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Abstract

This paper presents and motivates an extended on-
tology knowledge model which represents explic-
itly semantic information about concepts. This
knowledge model results from enriching the usual
conceptual model with semantic information which
precisely characterises the concept’s properties and
expected ambiguities, including which properties
are prototypical of a concept and which are excep-
tional, the behaviour of properties over time and
the degree of applicability of properties to subcon-
cepts. This enriched conceptual model permits a
precise characterisation of what is represented by
class membership mechanisms and helps a knowl-
edge engineer to determine, in a straightforward
manner, the meta-properties holding for a concept.
Meta-properties are recognised to be the main tool
for a formal ontological analysis that allows build-
ing ontologies with a clean and untangled taxo-
nomic structure. This enriched semantics can prove
useful to describe what is known by agents in a
multi-agent systems, as it facilitates the use of rea-
soning mechanisms on the knowledge that instan-
tiate the ontology. These mechanisms can be used
to solve ambiguities that can arise when heteroge-
neous agents have to interoperate in order to per-
form a task.

1 Introduction

In the last decade ontologies have moved out of the re-
search environment and have become widely used in many
expert system applications not only to support the representa-
tion of knowledge but also complex inferences and retrieval.
[McGuinness, 2000]. The extensive application of ontologies
to broader areas has affected the notion of what ontologies
are: they now range from light-weight ontologies, that is tax-
onomies of non-faceted concepts to more sophisticated ones
where not only concepts but also their properties and relation-
ships are represented.
The size of ontologies has also increased dramatically, and it
is not so unusual to have ontologies with thousands of con-
cepts. Such huge ontologies are sometimes the efforts of

many domain experts and are designed and maintained in dis-
tributed environments. For this reasons research efforts are
now devoted to merging and integrating diverse ontologies
[Pintoet al., 1999].
Lastly, the growing use of ontologies in expert systems re-
quires that ontologies provide a ground for the application of
reasoning techniques that result in sophisticated inferences
such as those used to check and maintain consistency in
knowledge bases.
The interest in designing ontologies that can be easily in-
tegrated and provide a base for applying reasoning mech-
anisms has stressed the importance of suitable conceptual
models for ontologies. Indeed, it has been made a point
that the sharing of ontologies depends heavily on a pre-
cise semantic representation of the concepts and their prop-
erties[Fridman Noy and Musen, 1999; McGuinness, 2000;
Tamma and Bench-Capon, 2000].
This paper presents and motivates a knowledge model for on-
tologies which extends the usual set of facets in the OKBC
frame-base model[Chaudhriet al., 1998] to encompass more
semantic information concerning the concept, which consists
of a precise characterisation of the concept’s properties and
expected ambiguities, including which properties are proto-
typical of a concept and which are exceptional, the behaviour
of the property over time and the degree of applicability of
properties to subconcepts. This enriched knowledge model
aims to provide enough semantic information to deal with
problems of semantic inconsistency that arise when reason-
ing with integrated ontologies.
The paper is organised as follows: section 2 and subsections
presents the motivations for adding semantics to the concep-
tual model, section 3 presents the knowledge model apply-
ing the conceptual model while in section 4 the model with
respect to the motivations is discussed. Section 5 discusses
the representation of roles by using the knowledge model and
section 6 provides an example of concept description using
the knowledge model, finally, in section 7 conclusions are
drawn and future research directions are illustrated in section
8.



2 Encompassing semantics in the conceptual
model

The motivation for enriching semantically the ontology con-
ceptual model draws on three distinct arguments that are anal-
ysed in the reminder of this section.

2.1 Nature of ontologies
The first argument is based on the nature of ontologies. It
has been argued that an ontology is”an explicit specifica-
tion of a conceptualisation”[Gruber, 1993]. In other words
an ontologyexplicitly defines the type of concepts used to
describe the abstract model of a phenomenon and the con-
straints on their use.[Studeret al., 1998]. An ontology is
an a priori account of the objects that are in a domain and
the relationships modelling the structure of the world seen
from a particular perspective. In order to provide such an
account one has to understand the concepts that are in the do-
main, and this involves a number of things. First it involves
knowing what can sensibly be said of a thing falling under a
concept. This can be represented by describing concepts in
terms of their properties, and by giving a full characterisation
of these properties. Thus, when describing the conceptBird
it is important to distinguish that some birds fly and others
do not. A full understanding of a concept involves more than
this, however: it is important to recognise which properties
areprototypical[Rosch, 1975] for the class membership and,
more importantly, which are the permitted exceptions. There
are, however differences in how confident we can be that an
arbitrary member of a class conforms to the prototype: it is
a very rare mammal that lays eggs, whereas many types of
well known birds do not fly. Understanding a concept also in-
volves understanding how and which properties change over
time. This dynamic behaviour also forms part of the domain
conceptualisation and can help to identify themeta-properties
holding for the concept.

2.2 Integrating diverse ontologies
The second argument concerns the integration of ontologies.
Integrating ontologies involves identifying overlapping con-
cepts and creating a new concept, usually by generalising the
overlapping ones, that has all the properties of the originals
and so can be easily mapped into each of them. Newly created
concepts inherit properties, usually in the form of attributes,
from each of the overlapping ones. That is, let us suppose
that the conceptC is present inn ontologiesO1, O2, · · · , On,
although described by different properties. That is each on-
tology Oi, i = 1, · · · , n defines a conceptCi, i = 1, · · · , n
such thatC1 ≈ C2 ≈ · · · ≈ Cn (where≈ denotes that the
concepts areoverlapping). Each conceptCi, i = 1, · · · , n is
described in terms of a set of propertiesPCi , i = 1, · · · , n.
The result of the integration of then ontologies is another
ontology defining the conceptCintegrated which is defined in

terms of
n⋃
i=1

PCi , where all thePCi have to be distinguished.

One of the key points for integrating diverse ontologies is
providing methodologies for building ontologies whose tax-
onomic structure is clean and untangled in order to facilitate
the understanding, comparison and integration of concepts.

Several efforts are focussing on providing engineering prin-
ciples to build ontologies, for example[Gómez-Ṕerez, 1998;
1999]. Another approach[Guarino and Welty, 2000a; 2000b]
concentrates on providing means to perform an ontological
analysis which gives prospects for better taxonomies. This
analysis is based on on a rigorous analysis of theontological
meta-propertiesof taxonomic nodes, which are based on the
philosophical notions ofunity, identity, rigidityand depen-
dence[Guarino and Welty, 2000c].
When the knowledge encompassed in ontologies built for dif-
ferent purposes needs to be integrated inconsistencies can
become evident. Many types of ontological inconsistencies
have been defined in the literature, for instance in[Visseret
al., 1998] and the ontology environments currently available
try to deal with these inconsistencies, such asSMART [Frid-
man Noy and Musen, 1999] andCHIMAERA [McGuinnesset
al., 2000]. Here we broadly classify inconsistencies in on-
tologies into two types: structural and semantic. We define
structural inconsistencies as those that arise because of dif-
ferences in the properties that describe a concept. Structural
inconsistencies can be detected and resolved automatically
with limited intervention from the domain expert. For ex-
ample, a conceptC can be defined in two different ontologies
O1 andO2 in terms of an attributeA that is specified as tak-
ing values in two different domainsD1 in O1 andD2 in O2,
whereD1 ⊆ D2. Structural inconsistencies can be detected
and resolved automatically with limited intervention from the
domain expert.
Semantic inconsistencies are caused by the knowledge con-
tent of diverse ontologies which differs both in semantics and
in level of granularity of the representation. They affect those
attributes that are actually representing concept features and
not relations with other concepts. Semantic inconsistencies
require a deeper knowledge on the domain. Examples of se-
mantic inconsistencies can be found in[McGuinnesset al.,
2000; Tamma and Bench-Capon, 2000]. Adding semantics
to the concept descriptions can be beneficial in solving this
latter type of conflict, because a richer concept description
provides more scope to resolve possible inconsistencies.

2.3 Reasoning with ontologies
The last argument to support the addition of semantics to on-
tology conceptual models turns on the need to reason with the
knowledge expressed in the ontologies. Indeed, when differ-
ent ontologies are integrated, new concepts are created from
the definitions of the existing ones. In such a case conflicts
can arise when conflicting information is inherited from two
or more general concepts and one tries to reason with these
concepts. Inheriting conflicting properties in ontologies is
not as problematic as inheriting conflicting rules in knowl-
edge bases, since an ontology is onlyproviding the means for
describing explicitly the conceptualisation behind the knowl-
edge represented in a knowledge base[Bernaraset al., 1996].
Thus, in a concept’s description conflicting properties can co-
exist. However, when one needs to reason with the knowl-
edge in the ontology, conflicting properties can hinder the
reasoning process. Furthermore, if the ontologies one wants
to reason with have been developed in different moments and
for diverse purposes, it is likely that problem ofimplicit in-



consistenciesmight arise. This kind of problem is quite sim-
ilar to the semantic inconsistencies that have been defined in
previous section. Such a problem has been first identified in
the inheritance literature[Morgenstern, 1998] where the au-
thor distinguishes betweenexplicit inconsistenciesfrom the
implict ones. Explicit inconsistencies arise when two con-
ceptsCi andCj are described in terms of explicitly conflict-
ing properties that is in terms of the same attribute which is
associated with conflicting valuesV and¬V . Implicit incon-
sistencies arise when the properties are described by different
attributes but with opposite meanings. Morgenstern[Morgen-
stern, 1998] has modified the (notorious) Touretzky’s Nixon
diamond[Touretzky, 1986] to show an example of implicit
inconsistencies. Let us consider:

- Nixon → Republican ;

- Nixon → Quaker ;

- Quaker → Pacifist ;

- Republican → Hawk ;

The two conceptsQuaker andRepublican are described
by two attributesPacifistandHawk that have different names
but are semantically related (one is the opposite of the other),
as they both describe someone’s attitude towards going to
war. In this case extra semantic information on the proper-
ties, such as the extent to which the property applies to the
members of the class, can be used to derive which property is
more likely to apply to the situation at hand. Of course, such
sophisticated assumptions cannot be made automatically and
need to be at least validated by knowledge engineers.

3 Extended knowledge model

In this section we extend a frame-based[Minsky, 1992]
knowledge model. This is a result of the enriched conceptual
model where properties are characterised with respect to their
behaviour in the concept description. The knowledge model
is based onclasses, slots, andfacets. Classescorrespond to
concepts and are collections of objects sharing the same prop-
erties, hierarchically organised into a multiple inheritance hi-
erarchy, linked byIS-A links. Classes are described in terms
of slots, or attributes, that can either be sets or single values.
A slot is described by a name, a domain, a value type and by
a set of additional constraints, here calledfacets. Facets can
contain the documentation for a slot, constrain the value type
or the cardinality of a slot, and provide further information
concerning the slot and the way in which the slot is to be in-
herited by the subclasses. The set of facets has been extended
from that provided by OKBC[Chaudhriet al., 1998] in order
to encompass descriptions of the attribute and its behaviour
in the concept description and changes over time. The facets
we use are listed below and discussed in the next section:

• Value: It associates a valuev ∈ Domain with an at-
tribute in order to represent a property. However, when
the concept that is defined is very high in the hierarchy
(so high that any conclusion as to the attribute’s value
is not possible), then eitherValue = Domain or Value =
Subdomain ⊂ Domain ;

• Type of value: The possible fillers for this facet arePro-
totypical, Inherited, Distinguishing. An attribute’s value
is aPrototypicalone if the value is true for any prototyp-
ical instance of the concept, but exceptions are permitted
with a degree of softness expressed by the facetRank-
ing. An attribute’s value can beInherited from some
super concept or it can be aDistinguishingvalue, that
is a value that differentiates among siblings. Note that
distinguishing values become inherited values for sub-
classes of the class;

• Exceptions: It can be either a single value or a subset of
the domain. It indicates those values that are permitted
in the concept description because in the domain, but
deemed exceptional from a common sense viewpoint.
The exceptional values are not only those which differ
from the prototypical ones but also any value which is
possible but highly unlikely;

• Ranking: An integer describing the degree of confi-
dence of the fact that the attribute takes the values peci-
fied in the facetValue. It describe the class membership
condition. The possible values are 1:All, 2: Almost all,
3: Most, 4: Possible, 5: A Few, 6: Almost none, 7: None.
For example, in the description of the conceptBird the
slotAbility to Fly takes valueYeswith Ranking 3, since
not all birds fly;

• Change frequency: Its possible values are:Regular,
Once only, Volatile, Never. This facet describes how of-
ten an attribute’s value changes. If the information is
set equal toRegularit means that the process is contin-
uous (see section below), for instance the age of a per-
son can be modelled as changing regularly; if set equal
to Once onlyit indicates that only one change is possi-
ble, for example a person’s date of birth changes only
once. If the slot is set equal toNeverit means that the
value associated with the attribute cannot change, and
finally Volatile indicates that the attribute’s value can
change more than once, for example people can change
job more than once;

• Event: Describes conditions under which the value
changes. It is the set{((Ej , Sj , Vj), Rj)|j = 1, · · · ,m}
whereEj is an event,Sj is the state of the pair attribute-
value associated with a property,Vj defines the event
validity andRj denotes whether the change is reversible
or not. The semantics of this facet is explained in the
section below.

4 Relating the extended knowledge model to
the motivations

The knowledge model presented in the previous section is
motivated by the the problems described in section 2. It is
based on an enriched semantics that aims to provide a better
understanding of the concepts and their properties by charac-
terising their behaviour.
Concept properties are to be considered on three levels:in-
stance level, class-membership levelandmeta level. Proper-
ties atinstance levelare those exhibited by all the instances



of a concept. They might specialise properties atclass-
membership level, which instead describe properties holding
for the class. Properties atmeta levelhave been mainly de-
scribed in philosophy, such asidentity, unity, rigidityandde-
pendency. The proposed model permits the characterisation
of concepts on the three distinct property levels, thus also
considering the meta level which is the basis for the ontolog-
ical analysis illustrated in[Guarino and Welty, 2000b]. Such
an enriched model helps to characterise the meta properties
holding for the concepts, thus providing knowledge engineers
with an aid to perform the ontological analysis which is usu-
ally demanding to perform.
Furthermore, the enriched knowledge model forces knowl-
edge engineers to make ontological commitments explicit.
Indeed, real situations are information-rich complete events
whose context is so rich that, as it has been argued by Searle
[Searle, 1983], it can never be fully specified. Many assump-
tions about meaning and context are usually made when deal-
ing with real situations[Rosch, 1999]. These assumptions are
rarely formalised when real situations are represented in nat-
ural language but they have to be formalised in an ontology
since they are part ontological commitments that have to be
made explicit. Enriching the semantics of the attribute de-
scriptions with things such as the behaviour of attributes over
time or how properties are shared by the subclasses makes
some of the more important assumptions explicit.
The enriched semantics is essential to solve the inconsisten-
cies that arise either while integrating diverse ontologies or
while reasoning with the integrated knowledge. By adding in-
formation on the attributes we are able to better measure the
similarity between concepts, to disambiguate between con-
cepts thatseemsimilar while they are not, and we have means
to infer which property is likely to hold for a concept that in-
herits inconsistent properties. The remainder of this section
describes the additional facets and relates them to the discus-
sion in section 2.

4.1 Behaviour over time
In the knowledge model the facetsChange frequency and
Event describe the behaviour of properties over time, which
models the changes in properties that are permitted in the con-
cept’s description without changing the essence of the con-
cept. The behaviour over time is closely related to establish-
ing the identity of concept descriptions[Guarino and Welty,
2000b]. Describing the behaviour over time involves also dis-
tinguishing properties whose change isreversiblefrom those
whose change isirreversible.
Property changes over time are caused either by the natural
passing of time or are triggered by specific event occurrences.
We need, therefore, to use a suitable temporal framework that
permits us to reason with time and events. The model cho-
sen to accommodate the representation of the changes is the
Event Calculus[Kowalski and Sergot, 1986]. Event calculus
deals with local event and time periods and provides the abil-
ity to reason about change in properties caused by a specific
event and also the ability to reason with incomplete informa-
tion.
Changes of properties can be modelled asprocesses[Sowa,
2000]. Processes can be described in terms of their starting

and ending points and of the changes that happen in between.
We can distinguish betweencontinuousanddiscrete changes,
the former describing incremental changes that take place
continuously while the latter describe changes occurring in
discrete steps calledevents. Analogously we can definecon-
tinuous propertiesthose changing regularly over time, such as
the age of a person, versusdiscrete propertieswhich are char-
acterised by an event which causes the property to change. If
the value associated with change frequency isRegular then
the process is continuous, if it isVolatile the process is dis-
crete and if it isOnce onlythe process is considered discrete
and the triggering event is set equal totime-point=T.
Any regular occurrence of time can be, however, expressed
in form of an event, since most of the forms of reason-
ing for continuous properties require discrete approximations.
Therefore in the knowledge model presented in the next sec-
tion, continuous properties are modelled as discrete proper-
ties where the event triggering the change in property is the
passing of time from the instantt to the instantt′. Each
change of property is represented by a set of quadruples
{((Ej , Sj , Vj), Rj)|j = 1, · · · ,m} whereEj is an event,
Sj is the state of the pair attribute-value associated with a
property, Vj defines the event validity whileRj indicates
whether the change in properties triggered by the eventEj
is reversible or not. The model used to accommodate this
representation of the changes adds reversibility toEvent Cal-
culus, where each triple(Ej , Sj , Vj) is interpreted either as
the concept is in the stateSj before the eventEj happensor
the concept is in the stateSj after the eventEj happensde-
pending on the value associated withVj . The interpretation
is obtained from the semantics of the event calculus, where
the former expression is represented asHold(before(Ej , Sj))
while the latter asHold(after(Ej , Sj)).
The idea of modelling the permitted changes for a property
is strictly related to the philosophical notion ofidentity. In
particular, the knowledge model addresses the problem of
modelling identity when time is involved, namelyidentity
through changes, which is based on the common sense notion
that an individual may remain the same while showing differ-
ent properties at different times[Guarino and Welty, 2000a].
The knowledge model we propose explicitly distinguishes the
properties that can change from those which cannot, and de-
scribes the changes in properties that an individual can be
subjected to, while still being recognised as an instance of a
certain concept.
The notion of changes through time is also important to es-
tablish whether a property isrigid. A rigid propertyis defined
in [Guarinoet al., 1994] as:

a property that is essential toall its instances, i.e.
∀xφ(x)→ 2φ(x).

The interpretation that is usually given torigidity is that if x
is an instance of a conceptC thanx has to be an instance ofC
in every possible world. Here we restrict ourselves to one of
these systems of possible worlds, that is time. By character-
ising the rigidity of a property in this specific world we aim
to provide knowledge engineers the means to reach a better
understanding on thenecessaryandsufficientconditions for
the class membership.



4.2 Ranking
Rankings are defined as[Goldszmidt and Pearl, 1996]:

Each world is ranked by a non-negative integer
representing the degree of surprise associated with
finding such a world.

We have borrowed the term to denote the degree of surprise
in finding a world where the propertyP holding for a concept
C does not hold for one of its subconceptsC ′. The additional
semantics encompassed in this facet is important to reason
with statements that have different degrees of truth. Indeed
there is a difference in asserting facts such as ”Mammals give
birth to live young” and ”Bird fly”, the former is generally
more believable than the latter, for which many more coun-
terexamples can be found. The ability to distinguish facts
whose truth holds with different degrees of strength is re-
lated to finding facts that are true in every possible world and
therefore constitutenecessary truth. The concept of neces-
sary truth brings us back to establishing whether a property
is rigid or not, in fact it can be assumed that the value as-
sociated with theRanking facet together with the temporal
information on the changes permitted for the property lead us
to determine whether the property described by the slot is a
rigid one. Rigid properties have often been interpreted ases-
sentialproperties (i.e., a property holding for an individual in
every possible circumstance in which the individual exists),
however, we have to note that a property might be essential to
a member of a class without being essential for membership
in that class. For example, being odd is an essential property
of the number 5, but it is not essential for membership in the
class of prime numbers.
The ability to evaluate the degree of truth of a property in a
concept description is also related to the problem of reason-
ing with ontologies obtained by integration. In such a case,
as mentioned in section 2.3 inconsistencies can arise if a con-
cepts inherits conflicting properties. In order to be able to rea-
son with these conflicts some assumptions have to be made,
concerning on how likely it is that a certain property holds;
the facetRanking models this information by modelling a
qualitative evaluation of how subclasses inherit the property.
This estimate represents the common sense knowledge ex-
pressed by linguistic quantifiers such asAll, Almost all, Few,
etc..
In case of conflicts the property’s degree of truth can be used
to rank the possible alternatives following an approach simi-
lar to the non-monotonic reasoning one developed by[Gold-
szmidt and Pearl, 1996]: in case of more conflicting proper-
ties holding for a concept description, properties are ordered
according to the degree of truth, that is according to the the
filler associated with theRanking facet weighted by theDe-
gree of strength. Therefore, a property holding for all the
subclasses is considered to have a higher rank than one hold-
ing for few of the concept subclasses, but this ordering is ad-
justed by the relevance, as perceived by the knowledge engi-
neer, of the property in the concept’s description (Degree of
strength ). For example, to reason about birds ability to fly,
the attributespeciesis more relevant than the attributefeather
colour. When reasoning with diverse ontologies, theDegree
of strength represents the weight associated with the inheri-

tance rule corresponding to the attribute.
This ordering of the conflicting properties needs to be val-
idated by the knowledge engineer, however, it reflects the
common sense assumption that, when no specific informa-
tion is known, people assume that the most likely property
holds for a concept.

4.3 Prototypes and exceptions
In order to get a full understanding of a concept it is not suf-
ficient to list the set of properties generally recognised as
describing a typical instance of the concept but we need to
consider the expected exceptions. Here we partially take the
cognitive view of prototypes and graded structures, which is
also reflected by the information modelled in the facetRank-
ing. In this view all cognitive categories show gradients of
membership which describe how well a particular subclass
fits people’s idea or image of the category to which the sub-
class belong[Rosch, 1975]. Prototypes are the subconcepts
which best represent a category, while exceptions are those
which are considered exceptional although still belong to the
category. In other words all the sufficient conditions for class
membership hold for prototypes. For example, let us con-
sider the biological categorymammal: a monotreme(a mam-
mal who does not give birth to live young) is an example of
an exception with respect to this attribute. Prototypes depend
on the context; there is no universal prototype but there are
several prototypes depending on the context, therefore a pro-
totype for the categorymammalcould becat if the context
taken is that ofpetsbut it is lion if the assumed context iscir-
cus animal. Ontologies typically presuppose context and this
feature is a major source of difficulty when merging them.
For the purpose of building ontologies, distinguishing the
prototypical properties from those describing exceptions in-
creases the expressive power of the description. Such distinc-
tions do not aim at establishing default values but rather to
guarantee the ability to reason with incomplete or conflicting
concept descriptions.
The ability to distinguish between prototypes and exceptions
helps to determine which properties are necessary and suf-
ficient conditions for concept membership. In fact a prop-
erty which is prototypical and that is also inherited by all
the subconcepts (that is it has the facetRanking set toAll)
becomes a natural candidate for a necessary condition. Pro-
totypes, therefore, describe the subconcepts that best fit the
cognitive category represented by the conceptin the specific
context given by the ontology. On the other hand, by describ-
ing which properties are exceptional, we provide a better de-
scription of the class membership criteria in that it permits to
determine what are the properties that, although rarely hold
for that concept, are still possible properties describing the
cognitive category. Here, the termexceptionalis used to in-
dicate something that differs from what is normally thought
to be a feature of the cognitive category and not only what
differs from the prototype.
Also the information on prototype and exceptions can prove
useful in dealing with inconsistencies arising from ontology
integration. When no specific information is made available
on a concept and it inherits conflicting properties, then we can
assume that the prototypical properties hold for it.



The inclusion of prototypes in the knowledge model provides
the grounds for the semi-automatic maintenance and evolu-
tion of ontologies by applying techniques developed in other
fields such as machine learning.

5 Prospects for supporting roles
The notion ofrole is central to any modelling activities as
much as those ofobjectsand relations. A thorough discus-
sion of roles goes beyond the scope of this paper, and roles
are not supported yet in the knowledge model introduced in
section 3. However, the extended semantics provided by the
knowledge model presented above gives good prospects for
supporting roles. In this section we provide some prelimi-
nary consideration and relate the additional facets with the
main features of the role notion.
Despite its importance that has been highlighted in the liter-
ature[Guarino, 1992; Sowa, 1984], only few modelling lan-
guages permit the distinction between aconceptand theroles
it can play in the knowledge model. This difficulty is partially
due to the lack of a single definition forrole.
A definition of role that makes use of the formal meta-
properties and includes also the definition given by Sowa
[Sowa, 1984] is provided by Guarino and Welty. In[Guar-
ino and Welty, 2000a] they define a role as:

properties expressing thepart playedby one entity
in an event, often exemplifying a particular rela-
tionship between two or more entities. All roles are
anti-rigid anddependent... A propertyφ is said to
be anti-rigid if it is not essential toall its instances,
i.e. ∀xφ(x) → ¬2φ(x)... A propertyφ is (ex-
ternally) dependenton a propertyψ if, for all its
instancesx, necessarily some instance ofψ must
exist, which is not a part nor a constituent ofx, i.e.
∀x2(φ(x)→ ∃yψ(y) ∧ ¬P (y, x) ∧ ¬C(y, x)).

In other words a concept is a role if its individuals stand in
relation to other individuals, and they can enter or leave the
extent of the concept without losing their identity. From this
definition it emerges that the ability of recognising whether
rigidity holds for some propertyφ is essential in order to dis-
tinguish whetherφ is a role.
In [Steimann, 2000] the author presents a list of the features
that have been associated in the literature with roles. Some
of these features are conflicting and, as pointed out, no inte-
grating definition has been made available. However, from
the different definitions available it can be derived that the
notion of role is inherently temporal, indeed roles are ac-
quired and relinquished in dependence either of time or of
a specific event. For example the objectpersonacquires the
role teenagerif the person is between 11 and 19 years old,
whereas a person becomesstudentwhen they enroll for a de-
gree course. Moreover, from the list of features in[Steimann,
2000] it emerges that many of the characteristics of roles are
time or event related, such as: an object may acquire and
abandon roles dynamically, may play different roles simulta-
neously, or may play the same role several time, simultane-
ously, and the sequence in which roles may be acquired and
relinquished can be subjected to restrictions.
For the aforementioned reasons ways of representing roles

must be supported by some kind of time and event explicit
representation. We believe that the knowledge model we have
presented, although it does not encompass roles yet, provides
sufficient semantics to model the dynamic features of roles,
thanks to the explicit representation of time intervals which
is used to model the attributes behaviour over time. Further-
more, the ability of modelling events, used to describe the
possible causes in the state of an attribute, can be used to
model the events that constrain the acquisition or the relin-
quishment of a role.

6 A modelling example

We now provide an example to illustrate how the previously
described knowledge model can be used for modelling a con-
cept in the ontology. The example is taken from the medical
domain and we have chosen to model the concept ofblood
pressure. Blood pressure is represented here as an ordered
pair (s, d) wheres is the value of thesystolic pressurewhile
d is the value of thediastolic pressure. In modelling the
concept of blood pressure we take into account that both the
systolic and diastolic pressure can range between a minimum
and a maximum value but that some values are more likely
to be registered than others. Within the likely values we
then distinguish theprototypical values, which are those
registered for a healthy individual whose age is over 18, and
the exceptionalones, which are those registered for people
with pathologies such as hypertension or hypotension. The
prototypical values are those considered normal, but they can
change and we describe also the permitted changes and what
events can trigger such changes. Prototypical pressure values
usually change with age, but they can be altered depending
on some specific events such as shock and haemorrhage
(causing hypotension) or thrombosis and embolism (causing
hypertension). Also conditions such as pregnancy can alter
the normal readings.
Classes are denoted by the labelc, slots by the labels and
facets by the labelf. Irreversible changes are denoted by I
while reversible property changes are denoted by R.

c: Circulatorysystem;
s: Bloodpressure
f: Domain : [(0,0)-(300,200)];
f: Value : [(90,60)-(130,85)];
f: Typeofvalue : prototypical;
f: Exceptions : [(0,0)-(89,59)]∪ [(131,86)-(300,200)];
f: Ranking : 3;
f: Changefrequency : Volatile;
f: Event : (Age=60,[(0,0)-(89,59)]∪

∪ [(131,86)-(300,200)],after, I);
f: Event : (haemorrhage,[(0,0)-(89,59)],after, R);
f: Event : (shock,[(0,0)-(89,59)],after, R);
f: Event : (thrombosis,[(131,86)-(300,200)],after,R);
f: Event : (embolism,[(131,86)-(300,200)],after,R);
f: Event : (pregnancy,[(0,0)-(89,59)]∪

∪ [(131,86)-(300,200)],after,R);



7 Conclusions
This paper has presented a knowledge model that extends the
usual ontology frame-based model such as OKBC by explic-
itly representing additional information on the slot proper-
ties. This knowledge model results from a conceptual model
which encompasses semantic information aiming to charac-
terise the behaviour of properties in the concept description.
We have motivated this enriched conceptual model by iden-
tifying three main categories of problems that require addi-
tional semantics in order to be solved.
The novelty of this extended knowledge model is that it ex-
plicitly represents the behaviour of attributes over time by de-
scribing the permitted changes in a property that are permit-
ted for members of the concept. It also explicitly represents
the class membership mechanism by associating with each
slot a qualitative quantifier representing how properties are
inherited by subconcepts. Finally, the model does not only
describe the prototypical properties holding for a concept but
also the exceptional ones.
We have also related the extended knowledge model to the
formal ontological analysis by Guarino and Welty[Guarino
and Welty, 2000b] which permits to build ontologies that have
a cleaner taxonomic structure and so gives better prospects for
maintenance and integration. Such a formal ontological anal-
ysis is usually difficult to perform and we believe our knowl-
edge model can help knowledge engineers to determine the
meta-properties holding for the concept by forcing them to
make the ontological commitments explicit.
A possible drawback of this approach is the high number of
facets that need to filled when building ontology. We realise
that this can make building an ontology from scratch even
more time consuming but we believe that the outcomes in
terms of better understanding of the concept and the role it
plays in a context together with the guidance in determining
the meta-properties at least balances the increased complexity
of the task.

8 Future work
The extension of the knowledge model with with additional
semantics opens several new research directions. Firstly, the
role representation needs to be formalised in the knowledge
model in order to represent also the roles hierarchical organi-
sation[Steimann, 2000].
We also plan to use the semantics encompassed in the knowl-
edge model to assist knowledge engineers in the tasks of
merging and reasoning with diverse ontologies. To reach this
goal we intent to introduce some form of temporal reasoning
based on the event logics that is used extend the facets.
The description of attributes in terms of prototypical values
gives us the possibility of exploring the application of ma-
chine learning techniques to ontologies, in order to extend
them dynamically by learning new concept descriptions and
placing them in the most appropriate position in the class hi-
erarchy.
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