
Statement of Interest: Towards Ontology Language Customization

Heiner Stuckenschmidt
Center for Computing Technologies

University of Bremen

1 Motivation

It has been argued that intelligent applications benefit from
the use of ontologies encoding background knowledge about
the structure of a domain and the meaning of terms occurring
therein. Prominent examples can be found in the following
application areas:

Systems Engineering: The use of ontologies for the de-
scription of information and systems has many benefits. The
ontology can be used to identify requirements as well as in-
consistencies in a chosen design. It can help to acquire or
search for available information. Once a systems component
has been implemented its specification can be used for main-
tenance and extension purposes.

Information Integration: An important application area of
ontologies is the integration of existing systems. The ability
to exchange information at run time, also known as interop-
erability, is an important topic. In order to enable machines
to understand each other we also have to explicate the vocab-
ulary of each system in terms of an ontology.

Information Retrieval: Common information-retrieval
techniques either rely on a specific encoding of available in-
formation (e.g. fixed classification codes) or simple full-text
analysis. Both approaches suffer from severe shortcomings.
Using an ontology in order to explicate the vocabulary
can help overcome some of these problems. When used
for the description of available information as well as for
query formulation an ontology serves as a common basis for
matching queries against potential results on a semantic level.

These application areas come with completely different re-
quirements concerning the modeling and reasoning abilities
of the ontology language used. In turn, existing ontology
languages are rather generic, because they aim at providing
modeling facilities independent of a concrete application. In
principle, being generic is an advantage, because a generic
language covers broader range of applications. However, the
use of generic languages turns out to produce problems in
real-life applications. These problems include the following:

• Natural distinctions of an application domain are not
supported by the language:In the design of knowledge-
based systems the distinction between tasks and methods
(and their ontologies) is an important one.

• The use of modeling constructs in a concrete application
is not obvious:A re-occurring discussion in ontologi-
cal modeling is whether to represent a domain item as a
class or an instance.

• Small languages are not used, because implicitly repre-
sentable constructs are overlooked:The concept of dis-
jointness of a set of classes can be modeled by negation
and Implication.

• Unused language features lead to unnecessary complex-
ity of the language:Transitive slots are a modeling con-
struct not used too often that is hard to handle with re-
spect to inference.

We argue that ontology language can gain practical rele-
vance if they would address these problems. A promising
way is to provide a framework that allows to customize an
ontology language with respect to a given application. A cus-
tomized language should cover the natural distinctions of a
domain and provide guidance for the use of language con-
structs. Further it should be designed as an optimal trade off
between reasoning expressiveness and reasoning complexity.

2 The Representation-Reasoning Trade-Off of
Ontology Languages

We exemplify the representation-reasoning trade-off of on-
tology languages and its impact on the application of the lan-
guage using ontology languages that are based on description
logics. The rational for this choice is:

• The expressiveness and complexity of these languages
has been studied thoroughly and well-founded results
are available[Donini et al., 1991]

• It has been shown that description logics provide a unify-
ing framework for many class-based representation for-
malisms[Calvaneseet al., 1999].

• Description logic-based languages have become of inter-
est in connection with the semantic web. the languages
OIL [Fenselet al., 2000] and DAML-ONT [McGuin-
nesset al., 2000] are good examples.



We compared three description logic languages that have
been used to build ontologies, i.e. CLASSIC, LOOM and
OIL. The results of the comparison are depicted in figure 1.

CLASSIC OIL LOOM
Logical Operators

conjunction × × ×
disjunction × ×
negation × ×

Slot-Constraints
slot values × ×
type restriction × × ×
range restriction × × ×
existential restriction × × ×
cardinalities × × ×

Assertions
entities × (×) ×
relation-instances × (×) ×

Figure 1: Expressiveness of some description logic based on-
tology languages

The comparison reveals an emphasis on highly expressive
concept definitions. The languages compared are capable of
almost all common concept forming operators. An exception
is CLASSIC that does not allow the use of disjunction and
negation in concept definitions. The reason for this shortcom-
ing is the existence of a sound and complete subsumption
algorithm that support A-box reasoning[Borgida and
Patel-Schneider, 1994]. LOOM on the other hand is a very
expressive language containing all language constructs used
in the comparison. The price for this high expressiveness is
a loss in reasoning support: Soundness and completeness of
the subsumption algorithms cannot be guaranteed[Horrocks,
1995].

The OIL approach is a first attempt to overcome the prob-
lems that arise from the representation-reasoning trade-off by
defining a family of languages of different complexity. While
the purpose of the smallest language of the OIL family (Core
OIL) is to define a well-founded semantics for schemas of the
emerging web standard RDF. This language is rather small
and therefore allows efficient reasoning. The main language
Standard OILis tailored to have efficient reasoning support
for consistency checking and for automatic construction of in-
heritance hierarchies for an extremely expressive logic. How-
ever this language does not include assertional language, be-
cause this would disable the reasoning support. For applica-
tions where instances are required, the OIL defines the lan-
guageInstance-OILthat includes instances, but has no rea-
soning support.

3 The Design Space of Ontology Languages
The OIL framework allows a user to select between lan-
guages of different expressive power, however it does not
address the problem of tailoring a language to a given ap-
plication. Our main objective is that the current architecture
of the OIL framework does only allow for strict extensions

excluding the possibility to define alternative language that
only partially overlap.

In order to allow more flexible variations we have to in-
vestigate the design space of ontology languages. There
are many options to be taken into account. We could
rely on previous work on comparing frame-based and ter-
minological knowledge representation systems[Karp, 1993;
Heinsohnet al., 1994]. As our concerns are rather applica-
tion driven than of a theoretical nature, we have to abstract
from the technical details of the languages that are mainly
concerned in the work mentioned above. We therefore con-
centrate on the following questions:

• What kinds of knowledge have to be modeled ?

• Which reasoning tasks have to be performed ?

• Which level of complexity is acceptable ?

The answers to these questions depend on the purpose of the
language. They constitute dimensions of the design space:
Different types of knowledge can be used for different kind
of reasoning tasks. Further different kinds of reasoning meth-
ods result in different levels of reasoning complexity. In order
to customize a language, we have to locate it with respect to
each of these dimensions. Possible locations are further re-
stricted by the needs and possibilities of the application envi-
ronment. Examples for further design constraints are:

• The conceptualization of the application domain as well
as pre-existing models implies the existence of certain
knowledge types. The designed language must at least
implicitly support these knowledge types.

• The role of the ontology in the overall application im-
plies a certain task type. The design space is therefore
restricted to variations of this task type.

• The availability of reasoners for the given task does not
only have impact on the reasoning complexity, but also
on the types of knowledge that can be used to define the
ontology.

These restrictions have to be taken into account when the
design space is explored. The situation becomes complicated,
because the dimensions are not independent of each other.
We already mentioned the interrelation of modeling primi-
tives and reasoning support. In order to resolve such conflicts
an engineering method is needed to guide the search process
and validate the result.

4 A Pattern-Based Approach
We propose an engineering approach for customizing on-
tology languages that is based on the notion of ontology
patterns. A pattern denote a language construct with special
properties with respect to structure, semantics and inference
capabilities. In a related approach Staab an colleagues
propose the use ofsemantic patternsto support ontology
engineering and propose a set of such patterns[Staab and
Maedche, 2000]. The idea of providing a set of simple
patterns that can be combined to form more complex patterns
on which languages can be based is essential, because
it makes different customized languages comparable and



provides a basis for translations across these languages. As
already mentioned, we restrict ourselves to description-logic
based languages. Therefore, our set of modeling primitives
to start with are the concept forming operators of these kinds
of languages.

Relying on description logics we already get a notion of
more complex patterns in terms of special logics. These log-
ics result from the combination of operators. The name of
the language and therefore the pattern is a combination of
the identifiers of the operators included. One of the most
well known patterns isALC the description logic containing
Boolean operations on class expressions as well as universal
and existential restrictions on slot fillers. The pattern used
to resemble different class-based representation formalisms
in [Calvaneseet al., 1999] is ALUNI which contains the
corresponding operators: conjunction, disjunction, negation,
universal restrictions on slot fillers, quantified number restric-
tions and inverse slots.SHIQ, the logic underlying OIL also
contains existential restrictions, transitive slots and conjunc-
tion of slot definitions. Theoretical results from the field of
description logics provide us with the knowledge about de-
cidable combinations of modeling primitives and their com-
plexity with respect to subsumption reasoning. Consequently,
every decidable combination of operators is a potential pat-
tern that can be used to build the ontology for a certain appli-
cation. In the course of the engineering process we have to
handle different patterns:

Reasoner Patternsdescribe the language a certain reasoner
is able to handle.

Reuse Patternsdescribe the language a useful, already ex-
isting ontology in encoded in.

Acquisition Patterns describe the language needed to en-
code acquired knowledge.

The Goal Pattern describes the language that will be de-
signed.

In order to find the goal pattern, we have to find an optimal
trade-off between the other patterns involved. For this pur-
pose we invent the notion of coverage for ontology patterns.
A PatternP1 is said to cover a patternP2, if all modeling
primitives fromP2 are also contained inP21 or can be simu-
lated by a combination of modeling primitives fromP1. We
denote the fact thatP1 coversP2 as P2 ≺ P1. Using the
notion of coverage we can now define the customization task.

Definition: Customization Task. A customization task is
defined by a three tuple〈R,U ,A〉 whereR is a set of rea-
soner patterns,U a set of reuse patterns andA a set of acquisi-
tion patterns. The patternG is a solution of the customization
task if it is the minimal pattern that is covered by a reasoner
pattern and covers all reuse and acquisition patterns, or for-
mally:
Suitability of the goal pattern:

suitable(G) ⇐⇒ ∃R ∈ R(G ≺ R)∧∀P ∈ U∪A(P ≺ G)

Minimality of the goal pattern:
minimal(G) ⇐⇒ ¬∃G′(suitable(G′) ∧G′ ≺ G)

Solution:

solution(G) ⇐⇒ suitable(G) ∧minimal(G)

This definition provides us with an idea of the result of the
customization process. However there are still many tech-
nical and methodological problems. We have to investigate
the nature of the covering predicate and develop an algorithm
for deciding whether one pattern covers the other. Further,
the customization process has to be implemented. It is quite
likely that the acquisition pattern will not be completely avail-
able in the beginning. Therefore we have to incorporate user
interaction and revisions of previous decisions. Finally, re-
sults have to be generalized beyond the scope of description
logics which will be difficult, because there are less theoreti-
cal results to build upon.

References
[Borgida and Patel-Schneider, 1994] A. Borgida and P.F.

Patel-Schneider. A semantics and complete algorithm for
subsumption in the classic description logic.Journal of
Artificial Intelligence Research, 1(2):277–308, 1994.

[Calvaneseet al., 1999] Diego Calvanese, Maurizio Lenz-
erini, and Daniele Nardi. Unifying class-based represen-
tation formalisms. Journal of Artificial Intelligence Re-
search, 11:1999–240, 1999.

[Donini et al., 1991] F.M. Donini, M. Lenzerini, D. Nardi,
and W. Nutt. The complexity of concept languages. In
J. Allen Sandewall, R. Fikes, and E., editors,2nd Interna-
tional Conference on Knowledge Representation and Rea-
soning, KR-91. Morgan Kaufmann, 1991.

[Fenselet al., 2000] D. Fensel, I. Horrocks, F. Van Harme-
len, S. Decker, M. Erdmann, and M. Klein. Oil in a nut-
shell. In12th International Conference on Knowledge En-
gineering and Knowledge Management EKAW 2000, Juan-
les-Pins, France, 2000.

[Heinsohnet al., 1994] J. Heinsohn, D. Kudenko, B. Nebel,
and H.-J. Profitlich. An empirical analysis of termi-
nological representation systems.Artificial Intelligence,
68(2):367–397, 1994.

[Horrocks, 1995] Ian Horrocks. A Comparison of Two Ter-
minological Knowledge Representation Systems. Master’s
thesis, University of Manchester, 1995.

[Karp, 1993] Peter D. Karp. The design space of frame
knowledge representation systems. Technical Note 520,
AI Center SRI International, May 5 1993.

[McGuinnesset al., 2000] D. McGuinness, R. Fikes,
D. Connolly, and L.A. Stein. Daml-ont: An ontology
language for the semantic web.IEEE Intelligent Systems,
2000. Submitted to Special Issue on Semantic Web
Technologies.

[Staab and Maedche, 2000] Steffen Staab and Alexander
Maedche. Ontology engineering beyond the modeling of
concepts and relations. InProceedings of he ECAI’2000
Workshop on Applications of Ontologies and Problem-
Solving Methods, Berlin, Germany, 2000.


