
Manual vs. Automated Vulnerability

Assessment: A Case Study

James A. Kupsch and Barton P. Miller

Computer Sciences Department, University of Wisconsin, Madison, WI, USA
{kupsch,bart}@cs.wisc.edu�

Abstract. The dream of every software development team is to assess
the security of their software using only a tool. In this paper, we attempt
to evaluate and quantify the effectiveness of automated source code anal-
ysis tools by comparing such tools to the results of an in-depth manual
evaluation of the same system. We present our manual vulnerability as-
sessment methodology, and the results of applying this to a major piece
of software. We then analyze the same software using two commercial
products, Coverity Prevent and Fortify SCA, that perform static source
code analysis. These tools found only a few of the fifteen serious vulner-
abilities discovered in the manual assessment, with none of the problems
found by these tools requiring a deep understanding of the code. Each
tool reported thousands of defects that required human inspection, with
only a small number being security related. And, of this small number
of security-related defects, there did not appear to be any that indicated
significant vulnerabilities beyond those found by the manual assessment.

1 Introduction

While careful design practices are necessary to the construction of secure sys-
tems, they are only part of the process of designing, building, and deploying such
a system. To have high confidence in a system’s security, a systematic assessment
of its security is needed before deploying it. Such an assessment, performed by an
entity independent of the development team, is a crucial part of development of
any secure system. Just as no serious software project would consider skipping
the step of having their software evaluated for correctness by an independent
testing group, a serious approach to security requires independent assessment
for vulnerabilities. At the present time, such an assessment is necessarily an
expensive task as it involves a significant commitment of time from a security
analyst. While using automated tools is an attractive approach to making this
task less labor intensive, even the best of these tools appear limited in the kinds
of vulnerabilities that they can identify.

� D. Chadwick, I. You and H. Chang (Eds.): Proceedings of the 1st International
Workshop on Managing Insider Security Threats (MIST2009), Purdue University,
West Lafayette, USA, June 16, 2009. *Copyright is held by the author(s)*



84 James A. Kupsch and Barton P. Miller

In this paper, we attempt to evaluate and quantify the effectiveness of auto-
mated source code vulnerability assessment tools [1] by comparing such tools to
the results of an in-depth manual evaluation of the same system.

We started with a detailed vulnerability assessment of a large, complex, and
widely deployed distributed system called Condor [11, 15, 2]. Condor is a system
that allows the scheduling of complex tasks over local and widely distributed
networks of computers that span multiple organizations. It handles scheduling,
authentication, data staging, failure detection and recovery, and performance
monitoring. The assessment methodology that we developed, called First Prin-
ciples Vulnerability Assessment (FPVA), uses a top-down resource centric ap-
proach to assessment that attempts to identify the components of a systems that
are most at risk, and then identifying vulnerabilities that might be associated
with them. The result of such an approach is to focus on the places in the code
where high value assets might be attacked (such as critical configuration files,
parts of the code that run at high privilege, or security resources such as digital
certificates). This approach shares many characteristics with techniques such as
Microsoft’s threat modeling [14] but with a key difference: we start from high
valued assets and work outward to derive vulnerabilities rather than start with
vulnerabilities and then see if they lead to a serious exploit.

In 2005 and 2006, we performed an analysis on Condor using FPVA, resulting
in the discovery of fifteen major vulnerabilities. These vulnerabilities were all
confirmed by developing sample exploit code that could trigger each one.

More recently, we made an informal survey of security practitioners in indus-
try, government, and academia to identify what were the best automated tools
for vulnerability assessment. Uniformly, the respondents identified two highly-
regarded commercial tools: Coverity Prevent [5] and Fortify Source Code Ana-
lyzer (SCA) [8] (while these companies have multiple products, in the remainder
of this paper we will refer to Coverity Prevent and Fortify Source Code Ana-
lyzer as “Coverity” and “Fortify” respectively). We applied these tools to the
same version of Condor as was used in the FPVA study to compare the ability
of these tools to find serious vulnerabilities (having a low false negative rate),
while not reporting a significant number of false vulnerabilities or vulnerabilities
with limited exploit value (having a low false positive rate).

The most significant findings from our comparative study were:

1. Of the 15 serious vulnerabilities found in our FPVA study of Condor, Fortify
found six and Coverity only one.

2. Both Fortify and Coverity had significant false positive rates with Coverity
having a lower false positive rate. The volume of these false positives were
significant enough to have a serious impact on the effectiveness of the analyst.

3. In the Fortify and Coverity results, we found no significant vulnerabilities
beyond those identified by our FPVA study. (This was not an exhaustive
study, but did thoroughly cover the problems that the tools identified as
most serious.)

To be fair, we did not expect the automated tools to find all the problems
that could be found by an experienced analyst using a systematic methodology.



Manual vs. Automated Vulnerability Assessment: A Case Study 85

The goals of this study were (1) to try to identify the places where an automated
analysis can simplify the assessment task, and (2) start to characterize the kind
of problems not found by these tools so that we can develop more effective
automated analysis techniques.

One could claim that the results of this study are not surprising, but there
are no studies to provide strong evidence of the strengths and weaknesses of
software assessment tools. The contributions of this paper include:

1. showing clearly the limitations of current tools,
2. presenting manual vulnerability assessment as a required part of a compre-

hensive security audit, and
3. creating a reference set of vulnerabilities to perform apples-to-apples com-

parisons.

In the next section, we briefly describe our FPVA manual vulnerability as-
sessment methodology, and then in Section 3, we describe the vulnerabilities that
were found when we applied FPVA to the Condor system. Next, in Section 4, we
describe the test environment in which the automated tools were run and how
we applied Coverity and Fortify to Condor. Section 5 describes the results from
this study along with a comparison of these results to our FPVA analysis. The
paper concludes with comments on how the tools performed in this analysis.

2 First Principles Vulnerability Assessment (FPVA)

This section briefly describes the methodology used to find most of the vulnera-
bilities used in this study. Most of the vulnerabilities in Condor were discovered
using a manual vulnerability assessment we developed at the University of Wis-
consin called first principles vulnerability assessment (FPVA). The assessment
was done independently, but in cooperation with the Condor development team.

FPVA consists of four analyses where each relies upon the prior steps to fo-
cus the work in the current step. The first three steps, architectural, resource,
and trust and privilege analyses are designed to assist the assessor in understand
the operation of the system under study. The final step, the component evalua-
tion, is where the search for vulnerabilities occurs using the prior analyses and
code inspection. This search focuses on likely high-value resources and pathways
through the system.

The architectural analysis is the first step of the methodology and is used
to identify the major structural components of the system, including hosts, pro-
cesses, external dependencies, threads, and major subsystems. For each of these
components, we then identify their high-level function and the way in which
they interact, both with each other and with users. Interactions are particu-
larly important as they can provide a basis to understand the information flow
through, and how trust is delegated through the system. The artifact produced
at this stage is a document that diagrams the structure of the system and the
interactions.



86 James A. Kupsch and Barton P. Miller

The next step is the resource analysis. This step identifies the key resources
accessed by each component, and the operations supported on these resources.
Resources include things such as hosts, files, databases, logs, CPU cycles, stor-
age, and devices. Resources are the targets of exploits. For each resource, we
describe its value as an end target (such as a database with personnel or pro-
prietary information) or as an intermediate target (such as a file that stores
access-permissions). The artifact produced at this stage is an annotation of the
architectural diagrams with resource descriptions.

The third step is the trust and privilege analysis. This step identifies the trust
assumptions about each component, answering such questions as how are they
protected and who can access them? For example, a code component running
on a client’s computer is completely open to modification, while a component
running in a locked computer room has a higher degree of trust. Trust evaluation
is also based on the hardware and software security surrounding the component.
Associated with trust is describing the privilege level at which each executable
component runs. The privilege levels control the extent of access for each com-
ponent and, in the case of exploitation, the extent of damage that it can directly
accomplish. A complex but crucial part of trust and privilege analysis is eval-
uating trust delegation. By combining the information from steps 1 and 2, we
determine what operations a component will execute on behalf of another com-
ponent. The artifact produced at this stage is a further labeling of the basic
diagrams with trust levels and labeling of interactions with delegation informa-
tion.

The fourth step is component evaluations, where components are examined
in depth. For large systems, a line-by-line manual examination of the code is in-
feasible, even for a well-funded effort. The step is guided by information obtained
in steps 1–3, helping to prioritize the work so that high-value targets are eval-
uated first. Those components that are part of the communication chain from
where user input enters the system to the components that can directly control a
strategic resource are the components that are prioritized for assessment. There
are two main classifications of vulnerabilities: design (or architectural) flaws, and
implementation bugs [12]. Design flaws are problems with the architecture of the
system and often involve issues of trust, privilege, and data validation. The ar-
tifacts from steps 1–3 can reveal these types of problems or greatly narrow the
search. Implementation bugs are localized coding errors that can be exploitable.
Searching the critical components for these types of errors results in bugs that
have a higher probability of exploit as they are more likely to be in the chain
of processing from users input to critical resource. Also the artifacts aid in de-
termining if user input can flow through the implementation bug to a critical
resource and allow the resource to be exploited.

3 Results of the Manual Assessment

Fifteen vulnerabilities in the Condor project had been discovered and docu-
mented in 2005 and 2006. Most of these were discovered through a systematic,



Manual vs. Automated Vulnerability Assessment: A Case Study 87

manual vulnerability assessment using the FPVA methodology, with a couple
of these vulnerabilities being reported by third parties. Table 1 lists each vul-
nerability along with a brief description. A complete vulnerability report that
includes full details of each vulnerability is available from the Condor project [4]
for most of the vulnerabilities.

The types of problems discovered included a mix of implementation bugs
and design flaws. The following vulnerabilities are caused by implementation
bugs: CONDOR-2005-0003 and CONDOR-2006-000{1,2,3,4,8,9}. The remaining
vulnerabilities are caused by design flaws. The vulnerability CONDOR-2006-
0008 is unusual in that it only exists on certain older platforms that only provide
an unsafe API to create a temporary file.

Table 1: Summary of Condor vulnerabilities discovered in 2005 and 2006 and
whether Fortify or Coverity discovered the vulnerability.

Vuln. Id Fortify Coverity Vulnerability Description Tool Discoverable?

CONDOR-
2005-0001

no no A path is formed by concatenating
three pieces of user supplied data
with a base directory path to form
a path to to create, retrieve or re-
move a file. This data is used as is
from the client which allows a direc-
tory traversal [7] to manipulate arbi-
trary file locations.

Difficult. Would have
to know path was
formed from untrusted
data, not validated
properly, and that
a directory traversal
could occur. Could
warn about untrusted
data used in a path.

CONDOR-
2005-0002

no no This vulnerability is a lack of au-
thentication and authorization. This
allows impersonators to manipulate
checkpoint files owned by others.

Difficult. Would have
to know that there
should be an authen-
tication and authoriza-
tion mechanism, which
is missing.

CONDOR-
2005-0003

yes no This vulnerability is a command in-
jection [7] resulting from user sup-
plied data used to form a string. This
string is then interpreted by /bin/sh
using a fork and execl("/bin/sh",
"-c", command).

Easy. Should consider
network and file data
as tainted and all the
parameters to execl as
sensitive.

CONDOR-
2005-0004

no no This vulnerability is caused by the
insecure owner of a file used to store
persistent overridden configuration
entries. These configuration entries
can cause arbitrary executable files
to be started as root.

Difficult. Would have
to track how these
configuration setting
flow into complex data
structure before use,
both from files that
have the correct own-
ership and permissions
and potentially from
some that do not.

CONDOR-
2005-0005

no no This vulnerability is caused by
the lack of an integrity [7] check
on checkpoints (a representation of
a running process that can be
restarted) that are stored on a check-
point server. Without a way of ensur-
ing the integrity of the checkpoint,
the checkpoint file could be tampered
with to run malicious code.

Difficult. This is a
high level design flaw
that a particular server
should not be trusted.



88 James A. Kupsch and Barton P. Miller

Table 1 – Continued.

Vuln. Id Fortify Coverity Vulnerability Description Tool Discoverable?

CONDOR-
2005-0006

no no Internally the Condor system will not
run user’s jobs with the user id of
the root account. There are other ac-
counts on machines which should also
be restricted, but there are no mech-
anisms to support this.

Difficult. Tool would
have to know which ac-
counts should be al-
lowed to be used for
what purposes.

CONDOR-
2006-0001

yes no The stork subcomponent of Condor,
takes a URI for a source and destina-
tion to move a file. If the destination
file is local and the directory does
not exist the code uses the system
function to create it without properly
quoting the path. This allows a com-
mand injection to execute arbitrary
commands. There are 3 instances of
this vulnerability.

Easy. The string used
as the parameter to
system comes fairly di-
rectly from an un-
trusted argv value.

CONDOR-
2006-0002

yes no The stork subcomponent of Condor,
takes a URI for a source and desti-
nation to move a file. Certain com-
binations of schemes of the source
and destination URIs cause stork to
call helper applications using a string
created with the URIs, and without
properly quoting them. This string is
then passed to popen, which allows
a command injection to execute ar-
bitrary commands. There are 6 in-
stances of this vulnerability.

Easy. The string used
as the parameter to
popen comes from a
substring of an un-
trusted argv value.

CONDOR-
2006-0003

yes no Condor class ads allow functions. A
function that can be enabled, ex-
ecutes an external program whose
name and arguments are specified by
the user. The output of the program
becomes the result of the function.
The implementation of the function
uses popen without properly quoting
the user supplied data.

Easy. A call to popen
uses data from an un-
trusted source such as
the network or a file.

CONDOR-
2006-0004

yes no Condor class ads allow functions. A
function that can be enabled, ex-
ecutes an external program whose
name and arguments are specified by
the user. The path of the program to
run is created by concatenating the
script directory path with the name
of the script. Nothing in the code
checks that the script name cannot
contain characters that allows for a
directory traversal.

Easy. A call to popen
uses data from an un-
trusted source such as
the network or a file. It
would be difficult for a
tool to determine if an
actual path traversal is
possible.

CONDOR-
2006-0005

no no This vulnerability involves user sup-
plied data being written as records
to a file with the file later reread and
parsed into records. Records are de-
limited by a new line, but the code
does not escape new lines or prevent
them in the user supplied data. This
allows additional records to be in-
jected into the file.

Difficult. Would have
to deduce the format
of the file and that the
injection was not pre-
vented.



Manual vs. Automated Vulnerability Assessment: A Case Study 89

Table 1 – Continued.

Vuln. Id Fortify Coverity Vulnerability Description Tool Discoverable?

CONDOR-
2006-0006

no no This vulnerability involves an au-
thentication mechanism that as-
sumes a file with a particular name
and owner can be created only by the
owner or the root user. This is not
true as any user can create a hard
link, in a directory they write, to any
file and the file will have the permis-
sions and owner of the linked file, in-
validating this assumption.[10]

Difficult. Would re-
quire the tool to
understand why the
existence and proper-
ties are being checked
and that they can be
attacked in certain
circumstances.

CONDOR-
2006-0007

no no This vulnerability is due to a vulner-
ability in OpenSSL [6] and requires a
newer version of the library to miti-
gate.

Difficult. The tool
would have to have
a list of vulnerable
library versions. It
would also be difficult
to discover if the tool
were run on the library
code as the defect is
algorithmic.

CONDOR-
2006-0008

no no This vulnerability is caused by using
a combination of the functions tmpnam
and open to try and create a new file.
This allows an attacker to use a clas-
sic time of check, time of use (TOC-
TOU) [7] attack against the program
to trick the program into opening an
existing file. On platforms that have
the function mkstemp, it is safely used
instead.

Hard. The unsafe func-
tion is only used (com-
piled) on a small num-
ber of platforms. This
would be easy for a
tool to detect if the
unsafe version is com-
piled. Since the safe
function mkstemp ex-
isted on the system,
the unsafe version was
not seen by the tools.

CONDOR-
2006-0009

yes yes This vulnerability is caused by user
supplied values being placed in a
fixed sized buffer that lack bounds
checks. The user can then cause a
buffer overflow [16] that can result in
a crash or stack smashing attack.

Easy. No bounds check
is performed when
writing to a fixed
sized buffer (using
the dangerous func-
tion strcpy) and the
data comes from an
untrusted source.

Total 6 1 out of 15 total vulnerabilities

4 Setup and Running of Study

4.1 Experiment Setup

To perform the evaluation of the Fortify and Coverity tools, we used the same
version of Condor, run in the same environment, as was used in our FPVA
analysis. The version of the source code, platform and tools used in this test
were as follows:

1. Condor 6.7.12
(a) with 13 small patches to allow compilation with newer GNU compiler

collection (gcc) [9];



90 James A. Kupsch and Barton P. Miller

(b) built as a clipped [3] version, i.e., no standard universe, Kerberos, or Quill
as these would not build without extensive work on the new platform
and tool chain.

2. gcc (GCC) 3.4.6 20060404 (Red Hat 3.4.6-10)
3. Scientific Linux SL release 4.7 (Beryllium) [13]
4. Fortify SCA 5.1.0016 rule pack 2008.3.0.0007
5. Coverity Prevent 4.1.0

To get both tools to work required using a version of gcc that was newer
than had been tested with Condor 6.7.12. This necessitated 13 minor patches to
prevent gcc from stopping with an error. Also this new environment prevented
building Condor with standard universe support, Kerberos, and Quill. None of
these changes affected the presence of the discovered vulnerabilities.

The tools were run using their default settings except Coverity was passed
the flag --all to enable all the analysis checkers (Fortify enables all by default).

4.2 Tool Operation

Both tools operate in a similar three step fashion: gather build information, an-
alyze, and present results. The build information consists of the files to compile,
and how they are used to create libraries and executable files. Both tools make
this easy to perform by providing a program that takes as arguments the normal
command used to build the project. The information gathering tool monitors
the build’s commands to create object files, libraries and executables.

The second step performs the analysis. This step is also easily completed by
running a program that takes the result of the prior step as an input. The types
of checkers to run can also be specified. The general term defect will be used to
describe the types of problems found by the tools as not all problems result in
a vulnerability.

Finally, each tool provides a way to view the results. Coverity provides a
web interface, while Fortify provides a stand-alone application. Both viewers
allow the triage and management of the discovered defects. The user can change
attributes of the defect (status, severity, assigned developer, etc.) and attach
additional information. The status of previously discovered defects in earlier
analysis runs is remembered, so the information does not need to be repeatedly
entered.

Each tool has a collection of checkers that categorize the type of defects.
The collection of checkers depends on the source language and the options used
during the analysis run. Fortify additionally assigns each defect a severity level of
Critical, Hot, Warning and Info. Coverity does not assign a severity, but allows
one to be assigned by hand.

4.3 Tool Output Analysis

After both tools were run on the Condor source, the results from each tool were
reviewed against the known vulnerabilities and were also sampled to look for
vulnerabilities that were not found using the FPVA methodology.



Manual vs. Automated Vulnerability Assessment: A Case Study 91

The discovered vulnerabilities were all caused by code at one or at most
a couple of a lines or functions. Both tools provided interfaces that allowed
browsing the found defects by file and line. If the tool reported a defect at the
same location in the code and of the correct type the tool was determined to
have found the vulnerability.

The defects discovered by the tools were also sampled to determine if the tools
discovered other vulnerabilities and to understand the qualities of the defects.
The sampling was weighted to look more at defects found in higher impact
locations in the code and in the categories of defects that are more likely to
impact security. We were unable to conduct an exhaustive review the results
due to time constraints and the large number of defects presented by the tools.

5 Results of the Automated Assessment

This section describes the analysis of the defects found by Coverity and Fortify.
We first compare the results of the tools to the vulnerabilities found by FPVA.
Next we empirically look at the false positive and false negative rates of the
tools and the reasons behind these. Finally we offer some commentary on how
the tools could be improved.

Fortify discovered all the vulnerabilities we expected it to find, those caused
by implementation bugs, while Coverity only found a small subset. Each tool
reported a large number of defects. Many of these are indications of potential
correctness problems, but out of those inspected none appeared to be a significant
vulnerability.

5.1 Tools Compared to FPVA Results

Table 1 presents each vulnerability along with an indication if Coverity or Fortify
also discovered the vulnerability.

Out of the fifteen known vulnerabilities in the code, Fortify found six of
them, while Coverity only discovered one of them. Vulnerability CONDOR-2006-
0001 results from three nearly identical vulnerability instances in the code, and
vulnerability CONDOR-2006-0002 results from six nearly identical instances.
Fortify discovered all instances of these two vulnerabilities, while Coverity found
none of them.

All the vulnerabilities discovered by both tools were due to Condor’s use
of functions that commonly result in security problems such as execl, popen,
system and strcpy. Some of the defects were traced to untrusted inputs being
used in these functions. The others were flagged solely due to the dangerous
nature of these functions. These vulnerabilities were simple implementation bugs
that could have been found by using simple scripts based on tools such as grep
to search for the use of these functions.



92 James A. Kupsch and Barton P. Miller

5.2 Tool Discovered Defects

Table 2 reports the defects that we found when using Fortify, dividing the de-
fects into categories with a count of how often each defect category occurred.
Table 3 reports the defects found when using Coverity. The types of checkers
that each tool reports are not directly comparable, so no effort was done to do
so. Fortify found a total of 15,466 defects while Coverity found a total of 2,686.
The difference in these numbers can be attributed to several reasons:

1. differences in the analysis engine in each product;
2. Coverity creates one defect for each sink (place in the code where bad data

is used in a way to cause the defect, and displays one example source to sink
path), while Fortify has one defect for each source/sink pair; and

3. Coverity seems to focus on reducing the number of false positives at the
risk of missing true positives, while Fortify is more aggressive in reporting
potential problems resulting in more false positives.

From a security point of view, the sampled defects can be categorized in
order of decreasing importance as follows:

1. Security Issues. These problems are exploitable. Other than the vulnerabil-
ities also discovered in the FPVA (using tainted data in risk functions), the
only security problems discovered were of a less severe nature. They included
denial of service issues due to the dereference of null pointers, and resource
leaks.

2. Correctness Issues. These defects are those where the code will malfunction,
but the security of the application is not affected. These are caused by prob-
lems such as (1) a buffer overflow of a small number of bytes that may cause
incorrect behavior, but do not allow execution of arbitrary code or other
security problems, (2) the use of uninitialized variables, or (3) the failure to
check the status of certain functions.

3. Code Quality Issues. Not all the defects found are directly security related,
such as Coverity’s parse warnings (those starting with PW), dead code and
unused variables, but they are a sign of code quality and can result in security
problem in the right circumstances.

Due to the general fragility of code, small changes in code can easily move a
defect from one category to another, so correcting the non-security defects could
prevent future vulnerabilities.

5.3 False Positives

False positives are the defects that the tool reports, but are not actually de-
fects. Many of these reported defects are items that should be repaired as they
often are caused by poor programming practices that can easily develop into a
true defect during modifications to the code. Given the finite resources in any
assessment activity, these types of defects are rarely fixed. Ideally, a tool such



Manual vs. Automated Vulnerability Assessment: A Case Study 93

Table 2. Defect counts reported by Fortify by type and severity level.

Vuln Type Total Critical Hot Warning Info

Buffer Overflow 2903 0 1151 391 1361
Buffer Overflow: Format String 1460 0 995 465 0
Buffer Overflow: Format String (%f/%F) 75 0 42 33 0
Buffer Overflow: Off-by-One 4 0 4 0 0
Command Injection 108 0 81 15 12
Dangerous Function 3 3 0 0 0
Dead Code 589 0 0 0 589
Denial of Service 2 0 0 2 0
Double Free 33 0 0 33 0
Format String 105 0 27 24 54
Format String: Argument Type Mismatch 3 0 0 3 0
Heap Inspection 16 0 0 0 16
Illegal Pointer Value 1 0 0 0 1
Insecure Randomness 5 0 0 0 5
Insecure Temporary File 6 0 0 1 5
Integer Overflow 1168 0 0 274 894
Memory Leak 906 0 0 906 0
Memory Leak: Reallocation 6 0 0 6 0
Missing Check against Null 670 0 0 670 0
Null Dereference 263 0 0 263 0
Obsolete 78 0 0 0 78
Often Misused: Authentication 24 0 0 0 24
Often Misused: File System 5 0 0 0 5
Often Misused: Privilege Management 15 0 0 0 15
Out-of-Bounds Read 2 0 0 2 0
Out-of-Bounds Read: Off-by-One 3 0 0 3 0
Path Manipulation 463 0 0 444 19
Poor Style: Redundant Initialization 14 0 0 0 14
Poor Style: Value Never Read 120 0 0 0 120
Poor Style: Variable Never Used 277 0 0 0 277
Process Control 1 0 1 0 0
Race Condition: File System Access 92 0 0 92 0
Race Condition: Signal Handling 15 0 0 15 0
Redundant Null Check 108 0 0 108 0
Resource Injection 58 0 0 58 0
Setting Manipulation 28 0 0 28 0
String Termination Error 4708 0 0 3702 1006
System Information Leak 760 0 0 458 302
Type Mismatch: Signed to Unsigned 2 0 0 0 2
Unchecked Return Value 137 0 0 0 137
Uninitialized Variable 125 0 0 0 125
Unreleased Resource 82 0 0 82 0
Unreleased Resource: Synchronization 2 0 0 2 0
Use After Free 21 0 0 21 0

Total 15466 3 2301 8101 5061



94 James A. Kupsch and Barton P. Miller

Table 3. Defect counts reported by Coverity by type.

Total Vulnerability Type Total Vulnerability Type

2 ARRAY VS SINGLETON 38 REVERSE INULL

1 ATOMICITY 0 REVERSE NEGATIVE

0 BAD ALLOC ARITHMETIC 842 SECURE CODING

0 BAD ALLOC STRLEN 4 SECURE TEMP

0 BAD COMPARE 2 SIZECHECK

0 BAD FREE 0 SLEEP

1 BAD OVERRIDE 378 STACK USE

1 BUFFER SIZE 1 STREAM FORMAT STATE

32 BUFFER SIZE WARNING 2 STRING NULL

5 CHAR IO 147 STRING OVERFLOW

82 CHECKED RETURN 10 STRING SIZE

0 CHROOT 6 TAINTED SCALAR

2 CTOR DTOR LEAK 43 TAINTED STRING

29 DEADCODE 26 TOCTOU

5 DELETE ARRAY 0 UNCAUGHT EXCEPT

0 DELETE VOID 330 UNINIT

0 EVALUATION ORDER 96 UNINIT CTOR

40 FORWARD NULL 9 UNREACHABLE

2 INFINITE LOOP 31 UNUSED VALUE

0 INTEGER OVERFLOW 12 USE AFTER FREE

0 INVALIDATE ITERATOR 5 VARARGS

0 LOCK 0 WRAPPER ESCAPE

0 LOCK FINDER 1 PW.BAD MACRO REDEF

3 MISSING LOCK 5 PW.BAD PRINTF FORMAT STRING

17 MISSING RETURN 56 PW.IMPLICIT FUNC DECL

17 NEGATIVE RETURNS 1 PW.IMPLICIT INT ON MAIN

18 NO EFFECT 18 PW.INCLUDE RECURSION

32 NULL RETURNS 20 PW.MISSING TYPE SPECIFIER

4 OPEN ARGS 46 PW.NON CONST PRINTF FORMAT STRING

4 ORDER REVERSAL 2 PW.PARAMETER HIDDEN

3 OVERRUN DYNAMIC 20 PW.PRINTF ARG MISMATCH

30 OVERRUN STATIC 10 PW.QUALIFIER IN MEMBER DECLARATION

3 PASS BY VALUE 2 PW.TOO FEW PRINTF ARGS

1 READLINK 7 PW.TOO MANY PRINTF ARGS

150 RESOURCE LEAK 11 PW.UNRECOGNIZED CHAR ESCAPE

0 RETURN LOCAL 21 PW.USELESS TYPE QUALIFIER ON-
RETURN TYPE

2686 Total



Manual vs. Automated Vulnerability Assessment: A Case Study 95

as Fortify or Coverity is run regularly during the development cycle, allowing
the programmers to fix such defects as they appear (resulting in a lower false
positive rate). In reality, these tools are usually applied late in the lifetime of a
software system.

Some of the main causes of false positives found in this study are the follow-
ing:

1. Non-existent code paths due to functions that never return due to an exit
or exec type function. Once in a certain branch, the program is guaranteed
to never execute any more code in the program due to these functions and
the way that code is structured, but the tool incorrectly infers that it can
continue past this location.

2. Correlated variables, where the value of one variable restricts the set of values
the other can take. This occurs when a function returns two values, or two
fields of a structure. For instance, a function could return two values, one
a pointer and the other a boolean indicating that the pointer is valid; if
the boolean is checked before the dereferencing of the pointer, the code is
correct, but if the tool does not track the correlation it appears that a null
pointer dereference could occur.

3. The value of a variable is restricted to a subset of the possible values, but
is not deduced by the tool. For instance, if a function can return only two
possible errors, and a switch statement only handles these exact two errors,
the code is correct, but a defect is produced due to not all possible errors
being handled.

4. Conditions outside of the function prevent a vulnerability. This is caused
when the tool does not deduce that:
(a) Data read from certain files or network connections should be trusted

due to file permissions or prior authentication.
(b) The environment is secure due to a trusted parent process securely set-

ting the environment.
(c) A variable is constrained to safe values, but it is hard to deduce.

The false positives tend to cluster in certain checkers (and severity levels in
Fortify). Some checkers will naturally have less reliability than others. The other
cause of the cluster is due to developers repeating the same idiom throughout the
code. For instance, almost all of the 330 UNINIT defects that Coverity reports
are false positives due to a recurring idiom.

Many of these false positive defects are time bombs waiting for a future
developer to unwittingly make a change somewhere in the code that affects the
code base to now allow the defect to be true. A common example of this is a
string buffer overflow, where the values placed in the buffer are currently too
small in aggregate to overflow the buffer, but if one of these values is made
bigger or unlimited in the future, the program now has a real defect.

Many of the false positives can be prevented by switching to a safer pro-
gramming idiom, where it should take less time to make this change than for a
developer to determine if the defect is actually true or false. The uses of sprintf,
strcat and strcpy are prime examples of this.



96 James A. Kupsch and Barton P. Miller

5.4 False Negatives

False negatives are defects in the code that the tool did not report. These defects
include the following:

1. Defects that are high level design flaws. These are the most difficult defects
for a tool to detect as the tool would have to understand design requirements
not present in the code.

2. The dangerous code is not compiled on this platform. The tools only analyze
the source code seen when the build information gathering step is run. The
tools ignore files that were not compiled and parts of files that were con-
ditionally excluded. A human inspecting the code can easily spot problems
that occur in different build configurations.

3. Tainted data becomes untainted. The five vulnerabilities that Fortify found,
but Coverity did not were caused by Coverity only reporting an issue with
functions such as execl, popen and system if the data is marked as tainted.
The tainted property of strings is only transitive when calling certain func-
tions such as strcpy or strcat. For instance, if a substring is copied byte
by byte, Coverity does not consider the destination string as tainted.

4. Data flows through a pointer to a heap data structure, that the tool cannot
track.

Some of these are defects that a tool will never find, while some of these
will hopefully be found by tools in the future as the quality of their analysis
improves.

5.5 Improving the Tool’s Results

Both tools allow the analyst to provide more information to the tool to increase
the tools accuracy. This information is described by placing annotations in the
source code, or a simple description of the additional properties can be imported
into the tools analysis model.

A simple addition could be made to Coverity’s model to flag all uses of certain
system calls as unsafe. This would report all the discovered vulnerabilities that
Fortify found along with all the false positives for these types of defects.

6 Conclusion

This study demonstrates the need for manual vulnerability assessment performed
by a skilled human as the tools did not have a deep enough understanding of
the system to discover all of the known vulnerabilities.

There were nine vulnerabilities that neither tools discovered. In our analysis
of these vulnerabilities, we did not expect a tool to find them due as they are
caused by design flaws or were not present in the compiled code.

Out of the remaining six vulnerabilities, Fortify did find them all, and Cover-
ity found a subset and should be able to find the others by adding a small model.



Manual vs. Automated Vulnerability Assessment: A Case Study 97

We expected a tool and even a simple to tool to be able to discover these vul-
nerabilities as they were simple implementation bugs.

The tools are not perfect, but they do provide value over a human for certain
implementation bugs or defects such as resource leaks. They still require a skilled
operator to determine the correctness of the results, how to fix the problem and
how to make the tool work better.

7 Acknowledgments

This research funded in part by National Science Foundation grants OCI-0844219,
CNS-0627501, and CNS-0716460.

References

[1] Brian Chess and Jacob West. Secure Programming with Static Analysis. Addison-
Wesley, 2007.

[2] Condor Project. http://www.cs.wisc.edu/condor.
[3] Condor Team, University of Wisconsin. Condor Manual.

http://www.cs.wisc.edu/condor/manual.
[4] Condor Vulnerability Reports.

http://www.cs.wisc.edu/condor/security/vulnerabilities.
[5] Coverity Inc., Prevent. http://www.coverity.com.
[6] CVE-2006-4339.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4339, 2006.
OpenSSL vulnerability.

[7] Mark Dowd, John McDonald, and Justin Schuh. The Art of Software Security
Assessment: Identifying and Preventing Software Vulnerabilities. Addison-Wesley,
2007.

[8] Fortify Software Inc., Source Code Analyzer (SCA). http://www.fortify.com.
[9] GNU Compiler Collection (gcc). http://gcc.gnu.org.

[10] James A. Kupsch and Barton P. Miller. How to Open a File and Not Get Hacked.
In ARES ’08: Proceedings of the 2008 Third International Conference on Avail-
ability, Reliability and Security, pages 1196–1203, 2008.

[11] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - A Hunter of Idle
Workstations. Proc. 8th Intl Conf. on Distributed Computing Systems, pages 104–
111, June 1988.

[12] Gary McGraw. Software Security. Addison-Wesley, 2006.
[13] Scientific Linux, CERN and Fermi National Accelerator Laboratory.

http://www.scientificlinux.org.
[14] Frank Swiderski and Window Snyder. Threat Modeling. Microsoft Press, 2004.
[15] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in

practice: the condor experience. Concurrency - Practice and Experience, 17(2-
4):323–356, 2005.

[16] John Viega and Gary McGraw. Building Secure Software. Addison-Wesley, 2002.


