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Abstract
The main goal of this paper is to present a system-
atic methodology for selecting general ontological
categories to be used for multiple practical pur-
poses. After a brief overview of our basic assump-
tions concerning the way a useful top-level ontol-
ogy should be linked to language and cognition,
we present a set of primitive relations that we be-
lieve play a foundational role. On the basis of these
relations, we define a few formal properties, which
combined together help to understand and clarify
the nature of many common ontological distinc-
tions.

1 Introduction

1.1 Goals of this paper
The main goal of this paper is to present a systematic meth-
odology for selecting general ontological categories to be
used for multiple practical purposes. After a brief overview
of our basic assumptions concerning the way a useful top-
level ontology should be linked to language and cognition,
we present a set of formal (i.e., domain-neutral) primitive
relations that we believe play a foundational role. On the
basis of these relations, we define a few further properties,
which combined together help to understand and clarify the
nature of many common ontological distinctions.

Our attempt is to avoid strong ontological commit-
ments in the early steps of the methodology, trying first to
establish the formal framework needed to understand, com-
pare, and evaluate the ontological choices that ultimately
will be taken.

1.2 Limits of this paper
We are conscious that our task is very ambitious, as it nec-
essarily faces deep and highly debated philosophical and
technical problems. So we have tried to be as humble as
possible, making drastic simplifications whenever possible,
but trying however to save the logical rigor.

One of the most serious simplifications we have made
concerns the treatment of time, which is not addressed ex-
plicitly. This is in part because we believe that ontological

choices about time need to be taken after a more general
ontological framework is established and in part just be-
cause temporal issues are hard.

2 Ontology, cognition and language
Is ontology about the “real world” (as seen, say, by a physi-
cist)? Or, rather, should it take cognition into account, in-
cluding the complex interactions and dependencies between
our ecological niche and us? We will not attempt a general
answer to this question, but we believe that the latter posi-
tion is very useful when building ontologies for practical
purposes. As knowledge systems manage information rele-
vant to human agents, their ontologies need to make room
for entities that depend on our perception and language, and
ultimately on the way we use reality to survive and com-
municate. Some of these entities will depend on specific
groups of human beings (with their own culture, language,
and so on); others will reflect common cognitive structures
that depend on our sensorial interaction with reality. A gen-
eral-purpose ontology is specially interested to the latter
kind of entities, which help generalize our specific knowl-
edge of the world. This position reflects the so-called “inter-
actionist” paradigm, which (though not prevalent) has
strong support in psychology of perception and cognitive
linguistics [Gibson 1977, Lakoff and Johnson 1999] and
seems to be a good compromise between hard 'referentialist'
ontology and purely context-oriented semiotics.

An extreme example of how ontologically relevant enti-
ties depend on our perceptive and cognitive structures is the
notion of constellation: is a constellation a genuine thing,
different from a collection of stars? This is not so clear at a
first sight. But, if we distinguish between stars and their
specific arrangements, we are able to understand how con-
stellations may be considered as cognitive things dependent
on states of mind. To see a "Taurus" in the sky does not
mean, obviously, that an animal is flying in the space or
(less obviously) that a bull-shaped astronomic object (differ-
ent from a collection of stars) is localized in a region of the
sky. Rather, the perspective we embrace consists in recog-
nizing a cognitive entity dependent on the way we perceive
some particular arrangement of stars. It is to this entity that
we (often) refer when we use the term "Taurus constellation"
in our language. Including cognitive entities in our ontol-



ogy seems therefore a good idea if natural language plays a
relevant role in our applications.

For these reasons, we believe that a very useful and
important requirement for top-level ontologies is the possi-
bility of mapping them into large lexical databases (as, for
example, WordNet [Fellbaum, 1998]). Although these large
lexicons present many problems and limitations, they pro-
vide i) a source for distinctions used by humans as cogni-
tive agents; ii) a way to give understandable names to onto-
logical entities; iii) a practical hook towards NLP applica-
tions.

But, how do lexicons and ontologies link to each
other? Assuming all lexical concepts as distinct (as for ex-
ample the WordNet’s synsets), ontologies that want to have
the same conceptual coverage have to contain at least every
concept of a lexicon. Adding non-lexicalized nodes to on-
tologies would be useful under different points of view.
First of all, their presence may result in a better taxonomic
organization; second, they may simplify the alignment with
other ontologies and lexical sources, isolating the differ-
ences and the integration problems. So, an important
(though idealistic) requirement to be satisfied would be that
each term of a lexicon has an unique correspondent category
in the ontology and that each ontological concept maps into
at most one lexical concepts.

3 Methodology and basic assumptions
The requirement of a link with language and cognition
makes the task of designing a good top-level ontology even
more complicated. We outline here the methodology we
suggest to accomplish such a task.

3.1 The role of formal relations
In philosophy we find a distinction between formal ontol-
ogy and material ontology. Intuitively, this distinction
seems to deal with the “level of generality” of ontological
properties and relations, but its logical implications are not
very clear. Smith gives the following “definition”:

“As formal logic deals with properties of inferences which
are formal in the sense they apply to inferences in virtue of
their form alone, so formal ontology deals with properties
of objects which are formal in the sense that they can be
exemplified, in principle, by objects in all material spheres
or domains of reality.” [Smith, 1998]

In this sense, we can consider formal relations as relations
involving entities in all “material spheres”, so that they are
understandable per se  as a universal notions. On the con-
trary, material relations are specific to one or more material
spheres. This account seems however to presuppose an a
priori division of the domain into “material spheres”: first
we establish a set of primitive subdomains (categories?),

                                                
1 Clarifying the distinction between so-called 3-d and 4-d on-
tologies is out of the purpose of this paper. We just point out
that 3-d ontologists believe in a crisp distinction between ob-
jects and events (or continuants and occurrents, roughly corre-
sponding to nouns and verbs), while 4-d ontologists don’t, as
they see concrete entities in terms of spatiotemporal regions.

and then we distinguish between formal and material rela-
tions on the basis of their scope’s behavior with respect to
these subdomains. So, formal relations establish the connec-
tions and the differences between primitive subdomains;
while material relations characterize, in a more detailed way,
the properties of a specific subdomain. If we assume a flat
domain, with no a priori structure, then the proposed dis-
tinction between formal and material relations collapses.

In both cases, choosing the right primitives is not easy.
In one case, we must answer the question: “Which are the
primitive subdomains?”. In the other case, the question is:
“Which are the primitive relations?”. The two questions
look indeed quite similar.

In this work we prefer to start with a set of primitive
relations defined on a flat domain, and use them to recon-
struct the classic categorial distinctions. This choice is
mainly a matter of methodological clarity and economy, and
is also motivated by our desire to maintain ontological neu-
trality as much as possible. These primitive relations will
be still called “formal”, as they will be selected among
those considered as “formal” in the philosophical literature.
By means of these formal relations we shall be able to:

• Formulate general constraints (e.g., atomicity) on all
domain entities;

• Induce distinctions between entities (e.g., dependent vs.
independent), and impose a general structure on the
domain.

3.2 The methodology in a nutshell2

The methodology we have adopted can be summed up as
follows:

1. Select from the classical philosophical repertoire a set
of formal relations (neutral with respect to the domain
choice) which shall play a foundational role in our on-
tology.

2. Select and adapt from the literature the ground axioms
for these relations, such as those concerning their alge-
braic properties.

3. Add non-ground axioms, which establish constraints
across basic relations.

4. Define a set of formal properties induced by the formal
relations.

5. Analyze systematically the allowed combinations of
formal properties, introducing a set of basic categories

6. Classify the relevant kinds of domain entities according
to the basic categories. The result will help to under-
stand the minimal domain structure.

7. Study the dependencies/interrelationships among basic
categories, introducing intercategorial relations.

8. Increase the depth level of ontological analysis, by iter-
ating this methodology within each basic category.

This work is still in progress, and in this paper we discuss
in detail only points 1-4 of the methodology. However, we

                                                
2 See ([Thomasson, 1999] p.111-134) for an interesting discus-
sion which advocates a methodology for ontological analysis
very similar to the present one.



hope in the possibility of a progressive methodological re-
finement and adjustment in the way we have outlined.
Moreover, we must make clear that, to start the above proc-
ess, we need first some minimal assumptions (or at least
intuitions) about our largest domain of interest (which de-
pend on the choices discussed in section 2). We also need to
make some preliminary choices concerning the formal
treatment of existence, modality, space and time. We shall
not discuss these issues here, although we believe that these
choices can be better understood, refined, or modified, by
applying the methodology above.

4 Formal Relations

4.1 Instantiation and Membership
In the ontological engineering community, classical first
order logic with equality is generally adopted as a formaliza-
tion language (more or less reduced in its expressivity if
computational efficiency is important). This means that we
take for granted the distinction between properties and do-
main entities: the latter (syntactically denoted by constants)
are usually called instances of the formers (syntactically
denoted by predicates). The instantiation relation seems to
have therefore an intrinsic meta-logical nature, as it links
together entities belonging to different logical levels.
Things are complicated by the fact that, given a theory A,
we can construct a meta-level theory B whose constant
symbols correspond to A’s predicates, and whose intended
domain is that of A’s properties. So the term “instance” is
ontologically ambiguous, unless the corresponding level is
specified. There is however a bottom level, that of ultimate
instances, things that cannot be predicated of anything else.
These are what philosophers call ‘particulars’, i.e., entities
that cannot be instantiated, as opposed to ‘universals’, i.e.
entities that can be predicated on particulars3.

Despite its apparent simplicity, the notion of instantia-
tion is subtle, and should not be confused with that of set
membership. Let’s try to clarify this by means of a classical
example. There are two possible interpretations of the sen-
tence “Socrates is a man”:

1. Socrates belongs to the class of all human beings;
2. Socrates exhibits the property of being a man;

Usually, in mathematics, the two views are assumed to be
equivalent, and a predicate is taken as coinciding with the
set of entities that satisfy it. This view is however too sim-
plistic, since in Tarskian semantics set membership is taken
as a basis to decide the truth value of property instantiation,
so the former notion is independent from the latter. The
existence of a mapping between the two relations does not
justify their identification: one thing is a set, another thing
is a property common to the elements of a set. A set may

                                                
3 The term “universal” is due to the fact that, metaphorically, we
may see a property as multiply present in different things. Note
however that this doesn’t mean that different instances of the
same universal have any part in common.

have many common properties, or maybe none4. A set has a
cardinality, while a property abstracts from cardinality. A
set is not something that can be multiply “present” in dif-
ferent things like a property: a set is a particular, a property
is a universal. Membership involves the former, instantia-
tion the latter.

So properties (universals) correspond to sets (called
their extension), but are not sets. We may wonder however
whether two universals that correspond to the same set are
the same. Those who take intensionality into account usu-
ally refuse this assumption. The classical “realist example”
of intensionality is that of the three predicates “human”,
“featherless biped”, and “animal that laughs” that have the
same extension but are considered to be different. An inter-
esting alternative, suggested in [Lewis, 1983], is to include
in the extension of a predicate all its possible instances
(possibilia). In this case, “featherless biped” would include
other instances besides humans, so that we can more safely
assume that two universals are the same if they have the
same extension.

A final problem concerns the possibility of having a
(first order) logical theory of universals. In general, this
appears to be impossible, since the predicates used to talk
about universals (like instantiation) would themselves refer
to universals. The solution we adopt is to reserve the term
“universal” to those properties and relations whose instances
are particulars. Limiting our domain to the first two levels,
we can aim at building a separate meta-theory that accounts
for the distinctions we need for our purposes. To stick to
first order logic, however, we need to avoid quantifying on
arbitrary universals. To this purpose, we adopt a practical
suggestion proposed by Pat Hayes5, to further restrict the
universals we quantify on to a pre-defined set of relevant
properties and relations, corresponding to the predicates
explicitly mentioned in our object-level theory. Within this
theory, we can state some minimal ground axioms for the
instantiation relation, and introduce definitions for particu-
lars and universals. Reading I(x, y) as “x is an instance of y”,
we have:

(I1) I(x, y) → ¬I(y, x) (asymmetry)
(I2) (I(x,y) ∧ I(x,z)) → (¬I(y,z) ∧ ¬I(z,y)) (antitransitivity)

Par(x) =∆  ¬∃y(I(y, x))
Uni(x) =∆  ¬Par(x)

We shall not discuss distinctions among universals in detail
here. A preliminary discussion on this topic (focused on
properties) has been published in [Guarino and Welty,
2000a].

4.2 Parthood
The parthood relation is a very basic and investigated no-
tion, which has been formalized only at the beginning of
20th century [Leonard and Goodman, 1940; Lesniewski,
1991]. These works intend to build a single theory (called
                                                
4 In other words, a set doesn’t coincide with its characteristic
function.
5 Message to the IEEE SUO list, http://suo.ieee.org



classical extensional mereology) that, unlike set theory, is
founded only on concrete entities. More recently, [Simons,
1987] and [Casati and Varzi, 1999] pointed out that we can
have different mereologies corresponding to different
parthood relations, and made explicit the formal dependen-
cies among them.

We shall write P(x, y) as “x is a part of y”. Only three
ground axioms (P1-P3) are considered as minimal, although
the weak supplementation axiom (P4) is often accepted:

(P1) P(x, x)
(P2) (P(x, y) ∧ P(y, x)) → x = y)
(P3) (P(x, y) ∧ P(y, z)) → P(x, z)
(P4) PP(x, y) → ∃z(P(z, y) ∧ ¬O(z, x))

where

(DPP) PP(x, y) =∆  (P(x, y) ∧ ¬P(y, x))
(DO) O(x, y) =∆  ∃z(P(z, x) ∧ P(z, y)).

The extensionality axiom (P5) and the stronger supple-
mentation axiom (P6) 6:

(P5) (∃z(PP(z, x)) ∧ ∀z(PP(z, x) → PP(z, y))) → P(x, y)
(P6) ¬P(x, y) → ∃z(P(z, x) ∧ ¬O(z, y))

are much more controversial. It is safer therefore to assume
they hold only for some classes of entities called exten-
sional7 entities.

Axioms guaranteeing existence of sum, difference,
product, fusion of entities or establishing mereological
properties (such as atomicity or divisibility) are debatable,
and then we shall not commit to them at this stage of our
methodology.

4.3 Connection
Parthood only is not enough to analyze the internal struc-
ture of a given entity, as it only allows us to check whether
it is atomic or divisible. To the purpose of capturing at least
some basic intuitions related to the notion of whole, con-
nection is usually introduced in the meretopological litera-
ture [Simons, 1987; Varzi, 1999] as a further primitive in
addition to parthood. It is assumed to satisfy the following
minimal axioms:

Ground axioms:
(C1) C(x, x)
(C2) C(x, y) → C(y, x)

Link with part relation:
(C3) P(x, y) → ∀z(C(z, x) → C(z, y))

Note that from (C3) and (P1) we can deduce (C2), then (C2)
is redundant. The converse of (C3) is controversial, as it
seems to be acceptable only for spatial regions.

These axioms can be specialized in various ways to ac-
count for different notions of connection. For instance,
within topological connection between 3-d regions, it may
be useful to distinguish among point-connection, line-
connection, and surface-connection [Borgo et al., 1996].
                                                
6 Note that P6 implies P5, but not viceversa.
7 Unfortunately, this adjective is used with different meanings
in the literature, see section 5.2.

4.4 Location and Extension
Recently, Casati and Varzi [Casati and Varzi, 1999] have
axiomatized the notion of location by means of a primitive
L intended to capture the intuition of “being (exactly) in a
place”. Although their approach is focused on space only,
we believe it can be generalized to account for the relation-
ship existing between arbitrary entities and four-dimensional
regions. Since – at least at this point – we want to be neu-
tral about the commitments on the distinction between con-
tinuants and occurrents, we prefer renaming this relation in
terms of being extended in a (n-dimensional) region. We
introduce therefore a binary primitive E(x, y) to be read as “x
is the extension of y”8, and we assume for it the axioms
from [Casati and Varzi, 1999]:

Ground Axioms:
(E1) (E(x, y) ∧ E(z,y)) → x = z (functionality)
(E2) E(x, y) → E(x, x) (conditional reflexivity)

Links with parthood:
(E3) (P(x, y) ∧ E(z, x) ∧ E(w, y)) → P(z, w)
(E4) (P(x, y) ∧ E(y, z)) → PE(x, z)

where

PE(x, y) =∆  ∃z(P(z, y) ∧ E(x, z)) (partial extension)

Link with connection:

(E5) (C(x, y) ∧ E(z, x) ∧ E(w, y)) → C(z, w)

Note that transitivity and antisymmetry follow from ground
axioms. Note that we do not exclude that different entities
can have the same extension, and that we assume a region as
something that is extended in itself. Some useful defini-
tions follow:

Reg(x) =∆  E(x, x) (x is a region)
Extd(x) =∆  ∃y(E(y, x)) (x is extended)
Coext(x, y) =∆  ∃z,u(E(z, x) ∧ E(u, y) ∧ u = z)

(x and y are co-extensional)
OCφ(x, y) =∆  φ(x) ∧ E(y, x) ∧ ∀z((φ(z) ∧ E(y, z)) → O(z, x))

(x φ-occupies y)

We take for granted the further axioms introduced by [Casati
and Varzi, 1999] to ensure the topological properties of re-
gions (pp. 122-126), which will not be discussed here. On
the basis of this theory, the following relevant theorem can
be proved for any extensional property φ (see section 5.2):

(OCφ(x, y) ∧ OCφ(z, y)) → z = x.

We can’t prove the same for co-extensionality, and this
makes clear the difference between being extended in a re-
gion and occupying that region.

4.5 Dependence
We consider here ontological dependence as a general rela-
tion potentially involving all the entities of the domain. In

                                                
8 Note that we reversed the arguments of Casati and Varzi’s L
primitive.



this sense we try to understand dependence as a formal rela-
tion with a minimal ontological commitment, which can be
specialized in different ways. The classical philosophical
reference for the notion of dependence is Husserl’s work
[Husserl, 1970]. Recently, Fine and Simons [Simons,
1987; Fine, 1995b] have suggested some alternative formal-
izations of Husserl’s analysis, discussing their problems and
possible solutions.

Following Husserl, Fine proposes four axioms for de-
pendence:

Ground Axioms:
(D1) D(x, x)
(D2) D(x, y) ∧ D(y, z) → D(x, z)

Links with Part relation:
(D3) P(x, y) → D(y, x)
(D4) ∃y(D(x, y) ∧ ∀z(D(x, z) → P(z, y)))

Is this a good axiomatization of dependence relation? A
minor problem is that (D1) is provable from (D3) and from
the reflexivity of parthood, (P1), then (D1) is redundant.
Another problem regards (D4). This axiom guarantees the
existence of an entity y that is the maximal (with respect to
part relation) entity from which x depends, and then it is
clearly not ontologically neutral.

Moreover, Simons criticizes these axioms from a more
general point of view. He points out that these axioms can
be interpreted in terms of weak topological structures, where
dependent entities correspond to non-closed sets, and inde-
pendent entities correspond to closed sets. Dependence
would therefore resemble a sort of topological relation, and
this may sound as counterintuitive.

Indeed, ontological dependence is usually not intro-
duced as a primitive relation, but rather defined in terms of
a modal operator and an existence predicate (Ex) as:

(DD) D(x, y) =∆  n(Ex(x) → Ex(y)).

In order to accept this, we have to accept however that de-
pendence is intrinsically linked to modality, and somebody
finds this debatable, too. If we want to be neutral with re-
spect to this issue, we need a theory that is compatible with
the modal interpretation of D relation. But, as Simons
points out, if we interpret D as in (DD), axiom (D3) is sat-
isfied only if we either subscribe to mereological essential-
ism (any part of x is necessarily such) or if we consider a
modal interpretation of P (part means essential part). Oth-
erwise in general from “x is part of y it does not follow that
y could not exist without x” (Simons, p. 317). This is a big
problem. If we abandon axioms (D3- D4) the characteriza-
tion of dependence relation is really weak.

We are tempted therefore to accept (DD). In this case we
have however other problems. One problem is that we may
have different kinds of modal operators each inducing differ-
ent kinds of dependence relations and that present technical
difficulties (for example, formal necessity, material neces-
sity, nomological necessity, etc.). A more serious problem
is the characterization of predicate Ex. This seems really not
so simple. For example, does being something coincide

with existing? Do things like ordinary objects and events
exist in the same way? (see [Fine, 1995a]). In order to clar-
ify these issues we may introduce time too, but in this case
we need either to introduce another modal operator that in-
teracts with the first one, or to treat time independently. The
latter approach has been adopted in [Thomasson, 1999],
where the author informally introduces different kinds of
temporal dependence, such as:

CD(x, y) =∆  n(Ex(x, t) → Ex(y, t)) (constant dep.)
HD(x, y) =∆  n(Ex(x, t) → (Ex(y, t') ∧ t' ≤ t) (historical dep.)

Thomasson also includes the possibility for a universal
to depend on a specific particular (being a wife of Henry
VIII depends on Henry VIII), and for a particular to depend
only generically on another particular that instantiates a
specific universal (the US generically depend on some US
citizen).

We find these definitions extremely interesting intui-
tively, but we do not attempt at formalizing them here. So,
for the time being, we take only axioms (D1) and (D2),
leaving the interpretation of ontological dependence to intui-
tion. We introduce however some useful definitions based
on P and D:

MD(x, y) =∆  D(x, y) ∧ D(y, x) (mutual dependence)
SD(x, y) =∆  D(x, y) ∧ ¬D(y, x) (one-side dependence)
ED(x, y) =∆  D(x, y) ∧ ¬P(y, x) (external  dependence)

5 Formal Properties
On the basis of the formal relations discussed above, let us
briefly introduce a set of formal properties that we believe
especially useful for our purposes. For the sake of simplic-
ity, our domain of quantification will be limited to particu-
lars so that the formal properties will not correspond to
logical definitions, but will be stated in the meta-language.
Those meta-level definitions that classify a particular with
respect to the universal denoted by φ are expressed by using
a φ  subscript.

5.1 Concreteness and abstractness
In section 4.4 we have already defined the notion of an ex-
tended entity as something that extends in a (spatiotempo-
ral) region. We shall take the property of being extended as
synonymous of being concrete. A non-extended entity will
be called abstract.

Note that this sense of “abstract” has nothing to do
with the process of abstracting a common property from a
set of entities. So the decision whether properties (or uni-
versals) are abstract or concrete, according to our terminol-
ogy, cannot be taken on the basis of the theory of extension
we have introduced. What the theory tells us is that, if the
elements of a set or the instances of a property are concrete,
we assume universals to be concrete, then we have to inter-
pret the meaning of parthood and connection for universals
in a suitable way. Moreover, we have to establish a link
between the extension of a particular and the extension of
the universal that it instantiates. Similar difficulties would
occur assuming that sets are concrete, since in this case we



need a theory that links their extension to that of their
members (and to the parts of their members). For these rea-
sons, it seems pretty safe to stick to the usual assumption
that universals and sets are both abstract. Collections, which
will be discussed below, are the concrete correspondent of
sets.

5.2 Extensionality
We say that an entity is extensional if and only if every-
thing that has the same proper parts is identical to it:

Extl(x) =∆  ∃z(PP(z, x) ∧ (∀z(PP(z, x) ↔ PP(z, y)) → x = y)

Examples of extensional entities are regions and
amounts of matter.

We say that a property is extensional iff all its instances
are extensional. We say in this case that this property car-
ries an extensional criterion of identity9.

Unfortunately, the adjective “extensional” is also used
with different meanings in the literature. Sets are said to be
extensional since they are identical when they have the same
members, and properties are considered as extensional when
properties with the same instances are taken as identical.

5.3 Unity and plurality
We believe that the formal relations we have introduced
allow us to exactly define the notion of unity, but this re-
quires some care.

Let us first give some definitions based on the parthood
relation, which may capture some notions related to that of
unity:

At(x) =∆  ¬∃y(PP(y, x)) (atomicity)
Div(x) =∆  ¬At(x) (divisibility)
Atφ(x) =∆  φ(x) ∧ ¬∃y(φ(y) ∧ PP(y, x)) (φ-atomicity)
Divφ(x) =∆  φ(x) ∧ ∃y(φ(y) ∧ PP(y, x)) (φ-divisibility)
IHomφ(x) =∆  φ(x) ∧ ∀y(PP(y, x) → φ(y)) (φ-int. homogeneity)
Maxφ(x) =∆  φ(x) ∧ ¬∃y(φ(y) ∧ PP(x, y)) (φ  maximality)
EHomφ(x) =∆  φ(x) ∧ ∀y(PP(x, y) → φ(y))(φ-ext. homogeneity)
Σφ(x)=∆ ∀y(P(y, x) → ∃z(φ(z) ∧ P(z, x) ∧  O(z, y)) (sum of φs)

The notion of maximality seems indeed very much related
to unity (wrt a certain φ), but it does not account for the
way the various parts of x are bound together. Indeed, there
are different aspects behind the notion of unity of an object,
which are merged together in the following definition:

“Every member of some division of the object stands in a
certain relation to every other member, and no member
bears this relation to anything other than members of the
division.” ([Simons, 1987], p.328)

We see here at least three fundamental aspects: a notion of
division within a whole, with members of such division; a
suitable unifying relation that binds the members together,
and a maximality constraint with respect to this relation on
the members. The notion of “member of a division” is the
                                                
9 An extensive analysis of criteria of identity has been done
elsewhere [Guarino and Welty, 2000b; Guarino and Welty,
2001]; for our purposes, we shall only distinguish here be-
tween extensional and non-extensional identity criteria.

subtle issue here. Simons takes class membership as a
primitive distinct from parthood. We’d rather analyze it in
terms of parthood, in the spirit of the analysis presented in
[Guarino and Welty, 2000b]. The definition of unity pro-
posed in that paper has however some problems10, so we
propose here a new one that captures more carefully the no-
tion of member of a division.

Our intuition is that any member of x is a special part
of x. So we need a property that individuates the members
within the parts of x. Observe that, if x forms a unity under
a unifying relation R, then the property we need must only
pick up the parts of x that belong to R’s domain. All other
parts can be ignored11.

Note now that R must be at least symmetric and reflex-
ive (let's postpone by now the discussion about transitiv-
ity). Then we can define a predicate δR denoting R’s do-
main, which must hold when x is a member of a division
unified by R:

δ
R
(x) =∆  R(x, x)

We can observe that, if R is defined on the whole domain,
then δR(y) also holds for all the parts y of x.

We define now the notion of a whole as follows:

υ
R
(x) =∆  ΣδR

(x) ∧ ∀y,z((δ
R
(y) ∧ δ

R
(z) ∧ P(y, x) ∧ P(z, x)) →

R(y, z)) (x is unified by R)

ω R(x) =∆  MaxυR 
(x) (x is a whole under R)

The first definition says that x is unified by R iff it is a sum
of entities belonging to R's domain, and all these entities
are linked together by R. The second one says that x is  a
whole under R iff it is maximally unified by R.
Let us discuss now the assumptions regarding R's transitiv-
ity. At a first sight, it would be obvious to assume R as
transitive; together with the previous assumptions, this
would result in R being an equivalence relation. However,
this would exclude the possibility of overlapping wholes
with a common unifying relation12. Consider for example
the notions of committee or organization : two committees
may have a member in common while being two different
wholes. Of course, in a strict sense, there would two differ-
ent unifying relations in this case (say, having mission A
vs. having mission B). The point is that there would be no
common unifying relation attached to the property commit-
tee. A plausible common relation would be "having the
same mission", but this is not transitive. This is why, con-
                                                
10 Consider the following counterexample: suppose you want
to say that all the children a, b, c of a certain person form a
whole. So all the parts of a+b+c  must be linked together by the
unifying relation “having the same parent”. But two of them,
namely a+b and b+c, are not linked by such relation, since they
are not persons. Another problem is linked to the fact that the
previous definition excludes the possibility of overlapping of
entities that are wholes (see below).
11 We may also study the property of internal uniformity of x
with respect the predicate φ(y) =∆  R(y, x) but this is another prob-
lem.
12 We are grateful to Aaron Kaplan for this counterexample.



trary to the previous papers by Guarino and Welty, we shall
not assume transitivity for R.

For the purpose of ontological analysis, it is interesting
to explore how various unifying relations can be defined on
the basis of simpler relations, called characteristic relations
([Simons, 1987] p.330). This analysis can be used to intro-
duce different kinds of wholes.

In particular, from the cognitive point of view, it is
very interesting to consider topological connection as a
characteristic relation. More exactly, the cognitively relevant
characteristic relations are those that restrict topological
connection to hold between physical entities of the same
kind, such as matter, color, or physical bodies (otherwise,
using topological connection only, the only whole would be
the universe).

Under this perspective, take Cϕ as the transitive closure
of the projection of C on ϕ entities. We say that x is a topo-
logical whole  under ϕ if ω Cϕ(x).

We can now introduce the notions of singularity and
plurality, assuming that they are cognitively bound to topo-
logical connection:

Singϕ(x) =∆  ω Cϕ(x) (singularity)
Plurϕ(x) =∆  ¬Singϕ(x) ∧ ∃y(PP(y, x) ∧ Singϕ(y)) (plurality)

A singular entity is therefore one that is a topological
whole. We define a plurality as anything that contains a
topological whole and is not itself a topological whole.

Topological wholes have two parameters, corresponding
to the C and ϕ above. If we take C as the usual topological
connection, an isolated piece of matter will be a topological
whole under “matter”, while a spot of color will be a topo-
logical whole under “color”. Note that nothing excludes a
topological whole (under a certain kind of connection) to
include other topological wholes (under a different kind of
connection): think of a lump of spheres, which can be seen
as a whole under point connection and contains many
wholes under surface connection.

Note that if something does not contain a whole, it will
be neither singular nor plural (think for instance of an unde-
tached piece of matter).

A special case of plurality is a collection, which must
be a sum of wholes. Each of these wholes will be a member
of the collection.

Within singular entities, it may be interesting to dis-
tinguish between homogenous and non-homogeneous enti-
ties with respect to φ:

Simpleϕφ(x) =∆  Singϕ(x) ∧ IHomφ(x)
Complexϕφ(x) =∆  Singϕ(x) ∧ ¬IHomφ(x)

For instance, if we assume singularity as based on point
connection (that is, roughly, physical contact), we have that
a physical body is homogenous wrt surface-self-connection,
while an assembly formed by different bodies that touch
each others is not.

5.4 Dependence and Independence
Finally, the last formal property that we consider is whether
or not an entity is externally dependent, i.e. dependent on
other things besides its parts:

Dep(x) =∆  ∃y(ED(x, y)) (dependence)
Depφ(x) =∆  ∃y(φ(y) ∧ ED(x, y)) (φ-dep., or generic dep.)
Ind(x) =∆  ¬Dep(x) (independence)

According to our discussion in section 4.5, we have how-
ever to select an intended interpretation for D, since there are
different kinds of dependence. For the purpose of isolating
broad, relevant categories of entities, we believe that a spe-
cial importance should be given to what Thomasson calls
constant dependence, whose proper formalization requires an
account of time that must be subject of future work. Under
this view, for example, we can stipulate that ordinary ob-
jects (continuants) are independent, while events (occur-
rents) are dependent. More work on this is needed, however.

Conclusions
Developing a well-founded top-level ontology is an very
difficult task, that requires a carefully designed methodol-
ogy and rigorous formal framework. We hope to have con-
tributed on both these aspects.

Since this is work in progress, we haven’t been able to
explore and discuss in detail the practical consequences of
the methodology we have presented, although we have defi-
nite evidence of its relevance.

We are presently at step 4 of the sequence discussed in
section 3.2. We hope in the possibility of a cooperative
effort to proceed (through refinements and adjustments) in
the way we have outlined.

This work has been done in the framework of the Euro-
pean Eureka project E!2235 “IKF” (Intelligent Knowledge
Fusion). In this framework, we plan to develop a general
reference ontology linked to a lexical resource such as
WordNet, by using the methodology we have outlined. The
final result will be of public domain, and will hopefully
profit from (and contribute to) existing cooperation initia-
tives in this area, such as the IEEE SUO.
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