
I ssues in Ontology-based I nfor mation I ntegration
Zhan Cui, Dean Jones and Paul O’Brien

Intelligent Business Systems Research Group
Intelligent Systems Lab

BTexact Technology

Abstract
Solving queries to support e-commerce
transactions can involve retrieving and
integrating information from multiple
information resources. Often, users don’ t care
which resources are used to answer their query.
In such situations, the ideal solution would be to
hide from the user the details of the resources
involved in solving a particular query. An
example would be providing seamless access to a
set of heterogeneous electronic product
catalogues. There are many problems that must
be addressed before such a solution can be
provided. In this paper, we discuss a number of
these problems, indicate how we have addressed
these and go on to describe the proof-of-concept
demonstration system we have developed.

1. Introduction
There are a number of obstacles to completely open e-
commerce over the Internet. One of the major problems is
the vast amount of information that is available and our
ability to make sense of it. For example, how do we identify
whom to do business with? How do we know that a
supplier’s products are what we are looking for? It is only
once we know what people are saying that we can start to
identify who is worth talking to. In this article, we will
discuss a number of related issues and describe the way we
have begun to address some of them.

The problems of interoperability between interacting
computer systems have been well documented. A good
classification of the different kinds of interoperability
problems can be found in [Sheth, 98] who identifies the
system, syntactic, structural and semantic levels of
heterogeneity. The system level includes incompatible
hardware and operating systems; the syntactic level refers to
different languages and data representations; the structural
level includes different data models and the semantic level
refers to the meaning of terms using in the interchange. A
good example of semantic heterogeneity is the use of
synonyms, where different terms are used to refer to the

same concept. There are many more types of semantic
heterogeneity and they have been classified in [Visser et al.,
1998]

Many technologies have been developed to tackle these
types of heterogeneity. The first three categories have been
addressed using technologies such as CORBA, DCOM and
various middleware products. Recently XML has gained
acceptance as a way of providing a common syntax for
exchanging heterogeneous information. A number of
schema-level specifications (usually as a Document Type
Definition or an XML Schema) have recently been proposed
as standards for use in e-commerce, including ebXML,
BizTalk and RosettaNet. Although such schema-level
specifications can successfully be used to specify an agreed
set of labels with which to exchange product information, it
is wrong to assume that these solutions also solve the
problems of semantic heterogeneity. Firstly, there are many
such schema-level specifications and it cannot be assumed
that they will all be based on consistent use of terminology.
Secondly, it does not ensure consistent use of terminology
in the data contained in different files that use the same set
of labels. The problem of semantic heterogeneity will still
exist in a world where all data is exchanged using XML
structured according to standard schema-level
specifications.

A solution to the problems of semantic heterogeneity
should equip heterogeneous and autonomous software
systems with the ability to share and exchange information
in a semantically consistent way. This can of course be
achieved in many ways, each of which might be the most
appropriate given some set of circumstances. One solution is
for developers to write code which translates between the
terminologies of pairs of systems. Where the requirement is
for a small number of systems to interoperate, this may be a
useful solution. However, this solution does not scale as the
development costs increase as more systems are added and
the degree of semantic heterogeneity increases.

Our solution to the problem of semantic heterogeneity is
to formally specify the meaning of the terminology of each
system and to define a translation between each system
terminologies and an intermediate terminology. We specify
the system and intermediate terminologies using formal

ontologies and we specify the translation between them
using ontology mappings. A formal ontology consists of
definitions of terms. It usually includes concepts with
associated attributes, relationships and constraints defined
between the concepts and entities that are instances of
concepts.

We provide software support for the definition and
validation of formal ontologies and ontology mappings,
allowing us to resolve semantic mismatches between
terminologies according to the current context (e.g. such as
the application.) In the next section we discuss a number of
issues relating to the use of ontologies in enabling semantic
interoperability. We then describe how we have addressed
some of these issues using a system called DOME (Domain
Ontology Management Environment) which includes a set
of tools for creating and mapping between ontologies, for
browsing and customising ontologies and for constructing
concept-based queries.

2. Issues in Resolving Semantic Heterogeneity
In this section we describe some of the problems involved in
achieving semantic interoperability between heterogeneous
systems.

2.1 Developing ontologies
In any reasonably realistic e-commerce scenario involving
interoperability between systems, semantic heterogeneity is
a significant problem and will continue to be so in the
future. A solution to this problem based on the use of formal
ontologies will need to accommodate different types of
ontologies for different purposes. For example, we may
have resource ontologies, which define the terminology
used by specific information resources. We may also have
personal ontologies, which define the terminology of a user
or some group of users. Another type is shared ontologies,
which are used as the common terminology between a
number of different systems.

The problem of developing ontologies has been well-
studied and a number of methodologies have been proposed.
A comparative analysis of these can be found in [Jones et
al., 1998].) One of the major conclusions of this study was
that the best approach to take in developing an ontology is
usually determined by the eventual purpose of the ontology.
For example, if we wish to specify a resource ontology, it is
probably best to adopt a bottom-up approach, defining the
actual terms used by the resource and then generalising from
these. However, in developing a shared ontology it will be
extremely difficult to adopt a bottom-up approach starting
with each system, especially where there are a large number
of such systems. Here, it is most effective to adopt a top-
down approach, defining the most general concepts in the
domain first.

2.2 Mapping Between Ontologies
In order to resolve the problems of semantic mismatches
discussed above, we will often need to translate between

different terminologies. While it would be ideal to be able to
automatically infer the mappings required to perform such
translations, this is not always possible. While the formal
definitions in an ontology are the best specification of the
meaning of terms that we currently have available, they
cannot capture the full meaning. Therefore, there must be
some human intervention in the process of identifying
correspondences between different ontologies. Although
machines are unlikely to derive mappings, it is possible for
them to make useful suggestions for possible
correspondences and to validate human-specified
correspondences.

Creating mappings is a major engineering work where
re-use is desirable. Declaratively-specifying mappings
allows the ontology engineer to modify and reuse mappings.
Such mappings require a mediator system that is capable of
interpreting them in order to translate between different
ontologies. It would also be useful to include a library of
mappings and conversion functions as there are many
standard transformations which could be reused e.g.
converting kilos to pounds, etc.

Mapping between ontologies is not an exact science.
Certain semantic mismatches cannot be resolved exactly but
may involve some loss of information e.g. when translating
from a colour system based on RGB values to one which
uses terms such as ‘red’, ‘blue’ , etc. Whether or not the loss
of information is an issue varies between applications. In
some domains, precision of information is more important
than in others. For example, in e-commerce, imperfect
information is generally unacceptable, whereas it is widely
accepted that internet search engines will return many
irrelevant results.

2.3 Ontologies and Resource I nformation
It is generally acknowledged that we have more information
than we know what to do with. This proliferation of data
means that often, for any information query we might have,
there are a variety of resources available that store data
about the same domain and which are of varying quality. A
distributed query engine needs to decide which of the many
available resources to use in finding the solution to a query.
In addition to finding the resources that have the required
information, it may also be necessary to decide between
different resources that have the same information available.
In order for a distributed query engine to understand what
information is available, the resources need to make
descriptions of their contents available in a meaningful way.
If the terms using in such a description are formally defined
in an ontology, the query engine has access to the meaning
of the terms in the description. This allows the query engine
to make fully informed decisions about which resources are
relevant to resolving a particular query.

There are a number of pragmatic issues in locating the
resources that will be used to answer a query. For example,
a particular user may - for whatever reason - prefer one
resource over another as the source of some information.

Such personal preferences can be taken into account by the
distributed query engine if a personal profile of a user’s
preferences is maintained. The query engine can make better
informed decisions if the definitions of the terms used in
such a profile are available to it in the form of a user
ontology, which defines the terminology of a user or user-
group.

2.4 Ontologies and Database Schemas
Ontologies and database schemas are closely related and
people often have trouble deciding which is which. There is
often no tangible difference, no way of identifying which
representation is a schema and which is an ontology. This is
especially true for schemas represented using a semantic
data model. The main difference is one of purpose. An
ontology is developed in order to define the meaning of the
terms used in some domain whereas a schema is developed
in order to model some data. Although there is often some
correspondence between a data model and the meaning of
the terms used, this is not necessarily the case. Both
schemas and ontologies play key roles in heterogeneous
information integration because both semantics and data
structures are important.

For example, the terminology used in schemas is often
not the best way to describe the content of a resource to
people or machines. If we use the terms defined in a
resource ontology to describe the contents of a resource,
queries that are sent to the resource will also use these
terms. In order to answer such queries, there needs to be a
relationship defined between the ontology and the resource
schema. Again, declarative mappings that can be interpreted
by some mediator system are useful here. The structural
information provided by schemas will enable the
construction of executable queries such as SQL queries.

This is related to the discussion earlier about XML,
where a database schema is analogous to an XML schema
or DTD. As pointed out above, using XML is insufficient
for determining the semantics of resources. A schema,
whether specified using XML or some database schema
language, needs an associated formal ontology in order to
make the semantics of the resource clear. When the meaning
of data and schemas is made explicit using an ontology,
programs can be designed that exploit those semantics.

2.5 Entity Correspondence
Ontologies are used in e-commerce environments where
data is scattered across heterogeneous distributed systems.
In order for the consumer to have access to the maximum
amount of available information, we want to be able to
retrieve information from various systems and to integrate
it. For example, we might want to integrate information
from a supplier’s product catalogue with customer reviews
produced independently.

To gather all the information relevant to an entities, the
correspondence between entities across resources must be
established. For example, the academic records and criminal

records of a person are likely to be stored in separated data
resources. However, the way in which different resources
identify individuals varies. For example, in relational
databases entities are identified using key attributes. There
is no guarantee that different relational databases use the
same key attributes. Even when the same key attribute is
used, different terms may be used to denote the attributes.
How our systems can determine whether entities from
different resources are the same or not is crucial to fusing
information. Standard schemas do not provide a full
solution here since many systems (e.g. KBSs, object-
oriented databases) often do not have key attributes at all.

3. DOM E Overview
The DOME project has been researching and developing
ontology-based techniques to support the building of a “one-
stop knowledge shop” for corporate information. We have
developed a methodology, a set of tools and an architecture
to enable enterprise-wide information management for data
re-use and knowledge sharing. The system retrieves
information from multiple resources to answer user queries
and presents the results in a consistent way that is
meaningful to the user. This section gives an overview of
the DOME prototype system and some implementation
details. Further details of DOME can be found in [Cui et al.,
2001]. Figure 1 shows the architecture of the DOME
prototype.

The DOME prototype consists of a number of
interacting components: an ontology server which is
responsible for managing the definitions of terms, a
mapping server which manages the relationships between
ontologies, an engineering client with tools for developing
and administrating a DOME system, a user client to support
querying the knowledge shop, and a query engine for
decomposing queries fusing the results to sub-queries. The
prototype is implemented as an Enterprise JavaBean which
provides two APIs - one for developers and one for users
and applications.

3.1 Engineer ing client
A developer who wishes to set up a DOME system interacts
with an engineering client which provides support in the
development of the knowledge shop. This includes tools for
the semi-automated extraction of ontologies from legacy
systems [Yang et al., 1999], for defining ontologies, for
defining mappings between ontologies and between
resource ontologies and database schemas.

We have developed a methodology that combines top-
down and bottom-up ontology development approaches.
This allows the engineer to select the best approach to take
in developing an ontology. The top-down process starts with
domain analysis to identify key concepts by consulting
corporate data standards, information models, or generic
ontologies such as Cyc or WordNet. Following that, the
engineer defines competency questions [Gruninger and Fox,
1995.] The top down process results in the shared ontologies

mentioned above. The bottom-up process starts with the
underlying data sources. The extraction tool is applied to
database schemas and application programs to produce
initial ontologies which are further refined to become
resource ontologies. We also provide for the development of
application ontologies, which define the terminology of a
user-group or client application. Application ontologies are
defined by specialising the definitions in a shared ontology.
Once the ontologies have been defined, they are stored in
the ontology server.

The engineer also needs to define mappings between the
resource ontologies and the shared ontology for a particular
application. The rest of the ontology engineering task is to
define mappings between the resource and shared ontologies
using ontology mappings. Although we do not infer the
mappings automatically, we can utilise ontologies to check
the mappings for consistency. The engineer also needs to
define mappings between the database schemas and the
resource ontologies.

3.2 Ontology server
The ontology server stores the ontologies that are defined
using the engineering client and allows access to the three
kinds of ontologies in a DOME network: shared, resource
and application ontologies. Shared ontologies contain
definitions of general terms that are common across and
between enterprises. A resource ontology contains
definitions of terms used by a particular resource. These
ontologies are stored in the DOME ontology server which
implements ontologies using the description logic CLASSIC

[Brachman et al., 1992]. CLASSIC is used to both store
ontologies and to make inferences. Access to the ontology
server is through Open Knowledge Base Connectivity
(OKBC) interface, which is a de facto standard for
accessing knowledge bases [Chaudhri et al., 1998].

3.3 User client
We provide users with tools to access the knowledge shop.
We have defined a simple API that allows a user client or an
application to querying the distributed information space.
The user client also provides facilities for loading and
browsing specific ontologies in the knowledge shop to view
what is available in the whole information space. Queries
are passed to DOME as strings which conform to an XML
schema which defines the syntax of the DOME query
language. This is similar to SQL but doesn’ t require that we
specify on which attributes to make joins between concepts
since this will be identified automatically by the query
engine. Queries are formed using the terminology defined in
an application ontology and the results which are returned
are represented using the same terminology, hence hiding
the details of the different systems, their distribution,
structure, syntax or semantics from the user.

3.4 Mapping Server
The mapping server stores the mappings between ontologies
which are defined by the engineer in setting up a DOME
network. The mapping server also stores generic conversion
functions which can be utilised by the engineer when
defining a mapping from one ontology to another. These

Figure 1: The DOME architecture

DB DB DB

Query
Engine

Ontology
Server

Mapping
Server

Resource
Directory

Wrappers and
ontology extraction

Engineering
client

User
GUI

Application

mappings are specified using a declarative syntax, which
allows the mappings to be straightforwardly modified and
reused. The query engine queries the mapping server when
it needs to translate between ontologies in solving a query.

3.5 Wrappers
Most interaction between a resource and the DOME
network occurs via wrappers. A wrapper performs
translations of queries expressed in the DOME query syntax
and terminology of the resource ontology to queries
expressed in the syntax of the resource query language and
the terminology of the resource schema. They also perform
any translations required to put the results into the
terminology of the resource ontology. Although they are
configured for particular resources, DOME wrappers are
generic across resources of the same type e.g. wrappers of
SQL databases utilise the same code.

3.6 Resource Directory
When a resource is connected to a DOME network, its
wrapper will inform the DOME directory about its existence
and pass to the resource directory a description of the
contents of the resource, expressed in terms of the relevant
resource ontology. This ensures that the query engine is able
to identify what information is available without having to
access the schema of the resource. When a wrapper is - for
whatever reason - no longer able to provide information
from a resource, it will inform the resource directory which
is then able to discount that resource from any future query
solving.

3.7 Query engine
Upon receiving a query, the DOME query engine first needs
to decide which resources are relevant to that query. It
obtains a list of currently available and relevant resources by
consulting the directory. Based on this information, the
query engine decomposes the query into sub-queries. The
query engine ensures that the decomposition is performed in
such a way that the results to the sub-queries, once they are
received from the resources, can then be integrated. It then
translates queries from the ontology of the query to that of
the relevant resource and will send the sub-queries to the
resources. Once the results are received, the query engine
will integrate the results.

4. DOM E Demonstrator
We have developed a demonstrator for the DOME prototype
based on a database marketing scenario. Database marketing
involves targeting marketing information from customer
information stored in databases. Typically, queries are ad
hoc, that is, it is difficult to pre-define a set of typical
queries. Also, customer information is necessarily split
across many different databases e.g. a customer may have
multiple products, the records for which are stored in
different databases. This requires that queries often need to
join information from a wide variety of databases. As the

databases we used are developed independently and serve
different applications, DOME has to search for resources
which hold data about customers that it is possible to
integrate. The resources that are used varies from query to
query. The databases also have different levels of data
quality - there are incorrect entries, missing records, etc. As
DOME allows mappings to be specified between the shared
and resource ontologies, we have some control over which
resources are utilised for data that is available from multiple
databases. By only defining mappings between the shared
ontology and the parts of the resource ontology for which
the resource is a trusted sources of information, we can limit
the parts of a resource that is used to solve queries.

5. Conclusions
Semantic interoperation is one of the main obstacles to free
and full electronic commerce. Understanding what is
available is a necessary prerequisite to a successful business
transaction. We have described a number of issues involved
in supporting the interoperation of computer systems at the
semantic level. We have also described the architecture of
the DOME system that we have developed to illustrate our
approach to overcoming some of these problems. We
believe that the proof-of-concept demonstrator we have
developed supports the utility of ontologies in integrating
heterogeneous information resources for applications such
as e-commerce. DOME provides functionality to (i) support
a system engineer in providing an integrated view of
networked heterogeneous databases, (ii) allow a user to
select and browse definitions of terminologies and to pose
queries in their chosen vocabulary and (iii) answer user
queries based on the information available. This work is
ongoing and there are a number of areas currently being
explored. For example, an increasing number of resources
that use some form of XML technology are becoming
available and we are currently developing components that
will allow data retrieved from such resources to be
integrated with data retrieved from other kinds of resources
such as relational databases. We believe strongly that even
in a world where there are many such resources, there will
still be a role for formal ontologies in enabling semantic
interoperability.

References
[Brachman et al., 1992] R.J. Brachman, A. Borgida, D.L.
McGuinness, P.F. Patel-Schneider and L. Alperin Resnick.
The CLASSIC Knowledge Representation System, or KL-
ONE: The Next Generation. Proceedings of the 1992
International Conference on Fifth Generation Computer
Systems, Tokyo, Japan, June 1992.
[Chaudhri et al., 1998] V.K. Chaudhri, A. Farquhar, R.
Fikes, P.D. Karp, and J.P. Rice. OKBC: A Programmatic
Foundation for Knowledge Base Interoperability.
Proceedings of AAAI-98, pages 600-607, Madison, WI,
1998

[Cui et al., 2001] Z. Cui, M.D.J. Cox and D.M. Jones. An
Environment for Managing Enterprise Domain Ontologies.
M. Rossi and K. Siau (eds.) Information Modelling in the
New Millennium, Idea Group Publishing, London.
[Gruninger and Fox, 1995] M. Gruninger, and M.S. Fox.
Methodology for the Design and Evaluation of Ontologies.
IJCAI’95 Workshop on Basic Ontological Issues in
Knowledge Sharing, Montreal, 1995
[Jones et al., 1998] D.M. Jones, T.J.M. Bench-Capon and
P.R.S. Visser. Methodologies for Ontology Development.
Proceedings IT&KNOWS Conference of the 15th IFIP
World Computer Congress, Budapest, Chapman-Hall.
[Sheth, 1998] A.P. Sheth. Changing Focus on
Interoperability in Information Systems: From System,
Syntax, Structure to Semantics. M. F. Goodchild, M. J.
Egenhofer, R. Fegeas, and C. A. Kottman (eds.)
Interoperating Geographic Information Systems, Kluwer.
[Visser et al., 1998] P.R.S. Visser, D.M. Jones, T.J.M.
Bench-Capon and M.J.R. Shave. Assessing Heterogeneity
by Classifying Ontology Mismatches. Proceedings
International Conference on Formal Ontology in
Information Systems - FOIS'98, IOS Press.
[Yang et al., 1999] H. Yang, Z. Cui and P.D. O’Brien.
Extracting Ontologies from Legacy Systems for
Understanding and Re-engineering. Proceedings of 23rd
IEEE International Conference on Computer Software and
Applications, Pheonix, AZ, October 1999.

