
Docuphet – a dialogue-assisted content annotation tool

Mihály Héder
Budapest University of Technology and

Economics
mihaly.heder@computer.org

Domonkos Tikk∗

Institute for Computer Science
Humboldt University in Berlin

tikk@informatik.hu-berlin.de

ABSTRACT
In this decade the amount of textual content stored on the web be-
came enormous, but the basic structure of web documents remained
unchanged: a mixture of text and markup. When creating a doc-
ument, the user rarely has the possibility of embedding semantic
annotation into the content, because editor applications do not have
such a feature or they are too difficult to use. We think that the
creation of semantically rich documents can be best facilitated by
a content editor with text mining technology running in the back-
ground. In this paper some of these technologies are brought into
spotlight.

1. INTRODUCTION
The success of the Wikipedia project illustrates the tremendous po-
tential of the everyday web user for creating vast amount of content.
Other content-creation projects hold control over the submitted ma-
terial by a rigorous review process or by a delegated editorial staff.
These initiatives have never been able to produce the same quan-
tity of content. The NuPedia project [24] that was started before
WikiPedia is now accessible only in the Internet Archive. Citi-
zendium [5], another controlled encyclopedia, has only some ten
thousands articles, while WikiPedia has millions.

Of course the quality of these articles is a subject of debate. The
content representation, however, is similar in the majority of the
cases. Almost every traditional encyclopedia-like content repos-
itory uses some form of page formatting markup and plain text.
Some of them offer a limited vocabulary to categorize the article,
give the date, the creator, and specify some keywords.

There are research projects aiming to capture not only the format-
ting but also the semantics of the text at content editing. The ma-
jority of these applications define themselves as “semantic wikis”.
They enable the embedding of semantic annotation (usually RDF
triples) by hand. That is, the user has to explicitly define the prop-
erty and the value of the semantic expression involved, using a spe-

∗On leave from Dept. of Telecommunications and Media Informat-
ics, Budapest University of Technology and Economics

cial markup language. This requires certain skills from the user and
has a negative impact on the size of the potential audience.

Another approach is to annotate the text off-line, after the content
has been created, without human supervision. To achieve this nat-
ural language processing (NLP) technology, namely information
extraction (IE) tools are required. Considering the huge amount of
textual data already present on the Web, these researches are very
important.

Undoubtedly, it would be fruitful to provide tools for the average
user to ease the creation of semantic annotations when editing web
content. The Docuphet [9] project aims at discovering and exper-
imenting with the possible solutions of the problem. In our view
the web content creation should be a continuous, mutual dialogue
between human and machine rather than a simple one-time input
process.

This paper is organized as follows. In the following section we
describe the motivations and goals behind Docuphet and the main
components of the system. In Section 3 the technologies of the
implemented components are detailed. Section 4 presents two ex-
ample applications of the system. In Section 5 we discuss our ex-
periences, and propose some requirements on dialogue-assisted se-
mantic annotators. Section 6 reviews the related work in the field
of semantic annotation software. Section 7 concludes the paper and
discusses the future work.

2. THE DOCUPHET PROJECT
The main goal of the Docuphet project is to create a system that
enables the user to produce semantic annotation easily. This is
achieved via an intuitive user interface that is supported by text
processing algorithms in the background. We intend to capture the
meaning of the currently edited content by addressing simple ques-
tions to the user. While the user types, the available text is pro-
cessed by IE applets in the background. Then extracted facts are
formulated as statements that are conveyed to the user in the form
of closed-ended questions. If the user confirms a statement, the
system automatically embeds the appropriate semantic annotation
into the text. The annotator software does not require any special
technical knowledge or skill from the user, it is only assumed that
she knows the particular content that she is editing, and hence she
is able to decide if a related closed-ended question is true or not.

Another property of the system is that it stores text and annota-
tion together. This integration has many advantages. For instance
when the text changes, no extra look-up operations are required to
transfer the changes into the corresponding semantic annotations.

If the annotations were stored separately, the maintenance of extra
identifiers would be necessary to link text and annotation.

To make it accessible and runnable without installation, the client
part of the system runs in an ordinary web browser.

It is a natural requirement against every system to support multi-
ple languages. This requirement was considered when developing
every component of the system. However, many IE techniques are
language specific.1 For the first applications, the Hungarian was
selected as primary language.

Docuphet focuses only on the creation of annotations. The further
use the semantically annotated content, such as semantic search
and retrieval, or machine reasoning is currently out of the scope of
the project. We rendered our efforts to the design and the valida-
tion of our concept, therefore some components of the prototypical
applications are not yet optimized for the efficiency under heavy
load.

2.1 The main components of Docuphet
The user interacts with the Docuphet Content Editor’s (DCE) web
interface. The web application forwards the created content to the
server via AJAX calls. On the server the content is distributed to
various IE modules. The modules suggests annotation suggestions.
Each suggestion comprises a textual statement or question, a nu-
meric confidence level, one or more possible answers to the ques-
tion, and semantic annotations (one per each positive answer). The
confidence level is a real number of the unit interval, which spec-
ifies the validity of the suggestion. Under a certain (configurable)
level suggestions are automatically disregarded. The module’s sug-
gestions are collected on the server and are sent back to the client,
where they are presented to the user in the form of pop-up closed-
ended questions. If the user confirms a statement the system inserts
the corresponding annotation into the content. When the user fin-
ishes editing, the full annotated document is sent back to the server
and saved there. Figure 1 provides an overview of the system.

In the next section we discuss the components of Docuphet: the
content editor, the annotation storage, the text processing and in-
formation extraction applets.

3. TECHNOLOGY OVERVIEW
3.1 The content editor
There is an excess of tools for creating content on a computer.
These can be categorized in many ways. One aspect is the mode of
editing. There are WYSiWYG editors like desktop word proces-
sors. Other, structured editors have two views: one for editing and
one for viewing the documents. At structured editors, the user han-
dles objects like section, title, paragraph. This category includes
wiki editors, publishing tools, DocBook editors and scientific ed-
itors for LATEX . In these applications the final formatting is done
with style class files or style sheets.

Another aspect is the technology of the editor. There are two main
categories: the more function-rich desktop applications that need
to be installed on the client, and the web-based editors [11, 34] that
require only a web browser to run. Web-based editors have been
formerly simpler, but as AJAX become widespread, the complexity
of such applications became almost equal to the desktop ones.
1In fact, this is one of the central problems of text processing to
provide language-independent information extraction methods

Figure 1: The overview of the components and the data flow of
the Docuphet system.

The special requirements against DCE led to the development of a
completely new solution. The DCE is an easy to use WYSiWYN2

editor, which is capable of editing the structure of a document with-
out the need of learning a markup language. DCE also handles the
communication with the server, the representation of suggestions
and the integration of annotations (see also Figures 4–5 for screen-
shots).

3.2 Content storage
For selecting the best of the plethora of content storing formats we
set up the following requirements:

1. simplicity to allow the implementation as web editor;
2. standard, stable and free to use;
3. proper support (documentation, examples, templates, editors,

tools);
4. extendibility to carry annotations;
5. support of the following formatting: paragraphs, sections

and titles; lists, program listings, emphasizes, images, tables,
links.

Many options were evaluated: RTF , texinfo [13], troff [7], wikitext
[42], XHTML, DocBook, DITA [25], LATEX , ODF, and CDF [38].

Because of the large variety of convenient XML processing tools
we dropped the non-XML formats. We also dropped ODF because
of its high complexity. DITA and CDF (WCID) are too specific
for our purposes. From the remaining two candidates we decided

2“What You See is What You Need” editors let the user to edit the
structure of the document but not the source markup directly. They
differ from WYSiWYG editors because further transformations are
applied to generate the final view of the document.

in favour of DocBook, because this format is purely structural, it
doesn’t contain any markup relating to the document formatting,
and it’s grammar is defined in an easy-to-subtype Relax NG [26]
format.

3.3 Storing semantic annotations in the con-
tent

Many possible technologies were evaluated for storing semantic
annotations in a DocBook document: HTML Metadata, RDF XML
[39], GRDDL [14], Microformats and RDFa [40]. Finally we have
selected RDFa because of its many advantages.

The RDFa [40] has been developed by W3C and by now it is a
W3C recommendation. RDFa offers a technique that transforms an
arbitrary part of an XML document into an RDF triple. The tech-
nology is primarily aimed at annotating XHTML documents but
also capable of handling XML documents from other namespaces
(an example is depicted in Figure 2):

<article
xmlns="http://docbook.org/ns/docbook"
xmlns:dc="http://purl.org/dc/elements/1.1/">
<title property="dc:title">

The trouble with Bob
</title>
<para id="ch1" property="dc:creator">

Alice
</para>
<para about="#ch1" property="dc:creator">

Tom
</para>
...

</div>

Figure 2: Excerpt of an RDFa-annotated Docbook document

RDFa was also favoured because it is easy to integrate with other
XML namespaces, like Docbook. RDFa allows to annotate every
part of a document, while it is still relatively easy to retrieve the
RDF triples from the XML. To conform DocBook with RDFa, we
extended the Docbook RNG schema to carry RDFa annotations,
and we termed this DocBook profile DocBook/RDFa.

3.4 Extracting semantic information from the
text

3.4.1 Named Entity Recognition
A named entity (NE) is a natural textual identifier of an object, such
as e.g. person names, names of companies, locations, names of
products, addresses, telephone numbers, email addresses. Named
entity recognition (NER) is an NLP task, which aims at identifying
and classifying NEs in the text.

The difficulty of the recognition task depends on the type of NEs.
Telephone numbers, e-mail addresses can be easily recognized with
simple regular expressions. The recognition of personal names and
locations is more difficult, but it can be effectively supported with
appropriate vocabularies. The recognition of company or prod-
uct names can be much harder, because essentially no constraint
applies on their surface form. NER is primarily performed by
analysing some features of the candidate NEs, e.g. surface clues
(capitalization, numbers, special symbols), the frequency, the in-
sentence, in-paragraph, and in-document positions, whereas gram-
matical and morphological analysis may also be applied.

The Docuphet framework contains a general purpose named en-
tity recognizer, the JNER, implemented in Java. This component
comprises several modules, all of them analysing the text with a
different technique. Many of them use vocabularies, e.g., for given
names, company suffixes, locations. Others are based on regular
expressions. It is possible to plug in external tools, such as a stem-
mer or a morphological parser. Other external tools can serve as
connectors to databases (i.e IMDB, DMOZ) or to search engines
(google, wikia search).

Although usually not considered as NEs, the recognition of pro-
fessions (like painter, composer, engineer) and human properties
(blond, tall) are also supported in JNER.

Conforming with the philosophy of Docuphet (ask relevant ques-
tions from the user), in this system the NER can also be assisted by
asking closed-ended questions from the user.

3.4.2 Information Frame Recognition
Let us define an information frame (IF) as an RDF triple (we use
Notation 3 syntax of RDF in this article for brevity)

<subject>
<predicate>
<object> .

in which at least one value is missing and thus substituted by a vari-
able name. The class of the missing component(s) may be known.
An example IF:

<X (an instance of the person class)>
<location of birth>
<Y (an instance of the location class)> .

The information frame recognition (IFR) means the recognition of
instances of an IF in the text by identifying the missing components
of the triple. For instance in the sentence “Pat Nixon was born in
Nevada in 1912”, we can recognize an instance of the above IF:

<Pat Nixon>
<location of birt>
<Nevada> .

IFs can be defined in various ways. One method is to derive them
from “semantic frames” which are used in the Berkeley FrameNet
project [1] (see an example below). The aim of this project is to
create an annotated lexical resource for English, by using frame
semantics and supported by corpus evidence. These frames are
referring to pre-defined conceptual structures.

frame(DESIGN),
inherit(CREATE),
frame_elements(DESIGNER(=CREATOR),

BUILDING(=WORK)),
scenes(DESIGNER desings BUILDING)

The frame elements are referring to certain semantic roles of actors
and objects present in the scene. In the FrameNet project, human
annotators mark the occurrences of the frame elements in texts.

Evidently, to find the possible semantic role of a text element, it is
very helpful to have the named entities and their types identified

beforehand. In some cases additional rules may also be useful,
i.e. specifying constraints on the relative position of the element
of an IF (in-sentence, in-paragraph). While limiting the number
of potentially identifiable IFs, this constraint has many practical
advantages: it enables to start the IFR process before the whole
content is available, and narrows significantly the search space thus
reducing the computation time.

JFrame is the IFR component of the Docuphet framework, written
in Java. IFs can be defined and the corresponding recognition rules
can be given in JFrame. The input of the module is a token stream,
in which the recognized NEs and their types are already marked.
A JFrame IF definition may contain rules related to the class and
lemmas of NEs in the token stream and have conditions on their
order. JFrame also provides a confidence level for every recognized
IF instance in accordance to the concept of Docuphet’s workflow.

Currently in Docuphet, the IFR rules are defined by hand after ex-
perimentation. This is necessary because:

• There isn’t enough properly annotated text which can be used
as training data.
• The annotation method in Docuphet is based on dialogues.

Therefore, for each IF a simple function must be defined,
which generates the corresponding closed-ended questions.

3.4.3 Sentence segmentation
To support the recognition of IFs, a sentence segmenter was de-
veloped, named as JSentence. The component implements a mod-
ified version of the algorithm described in [33]. The Hungarian
configuration of the tool was tested on the Szeged2 corpus [31],
the biggest multi-thematic text corpus in Hungarian. The corpus
contains 82096 sentences, and consists of complete novels from
various authors and genre, high school essays, general newspa-
per articles, legal texts, computer related handbooks, and economic
news. JSentence recognized sentence boundaries with a precision
of 99.06 % at FP ≈ FN . JSentence uses a rule-based algorithm
with 15 regular expression based rules and 4 abbreviation lists.

4. APPLICATION EXAMPLES
In this section two demo applications of Docuphet are presented.
BioBase is a web site to collect biographies of known people (sim-
ilar to the ones in [18]), user autobiographies, or simple self-intro-
ductory texts. FlatBase is a real estate advertisement portal. In the
case of the biographies, Docuphet is configured to recognize IFs
based only on the entered text. For the FlatBase portal, the en-
tered text is analysed first, and when some relevant information are
still missing (e.g. floor number) Docuphet automatically asks ques-
tions from the user to complete the advertisement database prop-
erly. Both applications are configured to work on Hungarian text.

The workflow is the same in both scenarios as described in Sec-
tion 2.1. Both applications uses DCE and the same document server
component versions. They differ in the way how the annotations are
produced, thus we discuss this part in detail next.

4.1 BioBase
In BioBase a two layered IF recognition has been implemented. In
the first layer NEs are identified as follows:

1. JNER analyses the text configured with all the NER rules
available for Hungarian language. Currently this includes

Figure 3: A typical workflow of Docuphet

person name recognition (male and female distinguished)
based on regular expressions and given name vocabulary, lo-
cation, nationality, profession, education, residence, family
status, social relations (friends/other related people) recog-
nition based on vocabularies, email and phone number recog-
nition based on regular expressions and date recognition based
on a custom Java component, regular expressions and a list
of month names.

2. JNER assigns a confidence level to every recognized NE,
which is calculated by summing the pre-defined values of
matching rules.3 Over confidence level 0.95, an annotation
suggestion is created with the following RDF triple:
<article id>
<related to [NE type]>
<[NE value]>.

where NE type and NE value are substituted with the actual
values. The annotation suggestions also have level of con-
fidence4 that is set to 0.95. DCE accepts every annotation
above 0.9 without asking a confirming question from the
user, in order to avoid of flushing the user with questions.5

The target of the annotations (the location where the annota-
tion is placed) is the node before the given paragraph. From
these annotations, a tag cloud can be generated with typed
(see also Figure 4).

3. For the top three person and location NEs with confidence
level between 0.8 and 0.95, an annotation suggestion of value

3The creator of a rule can set both positive and negative confidence
coefficients.
4This is based on the NE confidence level, but can be weighted, e.g.
when a candidate person NE shares the surname with an already
recognized NE.
5Every annotation can be easily removed by deletion or with the
undo action.

Figure 4: A screenshot from BioBase

0.8 is created with the question “This article is related to the
person/location (value)” with the same target and RDF triple
as in the previous step.

Based on the NEs recognized, the following IE attempts are made:

1. First, the person is identified whom the article goes. This is
done by creating suggestions on the first person NE found
(in the title or in the text) with the triple
<article id>
<describes the life of>
<[NE value]>.

where the target is the beginning of the article, the confidence
level is 0.8. This is repeated with the subsequent person NEs
until a positive answer is given by the user. (In our expe-
rience the article is nearly always about the first mentioned
person).

2. If the subject of the article is known, the date and place of
birth and death are attempted to be identified next. This is
done by analysing the date and location tokens in range of
a centered window of 15 tokens around the occurrences the
identified person. Extra confidence is added if the verb is
in past tense form “született” (was born), “elhunyt |meghalt”
(died) around a particular date or location (these are often
omitted however).

3. Nationality, profession, education, residence, friends and par-
ent’s name are identified in a similar way as described in the
previous point, involving certain terms (his mother | father)
where appropriate.

Using these annotations the persons can be categorized by the era,
which of they lived or live in, the profession, the nationality or lo-
cation. All the RDF properties used in the process are in BioBase’s
namespace, but if required, they can be easily mapped into other
namespaces, like FOAF [12].

Our experience with BioBase shows that Docuphet is able to cap-
ture the basic biographic information about a person. When creat-
ing a 500 word long biography (see Figure 4), the system pops up
10–15, mostly adequate questions. One direction of further work
could be the to addition of new event IFs based on the review of
biographies.

4.2 FlatBase
IFR performed in FlatBase also in two layers, but in a completely
different way than in BioBase. On the first level, the main informa-

Figure 5: A screenshot from FlatBase.

tion of the advertisement are attempted to be identified:

• type of property: house, condominium, apartment etc.,
• type of offer: for rent, for sale,
• location: countryside, city,
• price range,
• size,
• contact information.

When a part of main information becomes available, the details are
attempted to be extracted. Some examples:

• details about the location (district or quarter, street name);
• building materials;
• in case of flats: on which particular floor is the property; is

this the top/ground floor;
• for certain types of property: orientation (street, garden);
• for a house: size of the garden;
• type of heating (depends on the property type);
• arrangement of rooms (e.g. separated entrance);
• public transport facilities (different types, based on the city).

On both levels, specially configured JNER instances are used. The
configuration initially includes a shorter list of locations, regular
expression based rules to recognize price, size, and contact infor-
mation. IFR is then performed based on already known NEs and
certain trigger words related to building materials, heating types,
etc. When some information is extracted, the JNERs may be recon-
figured accordingly (e.g. loading the corresponding quarters when
a district of Budapest is found).

When some of the main information are missing from the ad by
saving, the user is asked to complete.6 If this happens again, a
limited number of direct questions are formulated related to the
missing information, every question only once. At the end, the ad
is saved even if some information are still missing.

FlatBase has proven to be very effective because flat advertisements
are usually short, very similar to each other, and their vocabulary
is limited. As a result, Flatbase is capable of extracting nearly all
(usually not more than 5–10, see Figure 5) important information
from an advertisement. This suggest that FlatBase may become a
user-friendly input-assisting tool for advertisement portals.

5. DISCUSSION
6But the actual content is stored anyway.

Bodain and Robert composed five requirements on the static prop-
erties of semantic annotations [3]:

• robust anchors,
• transparency,
• freedom in choosing the semantic vocabulary,
• variable granularity,
• handling dynamic updates.

For dialogue-assisted annotators, such as Docuphet, most of the
above requirements can be carried over7, but as an outcome of our
experimentation, we can now formulate additional requirements on
the semantic annotation creation:

1. A particular question must never be asked twice to avoid of
the discontent of the user. This implies that:

2. Every suggestion must be stored in the document, regardless
from the answer, if any. Per-session storage is not sufficient
since the document can be edited in several sessions. Further
research is needed to find out whether suggestions should be
stored on a per-document or a per-user basis.

3. There are two main types of suggestions depending on the
positive/negative answer of the user. As a future work it
should be investigated how negative answers can be exploited
at annotation.

4. According to the “handling dynamic updates” rule described
in [3], the annotations must be re-validated upon every text
change. Given our point 1, this requirement can hardly be
met. Theoretically it is possible to insert a statement into
the first part of a document which negates the meaning of
everything in a given scope. To handle this appropriately, we
should either fully capture the meaning of the change and
update the right annotations or, re-ask every question. The
first solution is yet not possible to carry out, the latter causes
a high number of undesirable questions. To get around this
problem, we devised two techniques:
• Limited scope: We have defined two types of annota-

tions: basic and derived. Basic annotations regard only
to a specific text scope (a title, a paragraph, list item).
We assume that changes outside the scope do not af-
fect them. To fulfil this assumption, basic annotations
are very simple e.g. “This paragraph is related to Bu-
dapest” when the token Budapest is present. These an-
notations are usually retrieved by NER as described in
Section 4.1, and re-validated upon text change in their
scope.
• Dependencies: We define a dependency graph of anno-

tations. Derived annotations depend on basic or other
derived annotations. The dependency is tracked with a
list of annotation IDs. Every time an annotation changes,
its dependants should be re-validated. If an annotation
is deleted, the derived annotations must be deleted as
well. Furthermore, a derived annotation may require
a re-validation when non-annotated parts of the text
change, since some derived annotations may depend on
the characteristics of the text or on missing annotation.
For example if the user accepts a new “main category”
annotation, the old one must be re-validated or simply
deleted.

5. The number of questions asked together has to be limited.
This is important because if the user pastes in a larger piece

7although we applied a pre-defined semantic vocabulary because
of the nature of the system

of text, then many suggestions may be generated. These must
be asked in several turns.

6. RELATED WORK
In the last 15 years, an excess of semantic annotation tools had
been developed. Here we recall and compare the most important
ones (see also Table 1).

We can divide the semantic annotators into two main groups:

• Semantic Wikis: One form of inserting semantic annota-
tions into documents is via semantic wikis, such as Semantic
Mediawiki [23], Artificial Memory [21], Kaukolu [8], PHP-
Wiki [36], IkeWiki [30], and SWiM [19]. These applications
enable the user to input RDF data by using a special syn-
tax. The available semantic vocabulary and the granularity
of the annotations vary in these applications, but in all cases
semantic handling skill is required from the user.
• Desktop ontology builders and annotators: This group

contains some feature-rich desktop annotators for authoring
semantically annotated documents. Protégé [28], TopBraid
[35], Amaya [29], and Mangrove [22] are frameworks for
building ontologies and knowledge graphs. SWEDT [27],
Apolda [41], and KATIA [3] have rich document editing and
annotating capabilities. These are professional tools for know-
ledge experts.
S-CREAM [15] integrates the Amilcare [4] IE module that
implements a semi-supervised machine learning method: a
set of training data must be annotated by hand in advance,
then Amilcare creates certain annotations automatically in
new documents.
COHSE [2] highlights text and provide additional informa-
tion for strings matching elements of a pre-defined knowl-
edge base. Magpie [10] allows annotation of a pre-defined
set of concepts based on forms.

Docuphet has many in common in the visualization of annotations
with SWEDT [27] and KATIA [3]. But unlike these tools, Docu-
phet’s editor hides the annotation markup details from the user and
provides annotation visualization instead.

Like Melita [32], AKTiveDoc [20], MnM [37], or S-CREAM [15]
Docuphet also uses IE technology to extract semantic annotation
candidates from the text. However, the way Docuphet uses IE is
quite dissimilar from these tools, since it uses IFs as a common
concept of semantic information and involves the user into the pro-
cess.

Like COHSE and Magpie, Docuphet is based on pre-defined con-
cepts and relations that are termed information frames. The tar-
geted audience of unskilled users and the NLP- and IE-based dia-
logue-assisted annotation creation render our solution rather unique.
Our approach is comparable to the question-sequence-based guid-
ance provided by some complex installation wizards, where the
questions are based on the information gathered earlier. In Docu-
phet the set of IFR elements represents the knowledge base, which
provides a sophisticated, flexible and order-independent solution.

7. CONCLUSION AND FUTURE WORK
Docuphet is dialogue-assisted semantic text annotator. The com-
puter–human dialogue is facilitated by IE techniques: named en-
tity recognition and information frame extraction. In Docuphet—
unlike some semantic wikis—it is not possible to annotate the text

Table 1: Comparing Docuphet to other solutions

Name Platform Editor type Storage format
Semantic annotation input Semantic vocabulary Way of storage Skills required
WikiPedia Web textarea wikitext
– – – –
Semantic MediaWiki Web textarea wikitext
markup arbitrary special wikitext ontologies, markup
SWEDT Eclipse source code editor HTML
form+RDF source arbitrary RDF Web development, ontologies
Katia desktop Java word processor HTML
Drag-and-Drop predefined RDF server ontologies
Amaya desktop application source code editor HTML
forms arbitrary RDF server Web development, ontologies, RDF
Melita desktop application word processor HTML
forms+named entity suggestionsa predefined RDF database ontologies
Docuphet Web What You See is What You Need Docbook
suggestions in natural language predefined RDFa –

aIt collects all named entities as potential instances of ontology classes

and build the corresponding ontology simultaneously. Therefore
Docuphet is only capable of handling pre-defined RDF information
triples, which limits the flexibility of the system. On the other hand,
this very property allows to compose easy-to-understand questions
about the known triples, as the questions are defined together with
the corresponding IFs. This way it is easy to create annotations
even for the completely uninitiated users.

Given these properties, Docuphet is most useful when the domain
of the text is known in advance. Two exemplary applications were
presented in Section 4. Other possible applications include anno-
tation of economic or sport news, product reviews or geolocation
reviews. In these cases the set of appropriate IFs and corresponding
IFR rules have to be created in advance.

Despite these limitations, there is a basic functionality available
without specific domain knowledge. Docuphet is capable of rec-
ognizing NEs in an arbitrary text, and formulating questions about
the NE candidates. This makes it a very useful tool for building
NE databases and for disambiguation applications. Another possi-
ble application area is the assistance of context sensitive browser
applications tools, such as In4’s iGlue [17] and Context Discovery
Inc.’s Context Organizer [6].

As for the future work, we intend to enable Docuphet to access
and edit wikipedia articles via the interface provided by the Medi-
aWiki’s public API. As wikipedia uses the wikitext format, being
very different from Docbook/RDFa, apparently the most problem-
atic is the conversion of the articles, and the placement of the the
annotations in wikitext. We also plan to integrate Docuphet with
large public databases like IMDB, to facilitate disambiguation and
named entity recognition.

We think that in machine understanding, bidirectional communi-
cation — questions and answers — is a key element — just like
in human understanding. However, we admit that if the questions
are not relevant enough, this proactive behavior probably causes
discontent on the user’s part. To find out more about the users’ re-
actions when using our system, we intend to conduct experiments
and surveys with many users.

The relevance of the questions can be improved if topical category
labels are available for the documents. Therefore we plan to pre-
pare the Docuphet to collaborate with document classifiers, such as
e.g. the hitec3 framework [16].

Acknowledgement
Domonkos Tikk was supported by the Alexander von Humboldt
Foundation.

8. REFERENCES
[1] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The berkeley

framenet project. In Proceedings of the 17th international conference
on Computational linguistics, pages 86–90, Morristown, NJ, USA,
1998. Association for Computational Linguistics.

[2] S. Bechhofer, C. Goble, L. Carr, and S. Kampa. COHSE: Semantic
web gives a better deal for the whole web? ISWC International
Semantic Web Conference Poster, 2002.

[3] Y. Bodain and J.-M. Robert. Developing a robust authoring
annotation system for the semantic web. Proc. of 7th IEEE Int. Conf.
on Advanced Learning Technologies, 2007.

[4] F. Ciravegna, A. Dingli, Y. Wilks, and D. Petrelli. Amilcare: adaptive
information extraction for document annotation. SIGIR’02: Proc. of
the 25th Int. ACM SIGIR Conf. on Research and Development in
Information Retrieval, pages 367–368, 2002.

[5] Citizendium. en.wikipedia.org/wiki/Citizendium.

[6] Context Discovery Inc. Context Organizer for the Web.
http://www.contextdiscovery.com/

context-organizer-for-the-web.aspx.

[7] R. Corderoy. troff. www.troff.org/.

[8] DFKI Knowledge Management. Kaukolu.
www.dfki.de/web/forschung/km/.

[9] The Docuphet project. www.docuphet.net.

[10] J. Domingue, M. Dzbor, and E. Motta. Semantic layering with
magpie. In Handbook on Ontologies, pages 533–554. Springer, 2004.

[11] FCKEditor. www.fckeditor.net/.

[12] The Friend Of A Friend project. www.foaf-project.org/.

[13] Free Software Foundation. texinfo.
www.gnu.org/software/texinfo/.

[14] GRDDL Working Group. Gleaning resource descriptions from
dialects of languages. www.w3.org/TR/grddl/.

[15] S. Handschuh, S. Staab, and F. Ciravegna. S-cream-semi-automatic
creation of metadata. Proc. of the European Conf. on Knowledge
Acquisition and Management, 2002.

[16] HITEC. categorizer.tmit.bme.hu/trac/wiki.

[17] In4 Ltd. The iGlue project. http://iglue.com/beta/.

[18] Á. Kenyeres. Magyar Életrajzi Lexikon ((Hungarian Biography
Encyclopedia)). Arcanum Adatbázis Kft, 1994.

[19] KWARC. SWiM: A semantic wiki for mathematical knowledge
management. kwarc.info/projects/swim/.

[20] Vitaveska Lanfranchi, Fabio Ciravegna, Phil Moore, and Daniela
Petrelli. Document editing and browsing in aktivedoc. In DocEng
’05: Proceedings of the 2005 ACM symposium on Document
engineering, pages 237–238, New York, NY, USA, 2005. ACM.

[21] L. Ludwig. Artificial memory. www.artificialmemory.net/.

[22] L. McDowell, O. Etzioni, S. D. Gribble, A. Y. Halevy, H. M.Levy,
W. Pentney, D. Verma, and S. Vlasseva. Mangrove: Enticing ordinary
people onto the semantic web via instant gratification. Proc. of
International Semantic Web Conference, pages 754–770, 2003.

[23] Semantic Mediawiki. semantic-mediawiki.org/wiki/
Semantic\%5FMediaWiki.

[24] Nupedia. en.wikipedia.org/wiki/Nupedia.

[25] OASIS DITA Technical Committee. Darwin information typing
architecture. www.oasis-open.org/committees/dita.

[26] OASIS Relax-NG committee. Relax-ng.
www.oasis-open.org/committees/relax-ng.

[27] R. G. Pereira and M. M. Freire. SWedt: A semantic web editor
integrating ontologies and semantic annotations with resource
description framework. IEEE Int. Conf. on Internet and Web
Applications and Services, pages 200–200, 2006.

[28] Protégé. protege.stanford.edu/.

[29] V. Quint and I. Vatton. An introduction to Amaya. Wide Web J., 1997.

[30] Salzburg Research. IkeWiki.
ikewiki.salzburgresearch.at/.

[31] Szegedi Tudományegyetem Nyelvtechnológiai Csoport. Szeged
korpusz 2. www.inf.u-szeged.hu/projectdirs/hlt/.

[32] Advanced Knowledge Technologies. Melita.
howhttp://www.aktors.org/technologies/melita/.

[33] D. Tikk. Szövegbányászat, chapter 2. TypoTEX, 2007.

[34] Tiny Moxiecode Content Editor (TinyMCE).
tinymce.moxiecode.com/.

[35] TopQuadrant. Topbraid. www.topquadrant.com/topbraid/
composer/index.html.

[36] VA Linux Systems. PhpWiki. phpwiki.sourceforge.net/.

[37] Maria Vargas-Vera, Enrico Motta, John Domingue, Mattia Lanzoni,
Arthur Stutt, and Fabio Ciravegna. Mnm: Ontology driven
semi-automatic and automatic support for semantic markup. In
EKAW ’02: Proceedings of the 13th International Conference on
Knowledge Engineering and Knowledge Management. Ontologies
and the Semantic Web, pages 379–391, London, UK, 2002.
Springer-Verlag.

[38] W3C CDF Working Group. Compound document format.
www.w3.org/2004/CDF/.

[39] W3C Semantic Web Activity. Rdf/xml syntax specification.
www.w3.org/TR/rdf-syntax-grammar/.

[40] W3C Semantic Web Activity. Rfda.
www.w3.org/TR/xhtml-rdfa-primer/.

[41] C. Wartena, R. Brussee, L. Gazendam, and W.-O. Huijsen. A
practical tool for semantic annotation. IEEE 18th Int. Conf. on
Database and Expert Systems Applications (DEXA), 2007.

[42] wikitext. en.wikipedia.org/wiki/Wikitext.

