
Combining and relating ontologies:
an analysis of problems and solutions

Michel Klein
Vrije Universiteit Amsterdam

Michel.Klein@cs.vu.nl

Abstract

With the grown availability of large and specialized
online ontologies, the questions about the com-
bined use of independently developed ontologies
have become even more important. Although there
is already a lot of research done in this area, there
are still many open questions. In this paper we try
to classify the problems that may arise into a com-
mon framework. We then use that framework to
examine several projects that aim at some ontology
combination task, thus sketching the state of the art.
We conclude with an overview of the different ap-
proaches and some recommandations for future re-
search.

1 Introduction
In the last few years, there has been put a lot of effort in the
development of techniques that aim at the “Semantic Web”.
This next step in the evolution of the World Wide Web, will
enable computers to partly “understand” the information on
the internet. A lot of those newly developed techniques re-
quires and enables the specification of ontologies (Gruber,
1993) on the web. Consequently, there will emerge a lot of
freely accessible domain specific ontologies. The reuse of
these ontologies may be very attractive.

However, there are several problems when one tries to use
independently developed ontologies together, or when exist-
ing ontologies are adapted for new purposes. Although there
is already a lot of research done in this area, there are still
many open questions. In this paper, we investigate the prob-
lems that may arise. We will distinguish several types of mis-
matches that can occur between different ontologies, we will
look at practical problems and we will look at some of the
consequences of changes to ontologies. Altogether, this will
give us a framework that can be used to compare approaches
that aim at solving the problems. We will use this to exam-
ine several techniques and tools that has the purpose to solve
these problems or to support users in performing ontology
combining tasks.

The paper is organized as follows. We will first clarify
the terminology that is used in the field of ontology combin-
ing (section 2). In section 3, we will investigate all problems

that arise when ontologies are combined or related, which re-
sults in a framework of relevant issues. Next, in section 4, we
will use the framework to examine existing approaches for
ontology combining. In section 5, we summarize the tech-
niques and give an overview of the different approaches that
are used. Finally, in section 6 we will conclude the paper and
we will make some remarks based on our observations.

2 Terminology

Before we can analyse the problems that play a role, we need
to clarify the terminology and define the terms we will use.
We will have to make some decisions about our understand-
ing of the terminology, because there is not always an agree-
ment on the exact meaning of the terms. We have tried to be
consistent as far as possible with definitions and descriptions
found elsewhere.

Reuse of existing ontologies is often not possible without
considerable effort (Uscholdet al., 1998). When one wants
to reuse different ontologies together, those ontologies have
to becombinedin some way. This can be done byintegrating
(Pintoet al., 1999) the ontologies, which means that they are
merged into one new ontology, or the ontologies can be kept
separate. In both cases, the ontologies have to bealigned,
which means that they have to be brought into mutual agree-
ment.

Ontology integration consist of (the iteration of) the fol-
lowing steps (McGuinnesset al., 2000):

1. find the places in the ontologies where they overlap;

2. relate concepts that are semantically close via equiva-
lence and subsumption relations (aligning);

3. check the consistency, coherency and non-redundancy
of the result.

The alignment of concepts between ontologies is especially
difficult, because this requires understanding of the meaning
of concepts. Aligning two ontologies implies changes to at
least one of them. Changes to an ontology will result in a
newversionof an ontology.

If the ontologies are not represented in the same language,
a translationis often required.

Throughout this paper, we will use the following terms
consistently according to their specified meaning:

Michel.Klein@cs.vu.nl


combining: Using two or more different ontologies for a
task in which their mutual relation is relevant.

merging, integrating: Creating a new ontology from two
or more existing ontologies with overlapping
parts, which can be either virtual or physical.

aligning: Bring two or more ontologies into mutual
agreement, making them consistent and co-
herent.

mapping: Relating similar (according to some metric)
concepts or relations from different sources
to each other by an equivalence relation. A
mapping result in a virtual integration.

articulation: The points of linkage between two aligned
ontologies, ie. the specification of the align-
ment.

translating: Changing the representation formalism of an
ontology while preserving the semantics.

transforming: Changing the semantics of an ontology
slightly (possibly also changing the represen-
tion) to make it suitable for purposes other
than the original one.

version: The result of a change that may exist next to
the original.

versioning: A method to keep the relation between newly
created ontologies, the existing ones, and the
data that conforms to them consistent.

3 Problems with ontology combination
The combined use of multiple ontologies is hindered by sev-
eral problems. In this section, we will investigate and de-
scribe them.

The problems that underlies the difficulties in merging and
aligning are the mismatches that may exist between separate
ontologies. In the next subsection, we will discuss these mis-
matches. We will then look at the different type of problems
involved with versioning and revisioning. Finally, we will
discuss some practical problems that come up when one tries
to combine ontologies.

Thus doing, we will build a framework with the different
types of problems that can occur when relating ontologies.
This framework can be used when we compare the existing
approaches and tools.

3.1 Mismatches between ontologies
Mismatches between ontologies are the key type of problems
that hinder the combined use of independently developed on-
tologies. We will now explorehow ontologies may differ.
In the literature, there are a lot of possible mismatches men-
tioned, which are not always easy comparable. To make them
more comparable, we try to classify the different types of mis-
matches and relate them to each other.

As a first step, we will distinguish between two levels at
which mismatches may appear. The first level is thelanguage
or meta-model level. This is the level of the language prim-
itives that are used to specify an ontology. Mismatches at

this level are mismatches between themechanimsto define
classes, relations and so on. The second level is theontol-
ogy or model level, at which the actual ontology of a do-
main lives. A mismatch at this level is a difference in the
way the domain is modelled. The distinction between these
two levels of differences is made very often. Kitakamiet al.
(1996) and Visseret al. (1997) call these kinds of differences
respectivelynon-semanticandsemanticdifferences. Others
make this distinction implicitly, by only concentrating on one
of the two levels. For example, Wiederhold (1994) analyses
domain differences (i.e., ontology level), while Grossoet al.
(1998) and Bowers and Delcambre (2000) look at langauge
level differences. In the following, we will avoid the use of
the words “semantic differences” for ontology level differ-
ences, because we reserve those words for a more specific
type of difference (which will be described below).

Below, we will give an overview and characterization of
different types of mismatches that can appear at each of those
two levels.

Language level mismatches
Mismatches at the language level occur when ontologies writ-
ten in different ontology languages are combined. Chalupsky
(2000) defines mismatches insyntaxandexpressivity. In to-
tal, we distinguish four types of mismatches that can occur,
although they often coincide.

• Syntax Obviously, different ontology languages often
use different syntaxes. For example, to define the class
of chairs in RDF Schema (Brickley and Guha, 2000),
one uses<rdfs:Class ID="Chair"> . In LOOM, the
expression(defconcept Chair) is used to define the
same class. This difference is probably the most simple
kind of mismatch. However, this mismatch often doesn’t
come alone, but is coupled with other differences at the
language level. A typical example of a “syntax only”
mismatch is an ontology language that has several syn-
tactical representations. In this simple case, a rewrite
mechanims is sufficient to solve those problems.

• Logical representation An slightly more complicated
mismatches at this level is the difference in repre-
sentation of logical notions. For example, in some
languages it is possible to state explicitly that two
classes are disjoint (e.g.,disjoint A B ), whereas it
is necessary to use negation in subclass statements
(e.g., A subclass-of (NOT B), B subclass-of
(NOT A) in other languages. The point here is not
whether something can be expressed — the statements
are logically equivalent — but which langauge con-
structs should be used to express something. Also, no-
tice that this mismatch is not about the representation of
concepts, but about the representation oflogical notions.
This type of mismatch is still relatively easy solvable,
e.g. by giving translation rules from one logical repre-
sentation to another.

• Semantics of primitivesA more subtle possible differ-
ence at the metamodel level is the semantics of language
constructs. Despite the fact that sometimes the same
name is used for a language construct in two languages,



the semantics may differ; e.g., there are several interpre-
tations ofA equalTo B .
Note that even when two ontologies seem to use the
same syntax, the semantics can differ. For example, the
OIL RDF Schema syntax (Broekstraet al., 2001) inter-
prets multiple<rdfs:domain> statements as the inter-
section of the arguments, whereas RDF Schema itself
uses union semantics1.

• Language expressivityThe mismatch at the metamodel
level with the most impact is the difference in expressiv-
ity between two languages. This difference implies that
some langauges are able to express things that are not
expressible in other languages. For example, some lan-
guages have constructs to express negation, others have
not. Other typical differences in expressivity are the sup-
port of lists and sets, default values, etc.
This type of mismatch has probably the most impact,
and is mentioned by several others. The “fundamen-
tal differences” between knowledge models that are de-
scribed in (Grossoet al., 1998) are also very close to our
interpretation.

Our list of differences at the language level can be seen
as more or less compatible with the broad term “language
heterogeneity” of Visseret al. (1997).

Ontology level mismatches
Mismatches at the ontology — or model — level happen
when two or more ontologies that describe (partly) overlap-
ping domains are combined. These mismatches may occur
when the ontologies are written in the same language, as well
as when they use different languages. Based on the literature
and on our own observations, we can distinguish several types
of mismatches at the model level.

Visseret al.(1997) make a very useful distinction between
mismatches in theconceptualizationandexplicationof on-
tologies. A conceptualization mismatch is a difference in the
way a domain is interpreted (conceptualized), which results in
different ontological concepts or different relations between
those concepts. An explication mismatch, on the other hand,
is a difference in the way the conceptualization isspecified.
This can manifest itself in mismatches in definitions, mis-
matches in terms and combinations of both. Visseret al. list
all the combinations. Four of them are related to hymonym
terms and synonym terms.

Wiederhold (1994) also mentions the problems with syn-
onym terms (callednaming differences) and homonym terms
(subjective meaning). Besides that, he describes possible dif-
ferences in thescope of concepts, which is an example of
a conceptual mismatch. Finally, he mentionsvalue encoding
differences, for example, differences in the currency of prices.

Chalupsky (2000) list four types of mismatches in ontolo-
gies. One of them,inference system biasis in our opinion
not a real mismatch, but a reason for modeling style differ-
ences. The other three mismatches,modeling conventions,
coverage and granularityandparadigmscan be categorized

1Although this will probably change in the next revision of RDF
Schema, according to a discussion on the RDF-interest mailinglist.

as instances of the two main mismatch types of Visseret al..
We will describe them in a slightly altered way below.

We will now relate the different types of mismatches that
are distinguished by the authors cited above. Thus, we will
continue the build of our framework.

The first two mismatches at the model level that we dis-
tinguish are instances of theconceptualization mismatches
of Visseret al.. This are semantic differences, i.e., not only
the specification, but also the conceptualization of the domain
(see the definition of Gruber, 1993) is different in the ontolo-
gies that are involved.

• Scope Two classes seem to represent the same con-
cept, but do not have exactly the same instances, al-
though these intersect. The standard example is the class
“employee”: several administrations use slightly differ-
ent concepts of employee, as mentioned by Wiederhold
(1994). In (Visseret al., 1997), this is called aclass mis-
matchand is worked out further into detailed descrip-
tions at class- or relation-level.

• Model coverage and granularity This is a mismatch
in the part of the domain that is covered by the on-
tology, or the level of detail to which that domain is
modelled. Chalupsky (2000) gives the example of an
ontology about cars: one ontology might model cars
but not trucks. Another one might represent trucks but
only classify them into a few categories, while a third
one might make very fine-grained distrinctions between
types of trucks based on their general physical structure,
weight, purpose, etc.

Conceptualization differences as described above can not be
solved automatically, but require knowledge and decisions of
a domain expert. In the second case, the mismatch is often not
a problem, but a motive to use different ontologies together.
In that case, the remaining problem is to align the overlapping
parts of the ontology.

The other ontology-level mismatches can be categorized
asexplication mismatches, in the terminology of Visseret
al.. The first two of them result from explicit choices of the
modeler about thestyle of modeling:

• Paradigm Different paradigms can be used to represent
concepts such as time, action, plans, causality, propo-
sitional attitudes, etc. For example, one model might
use temporal representations based on interval logic
while another might use a representation based on point
(Chalupsky, 2000). The use of different “top-level” on-
tology is also an example of this kind of mismatch.

• Concept descriptionThis type of differences are called
modeling conventionsin (Chalupsky, 2000). Several
choices can be made for the modeling of concepts in
the ontology. For example, a distinctions between two
classes can be modeled using a qualifying attribute or
by introducing a separate class. These choices are some-
times influenced by the intended inference system. An-
other choice in concept descriptions is the way in which
is-a hierarchy is build; distinctions between features can
be made higher or lower in the hierarchy. For exam-
ple, consider the place where the distinction between



scientific and non-scientific publications is made: a dis-
sertation can be modeled asdissertation < book
< scientific publication < publication , or
as dissertation < scientific book < book <
publication , or even as subclass of bothbook and
scientific publication .

Further, the next two types of differences can be classified as
terminological mismatches.

• Synonym termsConcepts are represented by different
names. A trivial example is the use of the term “car”
in one ontology and the term “automobile” in another
ontology. This type of problem is calledterm mismatch
(T or TD) in (Visseret al., 1997).
A special type of this problem is the case that the natural
language in which ontologies are described differ.
Although the technical solution for this type of prob-
lems seems relatively simple (the use of thesauri), the
integration of ontologies with synonyms or different lan-
guages requires usually a lot of human effort and comes
with several semantic problems. Especially, one must be
careful not to overlook a scope difference (see above).

• Homonym terms The meaning of a term is different in
an other context. For example, the term “conductor” has
a different meaning in a music domain than in an elec-
tric engineering domain. Visseret al. (1997) calls this a
concept mismatch (C or CD).
This inconsistency is much harder to handle; (human)
knowledge is required to solve this ambiguity.

Finally, there is a one trivial type of difference left.

• Encoding Values in the ontologies may be encoded in
different formats. For example, a date may be repre-
sented as “dd/mm/yyyy” or as “mm-dd-yy”, distance
may be described in miles or kilometers, etc. There are
many mismatches of this type, but these are all very easy
to solve. In most cases, a transformation step or wrapper
is sufficient to eliminate all those differences.

3.2 Ontology versioning
The problems listed above are mismatches between ontolo-
gies. Most projects and approaches focus on solving these
mismatches. However, mismatches are not the only problems
that have to be solved when one want to use several ontolo-
gies together for one task.

As changes to ontologies are inevitable in an open domain,
it becomes very important to keep track of the changes and of
its impact on the dependencies of that ontology. It is often not
practically possible to synchronize the changes of an ontol-
ogy with the revisions to the applications and datasources that
use them. Therefore, a versioning method is needed to handle
revisions of ontologies and the impact on existing sources. In
some sense, the versioning problem can also be regarded as
a derivation of ontology combination; it results from changes
(possibly required by combination tasks) to individual ontolo-
gies.

Ontology versioning covers several aspects. Although the
problem is introduced by subsequent changes to one specific

ontology, the most important problems are caused by the de-
pendencies on that ontology. Therefore, it is useful to dis-
tinguish the aspects of ontology versioning. A versioning
scheme should take care of the following aspects:

1. the relation between succeeding revisions of one ontol-
ogy;

2. the relation between the ontology and its dependencies:

• instance data that conforms to the ontology;
• other ontologies that are built from, or import the

ontology;
• applications that use the ontology.

The central question that a versioning scheme answers is:
how to reuse existing ontologies in new situations, without
invalidating the existing ones. A versioning scheme provides
ways to disambiguate the interpretation of concepts for users
of the ontology revisions, and it makes the compatibility of
the revisions explicit. Consequently, we can impose the fol-
lowing requirements on a versioning scheme, in increasing
level of difficulty:

• for every use of a concept or a relation, a versioning
framework should provide an unambigious reference to
the intended definition (identification);

• a versioning framework should make the relation of one
version of a concept or relation to other versions of that
construct explicit (change tracking);

• a versioning framework should — as far as possible
— automatically perform conversions from one version
to another, to enable transparant access (transparant
translating).

We will examine the current approaches with respect to those
requirements.

3.3 Practical problems
Besides the technical problems that we discussed in the pre-
vious sections, there are also practical problems that hinder
the easy use of combined ontologies. Aligning and merg-
ing ontologies, the central aspect of ontology combining, is a
complicated process and requires serious effort of the ontol-
ogy designers. Until now, this task is mostly done by hand
(Noy and Musen, 2000), which makes it difficult to overlook
in two aspects:

• it is difficult to find the terms that need to be aligned;

• the consequences of a specific mapping (unforeseen im-
plications) are difficult to see.

Because it is unrealistic to hope that merging or alignment at
the semantic level could be performed completely automati-
cally, we should take these practical aspects into considera-
tion.

Another practical problem is that repeatability of merges.
Most often, the sources that are used for the merging,
continue to evolve. The alignments that are created for
the merging, should be as much reusable as possible for
the merging of the revised ontologies. This issue is very
important in the context of ontology maintenance. The
repeatability could for example be achieved by an executable



specification of the alignment.

Summarizing the previous sections, we can construct the
framework of issues that is depicted in Figure 1.

4 Current approaches and techniques
In this section, we will use the framework to examine several
tools and techniques that are aimed at ontology combining.
We start at the top of the framework, looking at techniques
for solving language mismatches. Then, we will look at tech-
niques for solving ontology level mismatches and user sup-
port. Of course, it is not possible to make a strict distinction
between the type of problems that a technique solves, because
some tools or techniques provide support for several types of
problems. The place where we mention them does therefore
not imply a classification, but serves as a guideline only.

4.1 Solving language mismatches
There are several approaches for solving the problem of in-
tegrating ontologies that are written in different knowledge
representation languages. Some of them are just techniques,
others also provide some kind of automated support.

Superimposed metamodel
Bowers and Delcambre (2000) describes an approach to
transforming information from one representation to another.
Their focus is on model-based information where the infor-
mation representation scheme provides structural modeling
constructs (analogous to a data model in a database). For ex-
ample, the XML model includes elements, attributes, and per-
mits elements to be nested. Similarly, RDF models informa-
tion through resources and properties. The goal of their work
is to enable the user to apply tools of interest to the informa-
tion at hand. Their approach is to represent information for
a wide variety of model-based applications in a uniform way,
and to provide a mapping formalism that can easily transform
information from one representation to another.

To achieve this, the ontology languages (i.e., the specific
constructs in the language that are used to describe an ontol-
ogy) are each represented in a meta-model, a so called ”su-
perimposed” model. These superimposed models are repre-
sented as RDF triples. Mappings are then specified using pro-
duction rules. The rules are defined over triples of the RDF
representation for superimposed information. Since a triple is
a simple predicate, mapping rules are specified using a logic-
based language such as Prolog, which allows to both specify
and implement the mappings. There is no requirement that
the mappings between superimposed layers should be com-
plete, since only part of a model or schema may be needed
while using a specific tool.

If superimposed information from a source language is be-
ing mapped to the target language, is is possible to convert
data from the source layer into data that conforms to the tar-
get layer. Although the focus is on conversion, it is also possi-
ble to perform integration between superimposed layers. Inte-
gration goes a step further by combining the source and target
data. The mapping rules can be used to provide integration at
both the schema and instance levels.

The “superimposed model approach” provides mecha-
nisms to solve language level mismatches of syntax, repre-
sentation and semantics. The mappings between the language
constructs have to be specified manually. The semantic reso-
lution of mismatches at the ontology level is not covered by
this approach.

Layered approach to interoperability
Melnik and Decker (2000) introduce some initial ideas tar-
geted at facilitating data interoperation using a layered ap-
proach. Their approach resembles the layering principles
used in internetworking. To harness the complexity of data
interoperation, Melnik and Decker suggest viewing Web-
enabled information models as a series of layers: the syn-
tax layer, the object layer, and the semantic layer. The se-
mantic layer, or knowledge representation layer, deals with
conceptual modeling and knowledge engineering tasks. The
basic function of the object layer, or frame layer, is to pro-
vide applications with an object-oriented view of their do-
main. The syntax layer is responsible for ”dumbing down”
object-oriented information into document instances and byte
streams. Each layers has a number of sublayers, which corre-
sponds to a specific data modeling feature (e.g., aggregation
or reification) that can be logically implemented in different
ways.

It seems that a clean separation between different layers
may ease the achievement of interoperability. The first two
layers that the authors distinguish map nicely onto the first
two types of mismatches that we described in Section 3.1.
However, all other types of mismatches that we distinguish
are comprised in the “semantic layer”. Therefore, the layer-
ing as described in its inital version only solves some of the
language level mismatches.

As the authors also have noticed, considering data models
in a layered fashion is a contemporary approach. For exam-
ple, OIL is presented as an extension to RDF Schema (Broek-
straet al., 2001), and Euzenat (2001) investigates the charac-
teristics of interoperability of knowledge representations at
various levels.

OKBC
The Open Knowledge Base Connectivity (Chaudhriet al.,
1998) is a generic interface to knowledge representation sys-
tems (KRS). An “application programming interface” (API),
specifies the operations that can be used to access a sys-
tem by an application program. When specifying this API
for knowledge representation systems, some assumptions are
made about the representation used by that KRS. These as-
sumptions are made explicit in the OKBC knowledge model.

A specific knowledge representation language — or ontol-
ogy language — can be bound to OKBC by defining a map-
ping from OKBC knowledge model to the specific language.
The users of the ontology are then isolated from the peculiar-
ities of specific language and can use the OKBC model. The
interoperability achieved by using OKBC is at the level of the
OKBC knowledge model.

OKBC thus can solve some mismatches at the language
level. However, semantic differences that are beyond rep-
resentation can not be solved by providing mappings to the



problems in ontology combination tasks

mismatches between ontologies

language level ontology level

syntax

logical representation

semantics of primitives

language expressivity

conceptualization explication

modelling styleterminological

paradigm

concept description

homonyms

synonyms

coverage

concept scope

encoding

practical problems

finding alignments

diagnosis

repeatability

versioning

identification

tracebility

translation

Figure 1: The resulting framework of issues that are involved in ontology combining

OKBC knowledge model. More general, when using a map-
ping to a common knowledge model, the notions that requires
a higher level of expressivity than that model provides, will
be lost.

OntoMorph
OntoMorph (Chalupsky, 2000) is a transformation system for
symbolic knowledge. It facilitates ontology merging and the
rapid generation of knowledge base translators. It combines
two mechanisms to describe knowledge base transformations:
(1) syntactic rewritingvia pattern-directed rewrite rules that
allow the concise specification of sentence-level transforma-
tions based on pattern matching, and (2)semantic rewrit-
ing which modulates sytactic rewriting via (partial) seman-
tic models and logical inference via an integrated KR system.
The integration of these mechanisms allows transformations
to be based on any mixture of syntactic and semantic crite-
ria. The OntoMorph architecture facilitates incremental de-
velopment and scripted replay of transformations, which is
particulary important during merging operations.

OntoMorph focuses at transformations to individual on-
tologies that are needed to align two or more ontologies. This
is small but important step in the process of merging ontolo-
gies. In fact, step number 2 of the ontology merging process
(see Section 2) is split into three:

2a. design transformations to bring the sources into mutual
agreement;

2b. editing ormorphingthe sources to carry out the transfor-
mations;

2c. taking the union of the morphed sources;

OntoMorph facilitates step 2b, by transforming the ontologies
into a common format with common names, common syntax,
uniform modeling assumptions, etc.

Step 2a, the design of the transformations, involves under-
standing of the meaning of the representation, and is therefore

a less automatable task. Additionally, this step often involves
human negotiation to reconcile competing views on how a
particular modeling problem should be solved.

OntoMorph is able to solve several problems at the lan-
guage level of ontology mismatches framework. Of course, a
difference in expressivity between two languages is not solv-
able, but some implies loss of knowledge. Solutions for on-
tology level problems can also be formulated in OntoMorph.
Because OntoMorph requires a clear and executable specifi-
cation of the transformation, the process can be repeated with
modified versions of the original ontologies.

4.2 Ontology level integration and user support
In the previous section, we saw that OntoMorph provide
mechanisms and support for some model level integration,
too. We will now look at a transformation system, that allows
the specification and execution of transformation of individ-
ual ontologies. We will then discuss two tools that assist the
user in the complicated task of performing a merge.

Algebra for Scalable Knowledge Composition
The Scalable Knowledge Composition (SKC)2 project devel-
oped analgebra for ontology composition. This algebra is
used in the ONION system (ONtology compositION), de-
scribed in (Mitraet al., 2000). The current work in the SKC
project is not solely in the area of ontology combination, but
in the broader field of integrating heterogenous datasources.

The algebra operates on ontologes that are represented by
nodes and arcs (terms and relationships) in a directed labelled
graph. Each algebraic operator takes as input a graph of
semistructured data and transforms it to another graph. This
guarantees that the algebra is composable. The algebra op-
erations are themselves knowledge driven, using articulation
rules. The rules can be both logical rules (e.g., semantic

2Seehttp://www-db.stanford.edu/SKC/ .

http://www-db.stanford.edu/SKC/


implication between terms across ontologies) and functional
rules (e.g., dealing with conversion between terms across on-
tologies). The composition rules are partly suggested by ex-
pert and lexical knowledge.

Intersection is the most crucial operation since it identifies
the terms where linkage occurs among the domains, which is
called “the articulation”. Anarticulation ontologycontains
the terms from the source ontologies that are related and their
relation, and can be seen as a specification of an alignment.
This separate specification facilitates repeated executions of
the composition.

When we relate this to our framework, we see that the alge-
bra allows the specification of solutions to solve several con-
ceptual and terminological mismatches. Via the functional
rules, term synonyms and encoding problems can be elimi-
nated. The logical articulation rules provides a mean to solve
mismatches in scope, coverage and homonym terms. By us-
ing expert and lexical knowledge to suggest articulations, the
system also meets the practical problems of finding align-
ments.

One of the main advantages of using an algebra for combi-
nation, is the reusability. The unified ontology is not an phys-
ical entity, but an term to denote the result of applying the
articulation rules. This approach ensures minimal coupling
between the sources, so that the sources can be developed
and maintained independently.

Chimaera
Chimaera (McGuinnesset al., 2000) is an ontology merg-
ing and diagnosis tool developed by the Stanford University
Knowledge Systems Laboratory (KSL). Its initial design goal
was to provide substantial assistance with the task of merg-
ing KBs produced by multiple authors in multiple settings.
Later, it took on another goal of supporting testing and diag-
nosing ontologies as well. Finally, inherent in the goals of
supporting merging and diagnosis are requirements for ontol-
ogy browsing and editing. It is mainly targeted at lightweight
ontologies.

The two major tasks in merging ontologies that Chimaera
support are (1) coalesce two semantically identical terms
from different ontologies so that they are referred to by the
same name in the resulting ontology, and (2) identify terms
that should be related by subsumption, disjointness, or in-
stance relationships and provide support for introducing those
relationships. There are many auxiliary tasks inherent in
these tasks, such as identifying the locations for editing, per-
forming the edits, identifying when two terms could be iden-
tical if they had small modifications such as a further special-
ization on a value-type constraint, etc.

Chimaera generates name resolution lists that help the user
in the merging task by suggesting terms each of which is from
a different ontology that are candidates to be merged or to
have taxonomic relationships not yet included in the merged
ontology. It also generates a taxonomy resolution list where
it suggests taxonomy areas that are candidates for reorganiza-
tion. It uses a number of heuristic strategies for finding such
edit points.

Finally, Chimaere also has diagnostic support for verify-
ing, validating, and critiquing ontologies. Those functions

only include domain independent tests that showed value in
previous experiments.

We see that Chimaera can be used to solve mismatches at
the terminological level. It is also able to find some similar
concepts that have a different description at the model level.
Further, Chimaera seems to do a great job in helping the user
to find possible edit point. The diagnostic functions are diffi-
cult to evaluate, because their description is very brief.

PROMPT
PROMPT (formerly known as SMART) is an interactive
ontology-merging tool (Noy and Musen, 2000). It guides
the user through the merging process making suggestions, de-
termining conflicts, and proposing conflict-resolution strate-
gies. PROMPT starts with the linguistic-similarity matches
of frame names for the initial comparison, but concentrates
on finding clues based on the structure of the ontology and
users actions. After the user selects an operation to perform,
PROMPT determines the conflicts in the merged ontology
that the operation have caused and proposes possible solu-
tions to the conflict. It then considers the structure of the
ontology around the arguments to the latest operations — re-
lations among the arguments and other concepts in the on-
tology — and proposes other operations that the user should
perform.

In the PROMPT project, a set of knowledge-base opera-
tions for ontology merging or alignment is identified. For
each operation in this set is defined (1) the changes that
PROMPT performs automatically, (2) the new suggestions
that PROMPT presents to the user, and (3) the conflicts that
the operation may introduce and that the user needs to re-
solve. When the user invokes an operation, PROMPT creates
members of these three sets based on the arguments to the
specific invocation of the operation.

The conflicts that may appear in the merged ontology as the
result of these operations are: name conflicts, dangling refer-
ences, redundancy in the class-hierarchy and inconsistencies.
PROMPT not only points to the places where changes should
be made, but also presents a list of actions to the user.

Summarizing, PROMPT gives iterative suggestions for
concept merges and changes, based on linguistic and struc-
tural knowledge, and it points the user to possible effects of
these changes.

Common top level model
A different approach for enabling model level interoperabil-
ity, is the use of a common top level ontology. One of
the project that takes this approach is ABC (Brickleyet al.,
1999), a common conceptual model to facilitate interoper-
ability among application metadata vocabularies.

ABC aims at the interoperability of multiple metadata
packages that may be associated with and across resources.
These packages are by nature not semantically distinct, but
overlap and relate to each other in numerous ways. It exploits
the fact that many entities and relationships - for example,
people, places, creations, organizations, events, certain rela-
tionships and the like - are so frequently encountered that they
do not fall clearly into the domain of any particular metadata
vocabulary but apply across all of them. ABC is an attempt
to:



• formally define these underlying common entities and
relationships;

• describe them (and their inter-relationships) in a
s/usr/bin/smbclient -M pelikaanimple logical model;

• provide the framework for extending these common se-
mantics to domain and application-specific metadata vo-
cabularies.

A comparable approach - although more general - is
the IEEE Standard Upper Ontology (IEEE SUO Working
Group). This standard will specify the semantics of a general-
purpose upper level ontology. This will be limited to the up-
per level, which provides definition for general-purpose terms
and provides a structure for compliant lower level domain on-
tologies. It is estimated to contain between 1000 and 2500
terms plus roughly ten definitional statements for each term.
Is intended to provide the foundation for ontologies of much
larger size and more specific scope.

These approaches can solve some interoperability, but re-
quires a manual mapping of the ontologies to the common
ontology.

4.3 Versioning
We only found one technique that provides support for the
ontology versioning problems. Of course, there is a lot of
experience with these kind of problems in the area of software
engineering and databases, but it is not yet clear whether this
can directly applied to web-based ontologies. This should be
investigated further.

SHOE ontology integration
SHOE (Heflin and Hendler, 2000) is an is an HTML-based
ontology language. The language includes techniques for
combining and integrating different ontologies. SHOE pro-
vides a rule mechanism to align ontologies. Common items
between ontologies can be mapped by inference rules. First,
terminological differences can be mapped using simple if-
and-only-if rules. Second, scope differences require mapping
a category to the most specific category in the other domain
that subsumes it. Third, some encoding differences can be
handled by mapping individual values. Not all encodings can
be mapped in SHOE, for example arithmetic functions would
be needed to map meters to feet.

To solve versioning problems, the SHOE project gives ver-
sion numbers to ontologies and suggest three ways to incor-
porate the results of an ontology integration effort. These re-
vising schemes allows for the different effects of revisions on
the compatibility.

• In the first approach, a new mapping ontology that ex-
tends all the existing ones is created; users of the inte-
grated ontology should explicitly conform to the newly
created ontology.

• Second, each ontology that is involved in the integration
could be revised with the mutual relations to the other
ontologies.

• Third, it is possible to create a new intersection ontology,
that will be extended by the already existing ontologies.

Any source can commit to the ontology of its choice, thus say-
ing that it agrees with any conclusions that logically follow
from its statements and the rules in the ontology. Agents are
free to pick which ontologies they use to interpret a source,
and depending on the differences between these two ontolo-
gies they may get the intended meaning or an alternate one.

The SHOE versioning facilities provides both identifica-
tion of the revisions and an explicit specification of its rela-
tion to other versions.

5 Overview of approaches
We will now give an overview of the approaches that are used
in the projects and techniques mentioned above and also list
some papers that describe a similar approach.

Additionally, Table 1 relates the the tools and approaches
that we have discussed to the framework. The table should
read as follows: an ‘A’ means ”tool or technique solves this
without user interaction (automatically)”, ‘U’ means ”tool or
technique suggests solutions to the user, and ‘M’ means ”tool
or technique provides a mechanism for specifying the solu-
tion to this problem”.

• We discovered four different approaches that aims at en-
abling interoperability between different ontologies at
the language level.

– aligning the metamodel: the constructs in the lan-
guage are formally specified in a general model
(Bowers and Delcambre, 2000), (MOF);

– layered interoperability: aspects of the language are
split up in clearly defined layers, as a result of what
interoperability can be solved layer by layer (Mel-
nik and Decker, 2000);

– transformation rules: the relation between two spe-
cific constructs in different ontology languages is
described with a rule that specifies the transforma-
tion from the one to the other (OntoMorph);

– mapping onto a common knowledge model: the
constructs of an ontology language are mapped
onto a common knowledge model (OKBC).

Note that the third approach can be used to implement
the fourth.

• We want to recall that the alignment of concepts is a
task that requires understanding of the meaning of con-
cepts, and cannot be fully automated. Consequently, at
themodel level, we only found tools thatsuggest align-
ments and mappingsbased on heuristics matching al-
gorithms and provide means to specify these mappings.
Such tools support the user in finding the concepts in the
separate ontologies that might be candidates for merg-
ing. Some tools go a little bit further by even suggesting
the actions that should be performed. Roughly spoken,
there are two types of heuristics:

– linguistic based matches: terms with the same
word-stem, nearby terms in WordNet, or even sim-
pler heuristics, like omitting hyphens and capitaliz-
ing all terms, etc. Examples can be found in (Hovy,
1998; Knight and Luk, 1994);



Table 1: Table of problems and approaches for combined use of ontologies

Issues SKC Chim. PROMPT SHOE OntoM. Metamodel OKBC Layering

Language
level
mismatches

Syntax M M M M
Representation M M M M
Semantics M M M
Expressivity

Ontology
level
mismatches

Paradigm M
Concept description M
Coverage of model
Scope of concepts M U U M M
Synonyms M U U M M
Homonyms M U
Encoding M M M

Practical
problems

Finding alignments U U U
Diagnosis of results A A A
Repeatability A A A

Ontology
versioning

Identification M
Change tracking M
Translation

– structural and model similarity: see for example the
techniques described in Chimaera and Weinstein
and Birmingham (1999).

• A slightly different approach for interoperability at the
model is the use of acommon top level ontology. This
approach is only useful if there is a willingness to con-
form to a common standard.

• There are also different approaches fordiagnosing or
checking the results of the alignments. We have seen
two types of checks:

– domain independent verification and validation
checks: name conflicts, dangling references, etc.
(Chimaera, and others);

– validation that requires some kind of reasoning: re-
dundancy in the class hierarchy, value restrictions
that violate class inheritance, etc. (OntoMorph,
PROMPT).

• Several tools support anexecutable specificationof
the mappings and transformations (SKC, OntoMorph,
PROMPT). This allows re-merging of revised ontolo-
gies. In this way, the intellectual effort that is invested in
finding and formulation the alignments is preserved.

• Finally, most techniques and tools do not deal withver-
sioning. Only SHOE elaborates on schemes that enables
the combined use of different ontologies. They mention
three ways to integrate separate (revisions of) ontologies
without invalidating the existing ones.

6 Conclusion and remarks
In this paper, we analyzed the problems that hinder the com-
bined use of ontologies. These problems are of several kinds
and may occur at several levels. The analyse of the problems

yielded a framework that is used to examine what solutions
are provided by current tools and techniques. This examina-
tion is still very general, and will be worked out further in the
future.

We have seen that there are several approaches that provide
reasonable support for language level interoperability. Mis-
matches in expressiveness between languages are not solv-
able, and consequently, none of the approaches takes this into
account.

The most difficult problems are those of conceptual inte-
gration. There are a lot of techniques and heuristics for sug-
gesting alignments. We think that semantic mapping at the
model level will remain a task that requires a certain level of
human intervention.

Finally, in an open environment such as the Web, version-
ing methods will be very important. We have seen that this
aspect is underdeveloped in most approaches. We think that
more comprehensive schemes for interoperability of ontolo-
gies are required.

Acknowledgements
We would like to thank Dieter Fensel, Mike Uschold for help-
ful comments and remarks on previous versions of this paper.

References
Shawn Bowers and Lois Delcambre. Representing and trans-

forming model-based information. InFirst Workshop on
the Semantic Web at the Fourth European Conference
on Digital Libraries, Lisbon, Portugal, September 18–20,
2000.

D. Brickley and R. V. Guha. Resource Description Frame-
work (RDF) Schema Specification 1.0. Candidate recom-
mendation, World Wide Web Consortium, March 2000.



Dan Brickley, Jane Hunter, and Carl Lagoze. ABC:
A logical model for metadata interoperability,
October 1999. Harmony discussion note, see
http://www.ilrt.bris.ac.uk/discovery/
harmony/docs/abc/abc_draft.html .

Jeen Broekstra, Michel Klein, Stefan Decker, Dieter Fensel,
Frank van Harmelen, and Ian Horrocks. Enabling knowl-
edge representation on the web by extending RDF schema.
In Proceedings of the 10th World Wide Web conference,
Hong Kong, China, May 1–5, 2001.

Hans Chalupsky. OntoMorph: A translation system for sym-
bolic logic. In Anthony G. Cohn, Fausto Giunchiglia, and
Bart Selman, editors,KR2000: Principles of Knowledge
Representation and Reasoning, pages 471–482, San Fran-
cisco, CA, 2000. Morgan Kaufmann.

Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D.
Karp, and James P. Rice. OKBC: A programmatic foun-
dation for knowledge base interoperability. InProceedings
of the 15th National Conference on Artificial Intelligence
(AAAI-98) and of the 10th Conference on Innovative Appli-
cations of Artificial Intelligence (IAAI-98), pages 600–607,
Menlo Park, July 26–30 1998. AAAI Press.

Jérôme Euzenat. Towards a principled approach to seman-
tic interoperability. In Asuncion Gomez-Perez, Michael
Gruninger, Heiner Stuckenschmidt, and Michael Uschold,
editors,Workshop on Ontologies and Information Sharing,
IJCAI’01, Seattle, USA, August 4–5, 2001.

Norman Foo. Ontology revision. In Gerard Ellis, Robert
Levinson, William Rich, and John F. Sowa, editors,Pro-
ceedings of the 3rd International Conference on Concep-
tual Structures (ICCS’95): Applications, Implementation
and Theory, volume 954 ofLNAI, pages 16–31, Berlin,
GER, August 1995. Springer.

William E. Grosso, John H. Gennari, Ray W. Fergerson, and
Mark A. Musen. When knowledge models collide (how
it happens and what to do). InProceedings of the 11th
Workshop on Knowledge Acquisition, Modeling and Man-
agement (KAW ’98), Banff, Canada, April 18–23 1998.

T. R. Gruber. A translation approach to portable ontology
specifications.Knowledge Acquisition, 5(2), 1993.

Jeff Heflin and James Hendler. Dynamic ontologies on the
web. In Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence (AAAI-2000), pages 443–
449. AAAI/MIT Press, Menlo Park, CA, 2000.

E. H. Hovy. Combining and standardizing large-scale, prac-
tical ontologies for machine translation and other uses. In
Proceedings of the 1st International Conference on Lan-
guage Resources and Evaluation (LREC), Granada, Spain,
May 28–30 1998.

IEEE SUO Working Group. Standard upper ontology. See
http://suo.ieee.org/ .

H. Kitakami, Y. Mori, and M. Arikawa. An intelligent sys-
tem for integrating autonomous nomenclature databases in
semantic heterogeneity. InDatabase and Expert System
Applications, DEXA’96, number 1134 in Lecture Notes in

Computer Science, pages 187–196, Zürich, Switzerland,
1996.

Kevin Knight and Steve K. Luk. Building a large-scale
knowledge base for machine translation. InProceedings
of the 12th National Conference on Artificial Intelligence.
Volume 1, pages 773–778, Menlo Park, CA, USA, July 31–
August 4 1994. AAAI Press.

Deborah L. McGuinness, Richard Fikes, James Rice, and
Steve Wilder. An environment for merging and testing
large ontologies. In Anthony G. Cohn, Fausto Giunchiglia,
and Bart Selman, editors,KR2000: Principles of Knowl-
edge Representation and Reasoning, pages 483–493, San
Francisco, 2000. Morgan Kaufmann.

Sergey Melnik and Stefan Decker. A layered approach to
information modeling and interoperability on the web. In
Electronic proceedings of the ECDL 2000 Workshop on the
Semantic Web, Lisbon, Portugal, September 21 2000.

Prasenjit Mitra, Gio Wiederhold, and Martin Kersten. A
graph-oriented model for articulation of ontology interde-
pendencies. InProceedings of Conference on Extending
Database Technology, (EDBT 2000), Konstanz, Germany,
March 2000. Also, Stanford University Technical Note,
CSL-TN-99-411, August, 1999.

Natalya Fridman Noy and Mark A. Musen. PROMPT: Algo-
rithm and tool for automated ontology merging and align-
ment. InProceedings of the Seventeenth National Confer-
ence on Artificial Intelligence (AAAI-2000), Austin, TX,
2000. AAAI/MIT Press.

D. E. Oliver, Y. Shahar, M. A. Musen, and E. H. Short-
liffe. Representation of change in controlled medical termi-
nologies.Artificial Intelligence in Medicine, 15(1):53–76,
1999.

H. Sofia Pinto, Asunción Gómez-Ṕerez, and Jõao P. Martins.
Some issues on ontology integration. InProceedings of
the Workshop on Ontologies and Problem Solving Methods
during IJCAI-99, Stockholm, Sweden, August 1999.

Mike Uschold, Mike Healy, Keith Williamson, Peter Clark,
and Steven Woods. Ontology reuse and application. In
N. Guarino, editor,Formal Ontology in Information Sys-
tems (FOIS’98), Treno, Italy, June 6-8, 1998. IOS Press,
Amsterdam.

Pepijn R. S. Visser, Dean M. Jones, T. J. M. Bench-Capon,
and M. J. R. Shave. An analysis of ontological mismatches:
Heterogeneity versus interoperability. InAAAI 1997
Spring Symposium on Ontological Engineering, Stanford,
USA, 1997.

Peter C. Weinstein and William P. Birmingham. Comparing
concepts in differentiated ontologies. InProceedings of the
12th Workshop on Knowledge Acquisition, Modeling and
Management (KAW ’99), Banff, Canada, October 16–21,
1999.

Gio Wiederhold. An algebra for ontology composition. In
Proceedings of 1994 Monterey Workshop on Formal Meth-
ods, pages 56–61, U.S. Naval Postgraduate School, Mon-
terey CA, September 1994.

http://www.ilrt.bris.ac.uk/discovery/harmony/docs/abc/abc_draft.html
http://www.ilrt.bris.ac.uk/discovery/harmony/docs/abc/abc_draft.html
http://suo.ieee.org/

	1 Introduction
	2 Terminology
	3 Problems with ontology combination
	3.1 Mismatches between ontologies
	3.2 Ontology versioning
	3.3 Practical problems

	4 Current approaches and techniques
	4.1 Solving language mismatches
	4.2 Ontology level integration and user support
	4.3 Versioning

	5 Overview of approaches
	6 Conclusion and remarks

