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Abstract. Insider attacks are often subtle and slow, posing the prob-
lem of integrating a large volume of event data from multiple sources
over a long period. This paper proposes a scalable solution to combining
evidence from multiple sources, by maintaining long-term estimates that
nodes are subverted for each node in the system, rather than retaining
event data for post-facto analysis. These estimates are then used as trig-
gers for more detailed investigation. We identify essential attributes of
event data, allowing the use of a wide range of sensors, and show how to
apply Bayesian statistics to maintain incremental node estimates with-
out global updating or normalization. The paper provides a theoretical
account of the process, a worked example, and a discussion of its practical
implications.

1 Introduction

Insider attacks pose a particular threat because of the knowledge, access, and
authority of their perpetrators [12]. Such attacks often involve violations of phys-
ical or operational security, or the misuse of authority; they may also involve
electronic attacks, in which case the ‘electronic insider’ is as big a threat as a
person. It may be safer for a sophisticated external attacker to subvert an elec-
tronic system, often via social engineering, than directly subvert an employee.
Such attackers may use technical means to camouflage an attack, such as indi-
rection or address spoofing [1]; however, their most potent weapon in avoiding
detection is patience – the world’s largest credit card fraud was achieved with a
subverted internal system that avoided discovery for over 17 months [9].

Subtle attackers are unlikely to launch large-scale scans, or use known ex-
ploits; they will seek to avoid any action that can be immediately identified as
an attack. However, they are likely to cause minor security events: an attacker
may test known passwords, probe for services, or test new exploits, expecting
to hide within the background of user errors, mistakes and other ‘noise’. The
problem of detecting such an attacker is therefore one of accumulating relatively
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weak evidence over a long period. This issue is one of the ‘grand challenges’
of the internal attacker problem: “to combine events from one or more sensors,
possibly of various types” while “reduce[ing] data without adversely impacting
detection” [3]. This paper provides a solution to this critical problem.

The work presented here is couched in terms of networks and systems, and
the identification of a subverted node, which is part of a system that is used
by a corrupt insider, or is acting as an electronic insider for some other party.
However, the approach to characterizing and combining diverse sources of weak
evidence is equally applicable to other problems in the insider space, such as
identifying criminal or espionage threats from behavioral indicators.

This paper provides a process for combining evidence from various sources
based on the application of Bayesian statistics, identifies attributes that must
be available to allow the combination of evidence from different types of sensor,
and demonstrates the approach with a simulated slow-attack on a network.

The paper is organized as follows: Section 2 is overview of the proposed
approach, section 3 describes related work, and the evidential accumulation pro-
cess is developed in section 4. Section 5 presents an example to show that this
process is well behaved in simple cases, while section 6 simulates a challenging
insider detection problem, and contrasts the evidence accumulation process with
a common, but naive, alternative approach. Section 7 discusses results and open
issues, and the paper is concluded in section 8.

2 Overview

Consider how a human investigator might approach the problem of accumulating
evidence in the network of Figure 1. The network consists of nodes (A...J) with
interconnectivity as shown. Two minor security events are detected E1, and E2 ;
they may originate from an operating system alert, intrusion detection system,
or other form of event detection (see section 3).

E1

E2

A
B

C

D

F

G

HI

J

Fig. 1. Intersecting Evidence

Given information about event E1 and the traffic in the network at the time,
the investigator may determine that the nodes most likely to have originated the
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event are J, B, A, C or D. Similarly, when E2 occurs, at a much later date, the
possible originating nodes are D, F and H. Intersecting these observations sug-
gests node D as a common factor, and this may be sufficient to trigger intensive
monitoring to determine if it is behaving maliciously.

The data used to identify these security events and their possible sources is
necessarily transient; it may not be possible to record sufficient traffic to allow
this analysis retrospectively. However, it is initially sufficient to just identify
nodes that score differently; in the long, slow, game, it is only necessary to ‘tip
off’ a further investigation by identifying one or more nodes whose behaviour
may be unusual. It is not essential to record the events, the traffic from which
they were identified, or even the graphs that identify possible sources, provided
it is possible to somehow accumulate a ‘score’ for each node in the system.

This approach solves one of the critical issues in identifying slow attacks: how
to maintain long-term state. Systems that try to model the behaviour of indi-
viduals, systems or protocols, are forced to retain large amounts of data, which
limits their scalability. In the approach described here, the state size is a small
multiple of the number of nodes in the network; this state is readily distributed,
and its storage is feasible, even for organizations with global networks.

The ‘score’ that we propose for each node is the probability that the node is
subverted, based on the application of Bayesian statistics. This naturally allows
incremental updating, and translation of the problem frame from events, which
are related to behaviour, to individual attackers. Simpler schemes, such as the
event counting used to introduce this section, can be shown to be inferior, as
demonstrated by the network simulation in section 6.

In summary, we propose that to identify subtle or inside attackers:

– The primary objective is to identify nodes for further investigation.
– Long-term state is restricted to an incremental estimate of the probability

that each node is an attacker.
– Node estimates are updated following every security event, taking account

of transient network information that may be available at the time of the
event.

This process is complementary to conventional intrusion detection using signa-
tures or heuristics. There is no need to gradually accumulate evidence if the
attack is evident; for example, high levels of network activity due to a worm or
virus provide compelling evidence of an attack, and in these cases the secondary
investigation is concerned with incident management, rather than confirmation.

Section 4 describes how node scores can be estimated and maintained, fol-
lowing a brief summary of related work.

3 Related Work

The use of a tiered approach to insider threat detection, detection followed by
a more detailed forensic investigation, is proposed by Bradford et al [4]. Users
are profiled according to their function, and deviation from normal behaviour
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triggers more intensive data collection. Sequential hypothesis testing is proposed
to determine whether a process is anomalous and more intensive data collection
should be initiated. However, the authors do not show an implementation of
their approach, and remark that it could not be carried out for “every user
regardless”, but itself requires a “triggering process”.

The problem is the volume of data that must be maintained, and this is also
a issue with datamining approaches, which are often proposed as an adjunct to
intrusion detection or audit. Research proposals to alleviate the scalability issue
include improving the quality of the raw data, by discovering better behav-
ioral indicators [11] or classifying input features [6], the latter using a Bayesian
classifier. An alternative approach by Staniford et al [14] is to selectively re-
tain anomalous network data, with the aim of identifying slow network scans.
Anomalous packets are identified based on heuristics developed from real scans.
Other approaches include statistical filtering, primarily to reduce false alarm
rates and support visualization [7]. In essence, however, all these approaches
require the storage of large volumes of event data for later analysis, and the
authors themselves often identify scalability as a problem [11].

Aggregation as a means of detecting slow or stealthy attacks has been pro-
posed by Heberlein [10]. His assumption is that slow attacks are still systematic,
and the attacker will eventually repeat the attack many times, possibly against
different targets. Alerts are classified, accumulated, and displayed on a visual-
ization grid, and any persistent activity which raises alerts of the same type over
a long period, can be identified. Although similarly motivated, our work differs
by accumulating evidence of attackers, not of incidents, removing the restriction
that attackers need to repeat similar attacks. Heberlein’s algorithm is also a
counting process, which we show to be inferior to statistical reasoning.

Other work directed toward the insider problem is focussed on characterising
an attacker’s behaviour. The security indicators (‘events’) used may range from
an individual’s buying and travel preferences, to electronic alerts. For example,
Burford et al [5] propose a comprehensive framework of ‘observables’ that are
used to build a model of individuals’ behaviour via graph theory. Eberle et al
[8] develop graphs of behavioral events, such as phone calls, to identify sub-
graphs of normal behaviour, which are used to search for similar but anomalous
occurrences. These approaches offer the advantage of modeling the potential
attacker, and providing interesting insights into observable behaviour; however,
their application may be limited by the computational cost of graph matching
over large datasets, as well as by data scalability.

Most of the work described above is still formative; network intrusion detec-
tion, however, is established in the literature and supported by both open and
propriety products [2]. An intrusion detection system (IDS) uses a behavioral
model of a system or protocol and detects anomalous events by either recogniz-
ing predefined signatures, or by heuristics. Both approaches have strengths and
weaknesses, but despite the usefulness of IDSs in practice, they are hampered by
a lack of scalability, and tend to generate large numbers of false positive alerts
[2]. From the perspective of this paper, IDSs are an effective way of generat-
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ing events which may indicate an attack, but are unable to maintain sufficient
state to identify slow attacks. An IDS is not the only possible source of security
events; for example, the behavioral events referenced above, operating system
audit trails, and even Honeypots [13], which are security traps with no opera-
tional functionality, are all possible sources of security events.

In summary, the challenge of integrating information from many sources in
order to identify patient internal attackers is still an important open question
[3].

3.1 Updating Evidence

This section develops the detailed theory necessary to achieve the method out-
lined in section 3: to collapse the problem of attacker identification to updating
a single score for each network node, or user. The section first outlines the ev-
idential scenario, and the attributes required to characterize security events.
Standard Bayesian updating is summarized, followed by the development of the
process for updating evidence of insider attacks. Finally, the practical issue of
relating this process to real security events is discussed.

Definitions
Node: This paper uses network terminology, without loss of generality to

broader types of human or attack behavior. A node is a network compo-
nent, such as a user’s end system, a router, or a user.

Event: An event is an alert that indicates a possible security violation; it may
be an anomalous phone call, a failed connection, or something more certain,
such as a known electronic exploit.

The evidential scenario is presented in Figure 2. Node (a) is a network node,
and (x) is an event which is detected somewhere in the network; there is some
evidence that identifies the nodes that may have originated the event.

Event x
P(Event is an Attack)

Node a P(H|x)
H: Hypothesis that (a) is Subverted

... the set of nodes ...
that may originate x

Event y...

Fig. 2. Evidential Scenario

Event (x) may indicate an attack. Some security events are almost certainly
attacks; however, there are many more that may be user mistakes, backscatter,



Accumulating Evidence of Insider Attacks 39

or other forms of network ‘noise’. For example, an attempt to connect to a non-
existent webserver is often a simple mistake, but could also be an attack probe.

In addition to uncertainty about the extent that an event is an attack, there
may also be uncertainty about the source of the event. For example, the attacker
may be able to spoof its network address, or the event may only be traceable
to a subnetwork. In order to accumulate evidence from a wide range of different
sources, they must be characterized by uniform parameters that describe these
various attributes. We propose that the difference between different security
events can be characterized by three parameters:

– P(Attack): the probability that an particular event (x) is actually caused by
an intentional attack.

– The Causal Node Set: the set of network nodes that could have caused the
event, even if it was a not an attack.

– P(Causal): the probability that the causal node is actually within the node
set.

Given a sequence of events characterized by these parameters, we wish to
investigate the hypothesis that a particular node is subverted, or acting as the
agent of an attacker. We will first summarize the standard approach to Bayesian
updating, then show how it can be applied in this case.

4 Bayesian Updating

Bayesian updating provides an estimate of the probability that hypothesis H is
true, given an event, (x).

P (H |x) =
P (x|H) · P (H)

P (x)
(1)

This theorem uses P(x|H), the probability of event (x) given that the hypoth-
esis is true, to update the initial (‘prior’) estimate of the probability that the
hypothesis is true, P(H). Simple updating of this type is often used in medical
diagnosis; given knowledge of the probability of a symptom (the Event) given
a disease (the Hypothesis), it provides a principled estimate of the likelihood of
the disease given the symptom. It is essentially this change of reference frame –
from symptom to cause – that is needed to identify internal attackers from their
behaviour.

The denominator, P(x), the probability of the event, is effectively a normal-
ising factor. In many cases, including ours, it is difficult to estimate; however,
by making use of P (H |x)+P (¬H |x) = 1, it is straightforward to eliminate P(x)
and derive the following standard variant of Bayes’ theorem:

P (H |x) =
P (x|H) · P (H)

P (x|H) · P (H) + P (x|¬H) · P (¬H)
(2)

Practical applications of Bayes theorem often combine several sources of evi-
dence. Achieving a usable update formula for multiple evidential events requires
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an assumption of conditional independence – that individual security events do
not cause each other. The derivation is given in standard texts on Bayes. For
example, the formulae, which gives the revised probability of the Hypothesis, H,
given two items of evidence, (x) and (y) is :

P (H |x, y) =
P (x|H) · P (y|H) · P (H)

P (x|H) · P (y|H) · P (H) + P (x|¬H) · P (y|¬H) · P (¬H)
(3)

This pattern can be extended to cope with multiple items of evidence.

4.1 Combining Evidence from Security Events

The evidential scenario is described at the start of this section; in detail, we
define:

S The set of all nodes in the system.
#S The total number of nodes in the system.
a,b... Particular network nodes. a, b, ... ∈ S
Ha The Hypothesis that we wish to update: that a particular node

(a) is subverted, or being used to mount an attack within the
system.

E The set of all Security Events generated over time.
x,y... Particular events that may provide evidence of an attack.

x, y, ... ∈ E
Px(Attack) The probability that a particular event (x) actually originates

from an intentioned attack.
Cx The Causal set of nodes associated with event (x); in other

words, the set of nodes that may have originated the event.
#Cx The number of nodes in set Cx

P(Cx) The probability that Cx includes the node that originated the
event. In other words the accuracy with which Cx is estimated.

The parameters Px(Attack), Cx, and P(Cx) were introduced in the introduction
to this section as the attributes needed to characterize an event.

We wish to update an estimate of the probability of Ha, following event (x).
In equation 2, above, the prior probabilities P (H), P (¬H) will depend upon the
node (e.g. the prior probability of subversion of a server may be significantly
different to that of a user client), but will otherwise be constant, so we can write
P (¬Ha) = 1 − P (Ha)

However, to obtain an estimate of P (x|¬Ha)it is necessary to take into ac-
count that it may not be possible to attribute an event to a single node (a),
but only identify a set of nodes, Cx, from which the event may have originated.
Unlike the prior probability, this is dependent on the event, as well as on the
node, since different events will be generated by different sensors with different
capabilities and views of the network.

There are three types of node to consider: the node currently being updated,
(a), other nodes in the set Cx, and other nodes in the system that are not in Cx.
As a consequence, for an event (x), there are two alternative hypotheses to Ha:
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Ra,x That node (a) is not an attacker, but is within Cx.
Ia,x That node (a) is not an attacker, and is outside Cx.

Since Ra,x and Ia,x are disjoint, we can write:

P (x|¬Ha) = P (x|Ra,x) · P (Ra,x|¬Ha) + P (x|Ia,x) · P (Ia,x|¬Ha) (4)

If a node is not an attacker, we can expect the probabilities of the two alternative
hypotheses to be a simple function of the numbers in each set. Substituting
P (Ra,x|¬Ha) = #Cx

#S and P (Ia,x|¬Ha) = #S−#Cx

#S into equation (4), we obtain:

P (x|¬Ha) = P (x|Ra,x) · #Cx

#S
+ P (x|Ia,x) · #S − #Cx

#S
(5)

Substituting (5), and the expression for P (¬Ha)given above into the normalized
version of Bayes theorem given in equation (2), we obtain:

P (Ha|x) =
P (x|Ha) · P (Ha)

P (x|Ha) · P (Ha) + [P (x|Ra,x) · #Cx

#S + P (x|Ia,x) · #S−#Cx

#S ] · [1 − P (Ha)]
(6)

Defining:

Δa,x =
P (x|Ha)

P (x|Ra,x) · #Cx

#S + P (x|Ia,x) · #S−#Cx

#S

(7)

Rearranging equation (6) and substituting in Δa,x gives:

P (Ha|x) =
Δa,x · P (Ha)

Δa,x · P (Ha) + [1 − P (Ha)]
(8)

This update formulae can be extended to multiple events under the assumption of
conditional independence, similar to equation (3); the resulting update formulae
becomes:

P (Ha|x, ...y) =
Δa,x · ... · Δa,y · P (Ha)

Δa,x · ... · Δa,y · P (Ha) + [1 − P (Ha)]
(9)

This is the final update formulae. Bayes updating is often presented in this
form; the application specific elements are contained in the definition of Δa,x,
which will now be further developed by substituting in the information that
characterizes security events. We will consider each element of equation 7 in
turn.

P(x|Ha) is the probability that an event (x) occurs given that the identified
node is actually subverted. Since we will update in response to events, then
for each event Px(Attack), provides a plausible value, which only discounts
the possibility that false alarms may have originated from a genuine attacker.
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P(x|Ra,x) is the probability that the node is not subverted, but that it lies
within the set of nodes that may have originated the attack. In terms of our
model parameters, this corresponds to [1 − Px(Attack)] · P (Cx) · #Cx

#S

P(x|Ia,x) is the probability that the node is not subverted, but that it lies
outside the set of nodes that may have originated the attack. Of course, we
would wish to correctly identify the range of nodes that may originate the
attack, in which case this probability will be zero; however, in the real world
we must take into account the possibility that Cx cannot be enumerated
with certainty, giving a value of: [1 − Px(Attack)] · [1 − P (Cx)] · #S−#Cx

#S

Substituting these parameters into Δa,x , we obtain:

Δa,x =
Px(Attack)

[1 − Px(Attack)] ·
[
P (Cx) ·

(
#Cx

#S

)2

+ [1 − P (Cx)] ·
(

#S−#Cx

#S

)2
]

(10)
This ratio is used to update the probability that a node is an attacker.

4.2 Updating in Practice

Equations (9) and (10) provide the necessary theory to achieve the objective
of discarding the details of security events, while retaining a simple score for
each node which summarises the evidence that the node is an attacker. A naive
algorithm to achieve this would be:

1. Initialize each node with its prior probability, P (Ha). Values may be sug-
gested by survey data; in large systems a prior assumption that a small
number of nodes (e.g. 10 of 10,000) are likely to be subverted is reasonable.
This parameter is of most value if different nodes have significantly different
prior probabilities, for example the difference between a router and a laptop.

2. For each security event:
(a) Establish the distinguishing parameters (the probability that it is an at-

tack, the nodes that may have originated the attack, and the probability
that the node set contains the attacker).

(b) Calculate Δ from equation (10).
(c) Multiply the node score by Δ for each node in the set, but not for any

others in the system.
3. When required, substitute the node score (the product of all Δs) into equa-

tion (9) to obtain the probability that the node is an attacker.

A feature of accumulating evidence in this way is that, assuming the evidence
collected is generally useful (a true positive is more likely than a false positive),
then over a long period the probabilities converge towards unity. However, we
are only concerned with comparative scores, in order to identify nodes that are
distinctive and require further investigation. In practice, then, it is sufficient
to use Logarithmic scores, simply adding Log(Δ) to each node indicated by an
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event. Equation (9) can still be reconstructed from this information, but more
usually, the highest node score is chosen for further investigation.

The reader may be wondering about the value of calculating Δ at all at
this stage, since we simply add its logarithm to the score for indicated nodes.
However, this differs significantly from a simple counting algorithm, where the
score for each node is incremented when it is identified as the possible source of
a security event. The update value, Δ, characterizes exactly how much evidence
is provided by each event. This important distinction is illustrated in the worked
example presented in section 6.

5 Simple Example

Before showing a simulation of a realistically difficult example (see section 6), this
section explores if the evidential accumulation process has intuitively appealing
behaviour; in particular, given a single sub-network, in which the sender can be
readily identified:

– Does the evidential process identify an attacker sending at a slightly higher
rate than the background of errors from normal nodes?

– If the rate of attack increases, is the process stable, and does it enable the
attackers to be identified earlier?

– Does the process accommodate multiple attackers with different rates of
attack (i.e. can one node hide behind another’s attack)?

We assume a single sub-net of 50 nodes, in which the originating node of an
event can be identified (i.e. Cx=1); we assign P (Attack) an arbitrary probability
of 0.083. Time is divided into slots (e.g. single minutes) and the average back-
ground rate of random innocent events that may be misinterpreted as attacks is
1/50 per node – in other words, one event per minute. Three nodes within the
sub-net are designated attackers, and they generate random attacks at rates of
2, 4 and 8 times the total background rate.

The scores resulting from simulating this scenario are shown in Fig. 3. All
three attack nodes are well distinguished from the background level of events,
which is indicated by the ‘other nodes’ result, which is the score for a typical
innocent node. As would be expected, if the attack rate is higher, the discrimina-
tion improves. The accumulation of evidence is well behaved, and the higher rate
nodes do not interfere with the accumulation of evidence relating to attackers
operating at a lower rate.

6 Insider Attack Simulation

This section presents an example of evidence updating in practice. The exam-
ple shows that complex network propositions can be accommodated straight-
forwardly, and contrasts the principled accumulation of evidence with a simple
counting scheme. This example includes features that are common in this prob-
lem space, including:
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Fig. 3. Simple attacker scenario in a single sub-network

– Sensors with different capabilities; for example, certainty of detection and
ability to identify source nodes.

– Attackers whose rate of attack is below the background rate of false positive
alerts for the system.

– Attacks that employ address spoofing.

An important practical issue is the estimation of the three parameters that
characterize a security event; relating these to actual systems and assessing the
need for accuracy is subject to ongoing study. To date it has been possible to
achieve realistic results by assigning P(Attack) as a fixed value for a given sensor
within a deployment context, and by creating a simple rule-set that maps the
network connection associated with an event to a set of nodes, giving Cx and
P (Cx), depending on the configuration and protocol.

The network used in this example is given in Fig. 4. This network has
200 nodes, most of which are user systems located in four separate client sub-
networks. Two of these sub-networks have nodes that been subverted and are
attacking the system. The purpose of dividing the clients into several sub-nets
(apart from the fact that this is a common configuration) is to contrast the
detectability of attackers in different sized sub-networks, given that we assume
that in many cases it will be possible to identify only the sub-net from which an
attack originated. This arrangement allows us to investigate the scores accrued
for an attack node (3 or 53) versus other nodes in the same sub-net, and nodes
in a control sub-net of the same size and performance with no attacker.

Most of the traffic in the system is between the clients and servers, via the
core network. Router and firewall detail is not shown, and because the object is
to investigate evidence accumulation rather than event generation we model a
two unspecified types of security event: those that can be detected within client
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Core
Network

Client Subnet A
Nodes 0:24
Attacker at node 3

Client Subnet B
Nodes 25:49

Client Subnet C
Nodes 50:99
Attacker at node 53

Client Subnet D
Nodes 100:149

Server Subnet
Servers 150:174
Unused-monitored:175:199

Fig. 4. Test Network

sub-networks, and events in the server farm. For example, an event could be an
attempt to connect to an exploitable network port.

Attackers are expected to generate security events at a rate that is much
lower than the background rate of ‘mistakes’ by normal clients, in order to remain
undetected. In the simulation below, time is measured in arbitrary clocks (e.g.
minutes), and the probability of a normal client generating a security alert in
any time slot is 1/150; in other words the system suffers an average of one false
alarm every minute. In contrast, attackers generate events at a rate of 1/25; one
event every 25 minutes.

In addition to the low attack rate, to further avoid detection, attackers use
address spoofing. Events detected outside the sub-net containing the attacker
can only be assigned to the whole sub-net. Only events identified within the
sub-net containing the attacker (i.e. directed toward nodes within that sub-net)
can be traced to a specific node.

An outline calculation illustrates the difficulty of this problem. Consider the
attacker in sub-net A. Viewed from outside, the sub-net can be expected to
generate innocent background events (false alarms) at a rate of one every 6
minutes (P()=25 * 1/150 ). The events generated by the attacker are distributed
at random across the network, so of these, 25/200 are towards the attacker’s own
sub-network, and 175/200 are visible externally. This results in an externally
visible attack every 29 minutes (P()=1/25 * 175/200 ), and these events can
only be identified with the whole sub-net. Events targeted at random to nodes
within the sub-net can be identified to a particular attacker, but these occur at
a rate of only one every 200 minutes (P()=1/25 * 25/200 ). Of course, given
this information the reader could devise a solution to identify the attacker, but
the problem addressed here is how to use all the available information when the
location of the attacker and the traffic patterns are unknown in advance.

In summary, the event parameters used in the simulation are:
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Cx contains all the nodes in the source sub-net, unless the destination of the
network message that caused the event is in the same subnet as the source,
in which case Cx contains just the source address.

P (Cx) is set to unity, since Cx includes all the possible source nodes.
P (Attack) is set to 0.33 for all locations except the server nodes, for which a

value of 0.083 is assigned. (These are arbitrary, for the sake of demonstration.
It seems plausible that an incident at a location to which most of the traffic
is directed is less likely to be an attack, but in practice that is dependent on
the actual event. The only special feature in the choice of value is avoiding
fractions such as 25/150 that match the system topology and may produce
anomalous results in a small system. Varying these parameters result in
different scores, but not at the expense of overall discrimination.)

A network simulator was used to generate random traffic as outlined above,
and the scores for the resulting security events were accumulated as described
in section 4. The results are shown in Fig. 5.

Fig. 5. Network Simulation Results

Fig. 5. shows node scores as they are accumulated. The nodes shown are
attackers (3,53), representative nodes in the same sub-nets (10,60), and repre-
sentative nodes in the same sized sub-nets with no attackers (30,130). Nodes
(3,10,30) are from 25-node sub-nets, and nodes (53,60,130) are from 50-node
sub-nets, which contain a significant proportion of the nodes in the network.

The results show that insider attacks can be clearly distinguished from back-
ground noise in the system. A longer running simulation, given in Fig. 6., pro-
vides a view of the asymptotic performance of the process.

For each size of sub-net the proposed scoring clearly distinguishes the attacker
as an individual, and the sub-net containing the attacker, from the control sub-
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Fig. 6. Long Term Performance

net with no attacker. The distinction between different sized sub-nets is not fully
maintained: both attackers are well distinguished from both control networks,
however, the smaller sub-net containing an attacker is not well distinguished from
the individual attacker in the larger sub-net. In practice, grouping the small sub-
net with the two attackers does not present a problem, since it still provides a
correct diagnosis of the attacks, that can be subject to further investigation.
We conjecture that the issue here is not that the scoring method is inherently
biased between different sizes of Cx (that is, any more than the actual evidential
content varies with Cx), but that the larger sub-networks in this system are a
substantial fraction of the system size.

The effectiveness of this Bayesian approach can be judged by comparison
to the counting algorithm used to introduce section 2, and adopted by some
researchers. Assuming that the same deductions can be made from the security
events (specifically that Cx is the same for each event), the result of using a
counting approach, where node scores are simply incremented if they are iden-
tified, is given in Fig. 7.

On a realistic problem, the counting approach fails in almost every respect.
Attackers are not distinguished from other nodes in their sub-net, and there is
little difference between a sub-net containing an attacker, and a control sub-net
with no attacker. Instead, the primary distinction is between nodes on the basis
of network size; essentially the larger sub-nets generate more background traffic,
so receive a proportionately higher score.

7 Discussion

The proposed updating process is effective because it relates event evidence to
the hypothesis that the node (or user) is an attacker. This change of reference
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Fig. 7. Counting Algorithm Performance

frame allows event data to be discarded, while retaining the weight of evidence
for attackers. The process scales linearly with the number of nodes in the system,
and is likely to be applicable to a very wide range of systems and circumstances.

The updating ratio, Δ, can be thought of as the ratio of true positives to
false positives. However, Bayes has been used, rather than the simple probability
ratios that would be suggested if information theory was employed, in order to
effect the change of viewpoint from the event to the attacker. Δ takes account
of ancillary information such as the number of nodes that are indicated by the
event, and the degree of certainty in their estimation.

Δ can be used as a figure of merit for sources of information; essentially, if
Δ is consistently fractional for a sensor, then the resulting events will degrade
the quantity of available information, rather than improve it.

The attributes described in section 4 (probability of attack, possible sources,
and likelihood that the attacker is in this set) are not specific to any particular
type of event generator, and can be applied at different levels of abstraction, if
necessary within the same system.

There are a number of practical considerations that are subject to ongoing
study. The first implementation decision is which real components are regarded
as ’nodes’: should nodes model all network components, just routing compo-
nents and endpoints, or just endpoints such as clients, servers or users? To date,
only endpoint nodes have been considered; this decision is based on the prior
probability of network components originating attacks, and the convenience in
associating events with their possible sources.

A key practical issue is how to determine which nodes are a potential source
of any particular event, and to what degree. Ideally this assessment would be
evidence-based using recent network history, but although this is feasible in
principle, it is an open question if this can be achieved in practice. However,
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even simple strategies, such as the one used in section 6, provide demonstrable
benefit.

This research is ongoing, and other open issues include the sensitivity of the
assignment of P (Attack) for disparate sensors, and the possibility of decision
criteria other than the maximum score function used above.

8 Conclusion

This paper provides a solution to a critical problem in insider attacker discovery:
how to combine events from multiple sensors, and manage the data explosion
that is otherwise needed to support the identification of long-running attacks.

The key concept is to move away from maintaining models and evidence of
behaviour, and instead maintain an incremental assessment for every user/node
in the system that the node is an attacker. This approach is extremely scalable;
the updating algorithm is soundly based in Bayesian statistics, and avoids the
need for global updating or normalization. The approach is well behaved, in
the sense that higher volumes of attack make detection easier, and in a worked
example which includes several of the difficulties faced in practice, it significantly
outperforms counting algorithms (see section 6).

In addition, this work identifies the attributes or parameters that need to be
standardized for disparate sources of security event to be combined, allowing the
use of a wide range of different sensors, at different levels of abstraction. The
key criteria for a sensor (see section 7) is that it tends to provide information
rather than add confusion, and a side effect of the updating process presented
here is a criteria for deciding when this is the case.

Research on this approach is ongoing, both using simulation and relating the
work to real sensors; some of the open questions are described in section 7.
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