(C) and refined concepts 〈α〉C are defined by induction on C. For our example
we need the following information terms:

4 M. Mendler, S. Scheele

– IT(A) =df 1 = {0} for atomic concepts;
– IT(⊥) =df 1 = {0};
– IT(C uD) =df IT(C)× IT(D);
– IT(C tD) =df IT(C) + IT(D);
– IT(C v D) =df IT(C)→ IT(D);
– IT(∃R.C) =df (∆I → ∆I)× (∆I → IT(C));
– IT(∀R.C) =df ∆

I → IT(C).

Definition 2 (Realisability). Realisability is such that

– I |= x:〈0〉A iff x ∈ AI for A = ⊥ or atomic;
– I |= x:〈α, β〉(C uD) iff I |= x:〈α〉C and I |= x:〈β〉C;
– I |= x:〈α〉(C tD) iff α = ι0β and I |= x:〈β〉C or α = ι1β and I |= x:〈β〉C;
– I |= x:〈f〉(C v D) iff ∀y � x. ∀α ∈ IT(C). I |= y:〈α〉C ⇒ I |= y:〈fα〉D;
– I |= x:〈a, α〉(∃R.C) iff ∀y � x. (y, a y) ∈ RI & I |= a y:〈α (a y)〉C;
– I |= x:〈α〉(∀R.C) iff ∀y � x. ∀a ∈ ∆I . (y, a) ∈ RI ⇒ I |= a:〈αa〉C.

ut
Under the Curry-Howard Isomorphism (propositions-as-types) [5, 6] the Cartesian product

C ×D is the constructive interpretation of conjunction C uD, function spaces C → D are the
constructive reading of subsumptions C v D and Disjunction CtD can be interpreted by disjoint
union. The information term for ∃R.C can be written equivalently as ∆I → (∆I × IT(C)) that
can be interpreted as a function from ∆I to a pair, which consists of a witness for the role-filler
and the information term for C. ∀R.C is interpreted as function assigning every x ∈ ∆I an
information term for C.

Example 3. Information terms for the axioms AX 1, AX 2 of Ex. 2 arise either from proof terms
[3] or they are created from a particular ABox. Based on the ABox of Ex. 2 the information
terms ax 1, ax 2 can be chosen such that

ax 1 =df λu.λx.caseu of [meat→ (red, 0) | fish→ (white, 0)]
ax 2 =df λu.λx.caseu of [red→ (barolo, 0) | white→ (chardonnay, 0)]

where ax 1 ∈ ∆I → IT(food v ∃goesWith.color) and ax 2 ∈ ∆I → IT(color v ∃isColorOf.wine).
These express the constructive content of Ax 1, Ax 2 in I. ax 1 can be read as a function which
returns a pair of color and 0 dependent on case analysis on input u to decide between meat
and fish, 0 is taken here as second component since it is the information term for the atomic
concept color. ut

Proposition 1 (Subject Reduction). Let I |= x:〈α〉C and x � y. Then, I |= y:〈α〉C.

Proof. By induction on concepts C. For atomic concepts 〈0〉A the statement follows by invariance
under refinement. The cases 〈α, β〉(C u D), 〈α〉(C t D) are by induction. For 〈f〉(C v D),
〈a, α〉(∃R.C) and 〈α〉(∀R.C) we exploit transitivity of refinement. ut

Example 4. An information term for AtB is an element α ∈ IT(AtB) = 1 + 1 = 2 which is
represented canonically as the set 2 = {0, 1}. If α = 0 then I |= x:〈α〉(A t B) iff x ∈ AI and if
α = 1 then I |= x:〈α〉(AtB) iff x ∈ BI . Thus, the realiser gives explicit information about which
side of the disjunction holds. If we abstract from α we get standard validity: ∃α. I |= x:〈α〉(AtB)
is the same as x ∈ (A tB). ut

Example 5. Assume that ∆I contains the particular stable stream data = data0data1data2 . . .
where each datai is a non-deterministic record with every possible data value as a val -filler, i.e.,
(datai, v) ∈ valI for all i ≥ 0 and v ∈ D = N] B. Such a stream data may be viewed as the
universal abstraction of all entities that have a val -filler in D. Think of data as a concept name
for the time-invariant set D and val as a role name for the set-theoretic element relationship ∈.

Under interpretation I let nat and bool be the atomic concepts of natural numbers and
booleans, i.e., such that natI = N and boolI = B. Then data ∈ ∃val .nat and data ∈ ∃val .bool.
A realiser of ∃val .nat on data is just a stream of naturals (as val -fillers). Similarly, a realiser of
∃val .bool on data is an arbitrary stream of Booleans. Every stream of records with val -fillers in

Towards a Type System for Semantic Streams 5

D can be seen as a realiser of ∃val .(booltnat) on data while a realiser of ∃val .boolt∃val .nat
must select either a stream of Booleans or a stream of naturals.

Now, what is an information term realising the concept description ∃val .nat v ∃val .bool
for entity data, i.e., f such that

I |= data:〈f〉(∃val .nat v ∃val .bool)?

According to the definition f is a function from realisers α with I |= y:〈α〉(∃val .nat) to realisers
f α such that I |= y:〈f α〉(∃val .bool) for all y � data. Since data is a constant stream every
realiser for a refinement of data is a realiser for data and vice versa, i.e., I |= data:〈α〉C iff
I |= y:〈α〉C for y � data. Thus, f maps realisers α of ∃val .nat (on data) to realisers f α of
∃val .bool. Given what has been said above, this means that f is a function from streams of
naturals to streams of Booleans. ut

One can then show that every Hilbert proof `H C generates, for any interpretation I, a
function f :∆I → IT(C) such that ∀u ∈ ∆I . I |= u:〈fu〉C. Specifically, each of the following
Hilbert axioms is realised by a λ-term, for instance:

IPL1 : C v (D v C) ; λu.λx.λy.x

IPL2 : ((C v (D v E)) v (C v D) v (C v E)) ; λu.λx.λy.λz. (xz)(yz)
IPL3 : C v (D v (C uD)) ; λu.λx.λy. (x, y)

Axiom ∃K is the function ∃K =df λu.λx.λy.(π1y, x(π1y)(π2y)). The rule of MP and Nec are
refined to

If 〈α〉C and 〈β〉(C v D) then 〈λu.(β u)(αu)〉D
If 〈α〉C then 〈λu.λx. α x〉(∀R.C).

Example 6. In this way, using the above mentioned axioms Ax 1 and Ax 2, the derivation of
the concept description food v ∃goesWith.(COLOR u ∃isColorOf.wine), up to reductions in
the λ-calculus, corresponds to

prf = λu.λx.(π1(ax 1 x), (π2(ax 1 x), (π1(ax 2(π2(ax 1 x))), π2(ax 2(π2(ax 1 x))))))

which is an information term such that ∀u. I |= u:〈prf u〉(food v ∃goesWith.(color u
∃isColorOf.wine)) assuming that ∀u. I |= u:〈ax 1 u〉Ax 1 and ∀u. I |= u:〈ax 2 u〉Ax 2. Such realis-
ers ax 1, ax 2 can be obtained from a concrete ABox as has been shown in Ex. 3. ut

4 Outlook

Auditors need reliable tools to draw the right consequences, thus they have strong require-
ments on correctness of software (certified code) so that formal, mathematical methods are
needed. Extensions of cALC can serve as ontological specification languages to characterise the
semantics of financial information flows as strongly typed data streams. Logic-based reasoning
algorithms (type-checking, model-checking) will then be available to raise the trustworthiness
of next-generation auditing tools. We aim to develop a component–based data flow program-
ming environment in which cALC types can be used as type specification of stream processing
functions and for the extraction of auditing processes from proof terms by use of a calculus.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider. The description
logic handbook: theory, implementation, and applications. Cambridge University Press, 2003.

2. L. Botazzo, M. Ferrari, C. Fiorentini, and G. Fiorino. A constructive semantics for ALC. In Int’l
Workshop on Description Logics (DL 2007), pages 219–226, 2007.

3. M. Mendler and S. Scheele. Towards constructive description logics for abstraction and refinement.
Technical Report 77(2008), University of Bamberg, September 2008.

4. M. Mendler and S. Scheele. Towards constructive dl for abstraction and refinement. In Franz
Baader, Carsten Lutz, and Boris Motik, editors, 21st International Workshop on Description Logics
(DL2008), Dresden, Germany, May 13-16, 2008, volume 353 of CEUR Workshop Proceedings. CEUR-
WS.org, 2008.

5. A. S. Troelstra and D. van Dalen. Constructivism in Mathematics, volume II. North-Holland, 1988.
6. D. van Dalen. Intuitionistic logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical

Logic, volume III, chapter 4, pages 225–339. Reidel, 1986.

