
 

 
 

Proceedings of the  
 

First International Workshop on 
Lightweight Integration on the Web 

(ComposableWeb’09) 

Florian Daniel1, Sven Casteleyn2, Geert-Jan Houben3 
1University of Trento, Italy  

daniel@disi.unitn.it 
2 Vrije Universiteit Brussel, Belgium 

sven.casteleyn@vub.ac.be 
3 TU Delft, Netherlands  

g.j.p.m.houben@tudelft.nl 



II 
 

  

Copyright © 2009 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. Re-publication of ma-
terial from this volume requires permission by the copyright owners. 



III 
 

Preface 

While the word mashup is widely used today, to some of us it is still not really clear 
what a mashup is and what it is not. Some mashups focus on integrating RSS feeds, 
others on integrating RESTful services, SOAP services, Atom feeds, or user interfac-
es. Yet, everybody recognizes that mashups represent a new way of expressing inno-
vation, sometimes even user innovation, i.e., innovation in the form of simple web 
applications “implemented” or “mashed up” by web users.  

Typically, implementing a mashup means integrating resources available on the 
Web into a new, value-adding application. The integration may occur at the user inter-
face level (most mashups do integrate presentation content, not just data), at the appli-
cation logic level (web service are one of the cornerstones of mashups), or at the data 
level (RSS/Atoms feeds or XML files are common practices today), or at a combina-
tion of them. Therefore, we say a mashup is a web application that is developed by 
composing data, application logic, and/or user interfaces originating from disparate 
sources available on the Web. 

In general, developing mashups is a hard and tricky task. For instance, a mashup 
composer can of course use any conventional programming language to integrate, 
i.e., mash up, the resources and components of his choice. For instance, among the 
most used languages today we find PHP on the server side and JavaScript on the 
client side; many other languages are used as well. Given the heterogeneity of tech-
nologies, programming languages, interaction protocols, the complexity of the neces-
sary integration logic, and similar, manual development of mashups is only an option 
for highly skilled programmers. And even they could experience a hard time in mas-
tering all the development challenges. Service composition approaches “a la BPEL” 
are not able to cope with the above mentioned heterogeneity of technologies. 

With the advent of mashup tools, the mashup phenomenon has however become 
more popular even among web users, as they offer users the unique chance of getting 
involved into the development process of web applications in an intuitive and assisted 
fashion. Usually, mashup tools aim at simplicity more than at completeness of fea-
tures, and they support fairly sophisticated development tasks in the browser. 

Despite the current emphasis on mashups and lightweight integration on the Web, 
we still register a lack of agreed-upon reference models (e.g., for component and 
composition languages), development processes and methodologies, architectures, 
execution platforms, analysis techniques, and so on, that effectively aid mashup de-
velopment. In particular, the involvement of web users into the development of com-
posite online applications demands intelligent concepts and a high degree of assis-
tance – especially to the most inexperienced users. It even results in new (social) 
development practices, which in turn may require new software support.  

In this context, several challenging research issues are emerging, among which the 
following seem of particular interest: 

1. Reusable components: Expressive component models for data, application 
logic, and user interface components, as well as suitable description lan-
guages, and discovery and selection facilities (e.g., registries and protocols) 
are needed. 



IV 
 

2. Simple, lightweight composition languages: Easy-to-learn yet expressive 
execution languages are required, which enable the plug-in style develop-
ment of composite applications. 

3. Graphical composition tools: Composition languages should be equipped 
with suitable graphical modeling formalisms that are able to hide the actual 
composition complexity and allow for computer-aided development envi-
ronments. 

4. Suitable execution platforms: Ready compositions require proper execution 
support (e.g., an interpreter or parser). We expect such support to be pro-
vided through online hosting and execution platforms. 

5. Design aimed at interoperability: Components and mashups should be inte-
roperable, meaning that they have cross-platform reusability. Mashup-
specific standards might be necessary. 

 
In light of these considerations, the goal of ComposableWeb is to challenge the 

Web Engineering community with these new research issues and to stimulate the 
discussion of key issues, approaches, open problems, innovative applications, and 
trends in these and related research areas, so as to identify technologies, solutions, 
instruments and methodologies that effectively support the lightweight composition of 
web applications. 

 
This volume collects the proceedings of the first edition of ComposableWeb, held 

in conjunction with the International Conference on Web Engineering (ICWE) on 
June 23, 2009, in San Sebastian, Spain. Out of all submissions, eight papers (six full 
papers, two position papers) attained sufficient quality and were selected for presenta-
tion during the workshop; unfortunately, other submissions could not be accepted. 

We would like to thank all authors, of both accepted and rejected papers, for their 
contributions, the presenters and the people participating in the workshop for their 
engagement and contributions to the discussions during the workshop, and the chairs 
of ICWE’09 for their support in the organization of the event. 

 
 
 

Trento, Brussels, Delft Florian Daniel 
June 2009 Sven Casteleyn 
 Geert-Jan Houben 
  



V 
 

Organization 

Organizing Committee 

− Florian Daniel, University of Trento, Italy 
− Sven Casteleyn, Vrije Universiteit Brussel, Belgium 
− Geert-Jan Houben, TU Delft, the Netherlands 

Steering Committee 

− Sven Casteleyn, Vrije Universiteit Brussel, Belgium 
− Florian Daniel, University of Trento, Italy 
− Maristella Matera, Politecnico di Milano, Italy 
− Geert-Jan Houben, TU Delft, the Netherlands 
− Olga De Troyer, Vrije Universiteit Brussel, Belgium 

Programme Committee 

− Sören Auer, University of Leipzig, Germany 
− Boualem Benatallah, University of New South Wales, Australia 
− Fabio Casati, University of Trento, Italy 
− Peter Dolog, Aalborg University, Denmark 
− Marlon Dumas, Tartu Univesity, Estonia 
− Schahram Dustdar, Technical University of Vienna, Austria 
− Rama Gurram, SAP Labs Palo Alto, USA 
− Frank Leymann, University Stuttgart, Germany 
− Michael Mrissa, University of Lyon, France 
− Moira C. Norrie, ETH Zurich, Switzerland 
− Cesare Pautasso, University of Lugano, Switzerland 
− Gustavo Rossi, Universidad Nacional de La Plata, Argentina 
− Takehiro Tokuda, Tokyo Institute of Technology, Japan 
 

  



VI 
 

  



VII 
 

Table of Contents 

Eduardo Martín Rojo and Vicente Luque-Centeno 
Data Extraction from Semantic Annotated Deep Web Sites ........................................... 1 

Donato Barbagallo, Cinzia Cappiello, Chiara Francalanci and Maristella Matera 
Reputation Based Self-Service Environments ............................................................... 12 

Erwin Leonardi, Geert-Jan Houben, Kees van der Sluijs, Jan Hidders, Eelco Herder, 
Fabian Abel, Daniel Krause and Dominikus Heckmann 
User Profile Elicitation and Conversion in a Mashup Environment ........................... 18 

Ralph Sommermeier, Andreas Heil and Martin Gaedke 
Lightweight Data Integration using the WebComposition Data Grid Service ............ 30 

Shohei Yokoyama, Isao Kojima and Hiroshi Ishikawa 
FREDDY: A Web Browser-friendly Lightweight Data-Interchange Method Suitable 
for Composing Continuous Data Streams..................................................................... 39 

Martin Vasko and Schahram Dustdar 
Introducing Collaborative Service Mashup Design ..................................................... 51 

Tobias Nestler, Marius Feldmann, Andre Preussner and Alexander Schill 
Service Composition at the Presentation Layer using Web Service Annotations ........ 63 

Hao Han, Junxia Guo and Takehiro Tokuda 
Towards Flexible Integration of Any Parts from Any Web Applications for Personal 
Use ................................................................................................................................. 69 
  



VIII 
 

 



Data Extraction from Semantic Annotated Deep

Web Sites

Eduardo Mart́ın Rojo and Vicente Luque Centeno

Universidad Carlos III de Madrid
Av. Universidad 30, 28911
Leganés (Madrid), España
{emartin,vlc}@it.uc3m.es

Abstract. Automatic navigating and gathering information from Deep
Web sites requires the use of Web Wrappers in order to simulate human
interaction with Web sites. Web Wrappers have some drawbacks: their
implementations are specific to the accessed site and also their source
code needs a constant maintenance in order to support new changes on
Web site.
In this work we propose an annotation model for Deep Web sites that
could be used for data extraction from the point of view of a Web client.
Using these annotations will enable Web Wrappers to be more adaptable
to Web site changes.

1 Introduction

Nowadays most popular Web sites provide to their users with development tools
that make possible to create applications that access their services, like eBay

Developers Program1. Also, sometimes they provide Web services that could be
accessed by Mashup applications like Google Mashups2, Yahoo Pipes3 or Mi-

crosoft Popfly4. However, the great majority of Web sites do not provide devel-
opment tools or Web services because they are only focused on being operated by
human users. Automatic accessing Web sites that do not provide these facilities
is achieved by using Web Wrappers[7].

Web Wrappers have some drawbacks: first, they require developers with
strong knowledge on the accessed Web site because Web Wrappers are site spe-
cific solutions that have dependencies with Web structure; and second, Web
Wrappers require constant maintenance in order to support new changes on the
Web sites they are accessing. Web Wrappers development tools evolved trying
to solve these drawbacks and also to make possible an easier integration of Web
data from heterogeneous sources. Some examples of common Web Wrappers de-
velopment tools are site specific solutions like GreaseMonkey5 and Ubiquity6,

1 http://developer.ebay.com/
2 http://www.googlemashups.com/
3 http://pipes.yahoo.com
4 http://www.popfly.com
5 http://www.greasespot.net/
6 http://ubiquity.mozilla.com/

ComposableWeb'09

1



user-friendly tools that allow natural language references like Chickenfoot7, and
also graphical IDE solutions like OpenKapow RoboMaker8.

The main common characteristic among all current Wrapper development
tools is that, although their operation is simple, they still have strong depen-
dencies with Web site structure, originating a continuous effort of maintenance
with the created Wrappers. In our work we will define a formalization of Web
structure that can be used for semantic annotation of Deep Web sites in order to
represent their navigation operation. These annotations combined with current
Wrapper development tools will allow implementation of Wrappers focused on
the Web site model, avoiding overlapping with site structure. The maintenance
required by new Web site changes will be isolated inside this model layer. Any
future modifications on the structure of the Web site will need only to change
the semantic annotation for the Web site, and all the Wrappers that make use
of these annotations will not need to be changed.

One of the main problems raised with the navigation model generation is
the election of a point of view. In [11], it is indicated that a Web navigation
model can be generated from three points of view: from server point of view,
analyzing physical structure of Web site; from client point of view, analyzing
client interaction with Web site; and from a hybrid point of view as a combination
of client and server point of view. In our work we have chosen to follow the client
point of view because of the following reasons:

– The navigation model must support the changeableness and diversity of Web
content. Client side technologies like AJAX or Flash are widespread. The
model must support also this kind of content.

– It is non intrusive; it does not require to change the Web site being annotated
as other semantic annotation methods like RDFa[12] and Microformats[10].

– Client-only point of view allow third party and end users to participate and
collaborate in the creation of annotations about any Web site because they
will not have access to the server.

In this document, section 2 will introduce previous works related with Deep
Web navigation modeling and data extraction. The annotation model for ex-
pressing navigation graphs that we present is described in section 3 by defining
its main classes and properties. Also we present an example of annotation for a
shop Web site that uses our model. Section 4, describes how can be used the an-
notations for the extraction of information by using an example that performs
a query over different sources; and finally, future works and conclussions are
described in section 5.

2 Related Works

The task of generating a navigation model from a Web Site has been previously
faced, but previous works do not provide a Web model annotations formalization.

7 http://groups.csail.mit.edu/uid/chickenfoot/
8 http://openkapow.com/

ComposableWeb'09

2



There were attempts to automatically extract the model using real navigation
examples like [1], where the authors make use of navigation examples that were
extracted by recording and replaying the actions performed by a user and [11],
focused on generation of models for visualization of Web sites hierarchy.

Deep Web navigation model generation is treated by [13], where the authors
generate a navigation model where they use keyword-matching for identifying
different Deep Web pages. Other work more focused on interacting with Deep
Web sites is Transcendence[2], a system that allows users to generalize their
queries for expanding their search scope. It allows also to define data extrac-
tion patterns for obtaining output data that may be combined with other data
sources.

One of the main problems of Deep Web remains in that a Deep Web page
cannot be always represented uniquely with an URL9. The problem of refer-
encing Deep Web pages is addressed in [8], where the authors present a way of
creating bookmarks of a Deep Web page using the sequence of steps specified
with Chickenfoot scripts that simulate the user interaction in order to reach the
bookmarked page. This is combined with images that show the visual represen-
tation of the bookmarked page.

Extracting semantic data from Web sites is a problem that have been faced
in Marmite[16], a system that provides an end-user interface that allows him to
construct the workflow needed for extracting the data, or PiggyBank [9], a system
where the user can make use of scripts called Screen Scrapers for converting
HTML to semantic data in RDF. Related with this last work is Sifter, a tool
that

In our demo system we use Chickenfoot as Wrapper development tool. The
main characteristics of this tool and its natural language references to HTML
elements are presented on [3] and [4]. Chickenfoot enable the specification of
client-side Web interactions with a simple Javascript based language.

3 Deep Web Annotation Model

The objective of a Web client is to reach a specific state through interacting
with the Web. Our model represent the states and transitions that composes
the navigation as a graph that describes all possible situations that could occur
in a Web site from client’s point of view. In the graph, vertexes represents all
possible logical states that require an action produced by the user, while edges
represent the actions produced that allow the transitions between logical states.

Every state could be divided in elements called fragments, and also these
fragments could be divided into new fragments. Every fragment represents a type
of semantic content that can be extracted by selecting part of the element that
it belongs. Figure 1 shows an example of state division in different fragments.
Fragments of logical states will allow us to extract semantic information from
Deep Web pages if we know the location of the state inside the navigation graph
of the Web site.

9 Uniform Resource Locator, defined on http://tools.ietf.org/html/rfc1738

ComposableWeb'09

3



Fig. 1. States and Fragments

A transition represents the actions available for the user. These actions will
allow changing among different states in the Web site. Transitions are composed
of, first, an ordered sequence of interactions that originates the change of state,
and second, a list of all possibe destinations that could be feasible by using the
transition. There could be different possible destinations because the Web site
could act in different ways as a consequence of dynamic factors like the state of
the service framework, the interactions historical, date and time, etc.

Our model of states and transitions for the navigation graph is represented
by the following types of elements:

1. PageState: a uniquely identifying state that represents a Deep Web page. A
state contains fragments.

2. Fragment: represents an element inside a PageState or another Fragment. It
is domain of the following properties:

(a) fragmentOf: Defines this fragment as part of another fragment or part of
a PageState as a hierarchy.

(b) locatedBy: a XPath expression that identifies the position of the fragment
inside the XHTML representation of the PageState.

(c) numResults: an integer that defines how many times this fragment ap-
pears inside his father Fragment or PageState in hierarchy.

ComposableWeb'09

4



(d) optional: a boolean that indicates if the fragment appears optionally in-
side his father Fragment or PageState. It may happen when a page has
variable elements.

(e) semantic: a set of RDF triples that represents the knowledge refered by
this fragment. This property is also defined in Input and Action.

3. transitions: represents all possible transitions to other states that could be
followed from this state. It has the following properties:

(a) actions: any transition is originated by an ordered sequence of actions
(instances of Action class)

(b) sources and destinations: all possible states that could be source or des-
tination of this transition respectively.

(c) precondition and postcondition: preconditions and postconditions required
in order to use this transition for travelling from sources to destinations.
Postconditions can be used for distinguishing between different possible
destinations.

4. Action: an interaction that could be performed over a fragment. It contains
the following properties:

(a) hasType: type of interaction (clicking element, selecting element, enter-
ing text. . . ). It is represented by a Chickenfoot command in our demo
annotations.

(b) inputs: all the form values needed for performing the interaction are
refered in this property as a list that contains elements of type Input.
For each input it must be provided a name and a description.

We have represented this formalization in an OWL10 ontology that can be
accessed in [15].

In figure 2 we have represented an example of the annotated navigation
model for searching products inside a typical Shop of Books site. From initial
page at this site represented by node state0, there are two fragments: element0
(a searching textbox) and element1 (a button that initiates the searching task).
From state0 it is possible to go to state1 through transition0. This transition re-
quires to perform two actions (represented by the orderedActions list of actions):
the first action is performed by inserting a search string inside element0 textbox
and the second action is performed by clicking element1 button. At state1, there
are three fragments that can be accessed: element2, element3 and element4. Be-
cause each of them is a part of other fragment, the XPath expression referred by
the locatedBy property is relative to its father’s locatedBy property. For example,
element4 is constructed with element3 and element2 locations, and so its location
should be //div[@id=’atfResults’][$INDEX]//div[@class=’productPrice’].

In this figure we have used an hypothetical ontology for defining concepts of
Shops, but the annotation model presented can be combined with any ontology
for defining semantic knowledge inside the Fragments, Actions or Inputs of the
model. This knowledge can be provided as RDF data inside the property semantic
of these elements.

10 http://www.w3.org/TR/owl-features/

ComposableWeb'09

5



Shop of Books Web Site

state0

transition0

precond = ’’

state1

postcond = ’’

ACTION enter(element0, $INPUT);

semantic

orderedActions

FRAGMENT element0

locatedBy //input[@id=’twotabsearchtextbox’]

semantic

fragmentOf

FRAGMENT element1

locatedBy //input[@id=’navGoButtonPanel’]

semantic

fragmentOf

FRAGMENT element2

locatedBy //div[@id=’atfResults’]

semantic ADD(this a shop:ListOfProducts.)

fragmentOf

FRAGMENT element3

locatedBy [$INDEX]

semantic
ADD(this a shop:Product.)

ADD(this shop:searchedBy :searchText.)

fragmentOf

FRAGMENT element4

locatedBy //div[@class=’productTitle’]

semantic

ADD({this log:content ?text . 
 this :fragmentOf ?father.}

log:implies
{?father shop:productTitle ?text.})

fragmentOf

ACTION click(element1);

semantic

next

INPUT $SEARCHED_PRODUCT

type rdfs:String

description String representing product

semantic

ADD({this log:content ?text}
log:implies

{:searchText a :Variable.
:searchText log:content ?text.})

inputs

Fig. 2. Annotated navigation model for searching at Shop of Books site

ComposableWeb'09

6



Representing the semantic of a specific element inside a state for a Deep Web
site requires not only the knowledge inferred from the specific state, but also the
knowledge of all the transitions that have been followed for reaching the state.
This knowledge may be transformed during the transitions, and new knowledge
may be added or removed from the client’s working memory of assertions, de-
pending on the client interactions with the Deep Web site, as in a Production
System or Rule-Based System [5].

As can be seen in figure 2, Fragment, Input and Action have defined the
semantic property that indicates which knowledge (represented as RDF triples
or inference rules) is added (ADD) or deleted (DEL) from the working memory.
Adding a RDF triple simply adds itself to the working memory, while adding a
RDF rule executes it inside working memory and every time new RDF triples
are added, the rule must be reapplied. Deleting a triple or a rule eliminates its
effect from the working memory. The effect of adding or removing RDF data of
client’s working memory follows these rules:

1. If the client is located at a State that contains fragments, the semantic prop-
erty of the fragments is processed inside working memory from outer frag-
ments to inner fragments following the fragmentOf property. Fragments at
the same level of indexation can be processed in any order.

2. If the client has travelled through a Transition that contains a ordered list of
actions, the semantic property of the actions is processed following the same
order of the ordered actions list.

3. If the client uses an input defined in a fragment of a State or in an action
of a Transition, the semantic property of the input is processed after all the
other semantic properties of the State or Transition.

Semantic information is associated with every instance of Fragment, Action
or Input by using the semantic property. With this property, the user that is
annotating a Web site indicates which kind of information does the fragment,
action or input represents. Its content is expressed in RDF.

For defining semantic information, in figure 2 we make use of the following
properties and concepts (based on the built-in CWM reasoner functions11):

– log:implies → Property that relates antecedents and consequents of a RDF
expressed rule. Antecedents and consequents are defined between brackets {
and }.

– log:content → This property relates the logical representation of an element
with its string representation. It is used for defining the text content of an
input, or for defining the specific values of an information.

– this → When it is used inside the semantic property of an element, it repre-
sents the element itself. It is used for adding knowledge to an element.

In order to facilitate sharing and reusing annotations, it is needed the use of
ontologies for modeling this semantic content.

11 http://www.w3.org/2000/10/swap/doc/CwmBuiltins.html

ComposableWeb'09

7



4 Data Extraction using Annotations

The content of the semantic property allows to locate a particular information
inside the navigation map by performing a query that specifies the conditions in
which the information can be found in the working memory. As our model deals
with knowledge expressed as RDF triples, we have selected SPARQL12 as query
language for this purpose. SPARQL allows to indicate the Named Graph[6] that
a set of conditions are referring. We make use of this functionality for relating
annotations of different Deep Web sites in order to perform a distributed query
among their graphs. Figure 3 shows an example of query that uses two different
maps. The SPARQL query requires the price of a book that fulfills the following
conditions expressed in the WHERE part of the query:

1. Select from RSS Web Site any element identified as Product that has a
defined title

2. Select from Shop of Books Web Site any element identified as Product that
has been searched in the site using the string that represents the title of the
product from RSS Web Site previously obtained

A set of conditions expressed for a specific navigation model in the query can
be achieved by a list of transitions. The actions of these transitions could need
to provide client inputs. Also these inputs could be needed for accessing specific
fragments in a state. In the example at figure 3, RSS map requires an input
called INDEX for accessing a fragment inside rss state0, and Shop of Books map
requires the input SEARCHED PRODUCT for performing the actions of transi-
tion0. Inputs are the points where the SPARQL query can relate data among
different maps. Because inputs require that an information must be supplied,
the SPARQL query must face with the possible situations with these rules:

– If the conditions states clearly the specific value of the input, use this value.
– If the conditions indicate that the information required by the input must be

obtained from another graph, then the query must first perform its actions
in that other graph. This happens in the example with Shop of Books map
at condition ?product2 shop:searchedBy ?title because title is refered by the
RSS map.

– If the information required can not be infered, then the SPARQL query must
use all possible informations that could be used for the input. In the example,
this happens with the input INDEX, that is not provided, so the query must
iterate among all the elements.

We have developed a demo system that may be accessed through [14]. Our
demo generates Web wrappers scripts composed of Chickenfoot13 commands
that could be executed in Firefox with Chickenfoot plugin installed. Chicken-

foot is a programming environment that provides a set of special functions for

12 http://www.w3.org/TR/rdf-sparql-query/
13 http://groups.csail.mit.edu/uid/chickenfoot/

ComposableWeb'09

8



Shop of Books Web Site

RSS Interesting Books

transition0

ACTION enter(element0, $SEARCHED_PRODUCT);

semantic

orderedActions

ACTION click(element1);

semantic

nextAction

INPUT $SEARCHED_PRODUCT

type rdfs:String

description String representing product

semantic

ADD({this log:content ?text}
log:implies

{:searchText a :Variable.
:searchText log:content ?text.})

inputs

QUERY GOAL DEFINITION

sparql

SELECT ?price 
FROM NAMED <http://rss>
FROM NAMED <http://shop>
WHERE { 
GRAPH <http://rss> { 
?product a shop:Product . 
 ?product shop:productTitle ?title.} 
GRAPH <http://shop>{
?product2 a shop:Product . 
?product2 :searchedBy ?title .
?product2 :productPrice ?price .}}

rss_state0

FRAGMENT element0

locatedBy //item

semantic
ADD(this a shop:ListOfProducts.)

ADD(this shop:searchedBy :searchText.)

fragmentOf

FRAGMENT element1

locatedBy [$INDEX]

semantic ADD(this a shop:Product.)

fragmentOf

INPUT $BOOK_INDEX

type rdfs:Integer

description Position of book inside list

semantic

ADD({this log:content ?text}
log:implies

{:positionSelected a :Variable.
:positionSelected log:content ?text.})

inputs

FRAGMENT element2

locatedBy /title

semantic

ADD({this log:content ?text . 
 this :fragmentOf ?father.}

log:implies
{?father shop:productTitle ?text.})

fragmentOf

Fig. 3. Example querying over different maps

performing Web tasks like clicking a link, entering data in a HTML form, etc.
Chickenfoot scripts are written in a superset of Javascript. One of its main char-
acteristic is its support of natural language naming for HTML elements which
eases development of Web automatic tasks to end users [3].

The scripts are generated from SPARQL queries that can use annotations ex-
pressed in the formalization that we have presented in this article, also accesible
as OWL at URL [15]. Although with SPARQL we can not define very complex
tasks, we think it is a good starting point for defining a more powerful language
that may be used in a semantic-oriented Web Wrappers development. We think
this new approach may be useful for solving the drawbacks of previous Web
Wrappers development on Deep Web sites, like dependencies with Web struc-
ture, constant maintenance of wrappers scripts, the need of strong knowledge of
the physical structure of accessed Web sites, etc.

5 Future works

Accessing and integrating data from non-structured heterogeneous sources is
a problem that currently is solved with Web Wrappers despite its drawbacks.
Web Wrappers are also tools that may be used to give structure to that non-
structured information and made it available to the Web of Data. We think that
wrapper development must be adapted to the new environment of linked data
using semantic-oriented wrapper definitions, and not site-specific implementa-
tions. In order to achieve this, we are interested in researching more powerful

ComposableWeb'09

9



languages and development tools for this new semantic approach of semantic
wrapper development.

We think our model will improve development of Wrappers, because all the
Web site structure changes will require only to modify the annotation model,
and all Wrappers that make use of the annotations will be corrected. However,
it would be adequate an exhaustive evaluation of user effort with our annotation
model, that will be accomplished in future work.

We are interested in continuing working on ontologies integration with se-
mantic wrapper implementations in order to exploit the common concepts among
different Web sites. The same semantic wrapper implementation may be used in
any Web site that is annotated using the same ontology.

6 Acknowledgements

This work has been partially funded by the spanish Ministry of Education and
Science, project ITACA No. TSI2007-65393-C02-01

References

1. Robert Baumgartner, Michal Ceresna, and Gerald Ledermuller. Deep web nav-
igation in web data extraction. In CIMCA ’05: Proceedings of the International
Conference on Computational Intelligence for Modelling, Control and Automation
and International Conference on Intelligent Agents, Web Technologies and Inter-
net Commerce Vol-2 (CIMCA-IAWTIC’06), volume 2, pages 698–703, Washington,
DC, USA, 2005. IEEE Computer Society.

2. Jeffrey P. Bigham, Anna C. Cavender, Ryan S. Kaminsky, Craig M. Prince, and
Tyler S. Robison. Transcendence: enabling a personal view of the deep web. In IUI
’08: Proceedings of the 13th international conference on Intelligent user interfaces,
pages 169–178, New York, NY, USA, 2008. ACM.

3. Michael Bolin and Robert C. Miller. Naming page elements in end-user web au-
tomation. SIGSOFT Softw. Eng. Notes, 30(4):1–5, 2005.

4. Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C. Miller.
Automation and customization of rendered web pages. In UIST ’05: Proceedings
of the 18th annual ACM symposium on User interface software and technology,
pages 163–172, New York, NY, USA, 2005. ACM.

5. Ronald Brachman and Hector Levesque. Knowledge Representation and Reasoning
(The Morgan Kaufmann Series in Artificial Intelligence). Morgan Kaufmann, May
2004.

6. Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named graphs,
provenance and trust. In WWW ’05: Proceedings of the 14th international confer-
ence on World Wide Web, pages 613–622, New York, NY, USA, 2005. ACM.

7. Sudarshan Chawathe, Hector Garcia-molina, Joachim Hammer, Kelly Irel, Yan-
nis Papakonstantinou, Jeffrey Ullman, and Jennifer Widom. The tsimmis project:
Integration of heterogeneous information sources. In In Proceedings of IPSJ Con-
ference, pages 7–18, 1994.

ComposableWeb'09

10



8. Darris Hupp and Robert C. Miller. Smart bookmarks: automatic retroactive macro
recording on the web. In UIST ’07: Proceedings of the 20th annual ACM symposium
on User interface software and technology, pages 81–90, New York, NY, USA, 2007.
ACM.

9. David Huynh, Stefano Mazzocchi, and David Karger. Piggy Bank: Experience the
Semantic Web inside your web browser, volume 5, pages 16–27. Elsevier Science
Publishers B. V., Amsterdam, The Netherlands, The Netherlands, 2007.

10. Rohit Khare and Tantek Celik. Microformats: a pragmatic path to the semantic
web. pages 865–866, 2006.

11. Dirk Kukulenz. Adaptive site map visualization based on landmarks. In IV ’05:
Proceedings of the Ninth International Conference on Information Visualisation,
pages 473–479, Washington, DC, USA, 2005. IEEE Computer Society.

12. W3C. Rdfa primer. W3C Working Group Note 14 October 2008, October 2008.
13. Yang Wang and Thomas Hornung. Deep web navigation by example. In Tomasz

Kaczmarek Marek Kowalkiewicz Tadhg Nagle Jonny Parkes Dominik Flejter, Sla-
womir Grzonkowski, editor, BIS 2008 Workshop Proceedings, Inssbruck, Austria,
6-7 May 2008, pages 131–140. Department of Information Systems, Pozna, Uni-
versity of Economics, 2008.

14. WebTLab. Site annotation demo. http://corelli.gast.it.uc3m.es/siteannotation.
15. WebTLab. Site annotation ontology. http://corelli.gast.it.uc3m.es/siteannotation/

ontology.owl.
16. Jeffrey Wong and Jason I. Hong. Making mashups with marmite: towards end-

user programming for the web. In CHI ’07: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 1435–1444, New York, NY, USA,
2007. ACM.

ComposableWeb'09

11



Reputation-Based Self-Service Environments 

Donato Barbagallo, Cinzia Cappiello, Chiara Francalanci, Maristella Matera 

 
Dipartimento di Elettronica e Informazione, Politecnico di Milano, 

Via Ponzio 34/5, 20133 Milano, Italy 
{barbagallo, cappiello, francala, matera}@elet.polimi.it 

Abstract. The availability of a huge amount of information on the Web raises a 
set of issues concerning the research, the selection, and the representation of 
trustworthy sources and services. This paper describes a new research, which 
we have recently started and that aims at developing a platform to support users 
in the creation of mashup-based personalized self-service environments, where 
the users can access dependable services, selected on the basis of their 
reputation. This paper illustrates the motivations behind our research, and 
introduces some preliminary ideas about the platform design.  

Keywords: Self-Service Environments, Mashups, Reputation, Quality. 

1   Introduction 
The Web is a huge and heterogeneous source of information. Web 2.0 technologies 
have enabled an active role of the users, who can create and make available their 
contents very easily [7]. This allows people to express their opinions, and to distribute 
them through several means, such as forums, blog posts and comments, and social 
networks. It therefore becomes possible to access other people opinions, direct 
witnesses and spread ideas bypassing traditional and official sources of information 
such as corporate websites. Of course, the availability of such an amount of 
information raises a set of issues concerning the research, the selection, and the 
representation of trustworthy sources and services. The information retrieved on the 
Web is indeed often characterized by inconsistent, incomplete, and erroneous data, 
and users are not able to distinguish the right or the most suitable data along their 
needs. Furthermore, all the accessible sources could be better exploited if they are 
combined in a mashup wise, so that to obtain a tangible added value. To respond to 
the previous needs, this paper discusses some issues behind the provision of 
personalized self-service environments where users can build their view over the Web 
information space, by integrating trustworthy services for information access.  

The remainder of this paper is organized as follows. Section 2 illustrates a scenario 
that clarifies the novel requirements addressed by our research. Section 3 describes 
the architecture of the platform that we want to build, while Sections 4 and 5 discuss 
the two salient themes addressed by our project, namely reputation assessment and the 
construction of self-service environments based on mashup technologies. Finally 
Section 6 outlines future work. 

2   A Reference Scenario 
To understand the idea at the basis of our research, let us consider a usage scenario in 
the context of patient empowerment. We suppose that an individual with a health 

ComposableWeb'09

12



problem is searching for a dependable source of information, such as a forum where 
to get advice on his/her specific problem. This raises a number of issues: (i) the 
selection of the most dependable forum, (ii) understanding who other participants are 
trustworthy, and eventually (iii) integrating different answers from multiple forums 
and dynamically monitor the most reliable sources of information on specific 
subjects. In addition to discovering the best sources of information, the individual 
might also add new value to the identified dependable sources by combining different 
trusted services for creating his/her personalized information access, e.g. combining 
the identified forum with a map service showing the location of the hospitals 
mentioned in the forum, as well as with services for accessing rankings, news, and 
images. This implies the availability of methods for easy service aggregation, which 
can be based on mashup technologies.  

To the state of the art, the current technology does not exhaustively cover the 
previous needs. Our aim is therefore to provide a platform satisfying them. 

3   Platform Architecture  
The previous scenario highlights two fundamental needs: (i) to select dependable 
services that can fulfil specific information needs and quality requirements and (ii) to 
provide users with tools to compose on-demand personalized applications by means 
of the selected dependable services.  

To respond to these needs, we aim at designing a platform providing self-service 
mashup functionalities, to help people create a personalized Web access environment. 
Based on a user profile, the platform searches for the “best” information sources, 
selects relevant and authoritative information, and then wraps it as data services. Data 
services are then mixed with other services, typically mashup components [8], to 
create a personalized environment based on mashup technologies. 

Figure 1 illustrates the main components of the proposed platform. The Service 
Registry stores a catalogue of services that can be used for the creation of the 
personalized user environment. They can be data services, providing a binding with a 
dependable data source through a description of the data structure, generic Web 
services enabling the retrieval of some relevant information, or also UI components 
[8]. The registry is populated by a domain expert, who is in charge of scouting 
relevant data sources. A Reputation Monitor evaluates the services from the 
catalogue, and assigns measures based on objective reputation criteria (e.g., 
institutional reputation). Such assessment is continuously updated: periodically, the 
Reputation Monitor verifies and updates the quality level of the data sources. The 
output of the assessment activity is a Reputation Descriptor, which stores the result of 
the computation of the reputation measures.  

The Broker selects the services that best match the specified user’s settings (e.g., 
information needs expressed in the queries that the user submits to the platform) and 
the user’s profile. The services selected by the broker are then used by the self-service 
environment that helps users create their personal information access environment. 

ComposableWeb'09

13



 
Figure 1- Platform architecture 
 
The Self-Service Environment is centred on the availability of a mashup engine, 
through which the user can select some relevant components from the Mashup 
Component Repository and combine them to generate new value. The components 
available in the repository are those previously selected by the broker. In order to be 
combined into a mashup, these services need to be componentized, i.e. each service 
must be associated with a descriptor highlighting the properties useful for 
combination and choreography purposes.  

When the services selected by the broker are not provided with a proper user 
interface, as it happens for pure data services, the componentization process also 
requires the generation of a presentation layer. This process implies the selection of 
some visualization widgets (from a widget repository) that best match the operations 
and the exchanged data as indicated by the service descriptors (WSDL descriptor, 
API, or also additional service profiles). The previous functionalities raise the 
research challenges described in the following sections. 

4   Reputation Assessment 
The selection of the “best” sources, the assessment of their trustworthiness, and the 
integration of the relevant contents are all based on the ability to assess the reputation 
of the information sources. The concept of reputation is the result of the assessment of 
several quality properties of information sources, including correctness, completeness, 
timeliness, dependability, and consistency [3]. The literature provides consolidated 
data quality techniques in the case of structured data. For example, a classical 
approach to data brokering in the context of syndicated data is represented in [1], 
where data are structured and query answers are fully integrated and returned to users 
as a table (or a set of tables), as with traditional databases. This work has been 
subsequently extended with the concept of reputation [2]. In a multi-source context, it 
proposes to assess the reputation of each information source by means of i) an a-priori 
assessment of the reputation of the information source, based on the source’s 
authority in a given field and ii) an assessment of the source’s ability to offer relevant 

ComposableWeb'09

14



answers to user queries based on historical data on the source collected by the broker 
as part of its service. This approach is original since it defines reputation as a context- 
and time-dependent characteristic of information sources, and leverages the ability of 
the broker to keep a track record of each source’s reputation over time, but it should 
be extended with dimensions related to the quality of mashup components to be 
integrated into the final self-service environment. Quality criteria for the different 
aspects of traditional software applications have been proposed and thoroughly 
analyzed in the literature, but the adaptability, dynamicity, and heterogeneity that 
characterize the mashup ecosystem require a separate and focused analysis.  

Our research goal is therefore to define an assessment of the reputation of an 
information source, e.g., a Web page, based on the assessment of a number of 
properties of the sources along the traditional data and software quality dimensions, 
and also on the indirect assessment of the information sources and contributors that 
the original source includes. This involves the selection of relevant quality 
dimensions, their operating definition, their metrics, and their composition into an 
overall assessment of reputation that leverages the historical and contextual 
knowledge base of the broker.To understand the methodological approach that we 
will implement in our platform, let us assume that the Web page belongs to a forum. 
First of all, the Reputation Monitor in Figure 1 must provide an evaluation of the 
forum’s reputation as information source. A source’s completeness represents a 
fundamental quality dimension. The completeness of the information provided by a 
forum could be defined as the breadth of the forum in terms of number of users and 
issues raised, which, in turn, would lead to the operating definition of completeness as 
the total number of subscribers/contributors and their participation rate in terms of 
number of posts per day. Then, we could evaluate the forum’s reputation along the 
dependability dimension in terms of the probability with which a post receives an 
answer, which leads to define dependability as the number of answers per post. This 
metric could be corrected with a semantic analysis of the relevance of responses. 
Subjective measures should also be considered, such as comments on the quality of a 
contribution that the site records explicitly, as different types of ratings, which can be 
internal to the forum, or external, i.e., stored by sites that aggregate and rate other 
sites’ news. Numerous time-dependent measures of reputation could also be defined, 
for example along the timeliness dimension, by considering metrics such as the 
frequency of update of a site, its age, etc. 

Behind assessing the reputation of the information sources, the broker must be able 
to evaluate the quality of the mashup components that must provide access to the 
information source in the self-service environment, also trying to assess the overall 
quality of possible integrations of multiple components. For this purpose, quality 
criteria for the different aspects of traditional software applications already proposed 
in the literature can be exploited, but the adaptability and dynamicity that characterize 
the mashup ecosystem require a separate and focused analysis. In fact, mashups 
integrate heterogeneous components available on the Web, such as RSS/Atom feeds, 
Web services, wrapped content or programmable APIs (e.g., Google Maps). It is self-
evident that the quality of the final combination is strongly influenced by the quality 
of each single component. If we look at components as standalone modules, then we 
can say that their quality is determined by the attributes that traditionally characterize 
software quality. However, it is necessary to consider that the publication of mashup 

ComposableWeb'09

15



components through APIs hides their internal complexity and, therefore, also their 
internal details. Given that from the outside component-internal properties cannot be 
assessed, a novel quality model is required in order to characterize an “external” 
quality model. Selected quality attributes should be able capture the specific 
requirements deriving from the components' intended use, i.e., their combination 
within mashups. In fact, after a component has been deployed, external quality factors 
are the only criteria able to drive the evaluation of its suitability into mashup 
compositions. We have already defined a preliminary model of external quality to fill 
the literature gaps discussed above [4]. Further work is however needed to extend the 
broker for the coverage of such new quality requirements. 

5   Self-Service Environments 
Mashups are innovative applications that create new value out of the services they 
integrate, in that they combine them in a novel, value-adding manner and thereby 
provide a functionality that was not there before. A variety of mashup tools (e.g., 
Yahoo Pipes, Google Mashup Editor, Intel Mash Maker, Microsoft Popfly, and IBM 
QEDWiki - now part of IBM Mashup Center) have recently emerged. Their principal 
goal is to facilitate the combination of components via simple, graphical user 
interfaces, sets of predefined components, and abstractions from technicalities. 
However, they all assume the existence of ready-to-use components published on the 
Web, while they neglect the ensemble of issues related to the creation and selection of 
trusted components. 

Our research project will exploit the availability of a consolidate mashup 
environment, Mixup [8], which supports the fast development of Web applications 
based on the mashup of UI components. The distinguishing characteristic of Mixup is 
that it focuses on the integration of components at the presentation layer, leaving 
application and data management logic inside components. It also makes use of 
component and composition models that are inspired by the research on Web services 
and the service-oriented architecture (SOA). The component model specifies the 
events that a component can generate and that communicate to the outside world 
changes in the internal state. It also specifies the operations which enable the outside 
world to modify the internal state of a component. Given such abstract component 
description, the composition logic is then described through an event-driven 
composition model, where events from one component may be mapped to operations 
of one or more other components; mappings are expressed by means of so-called 
listeners. In addition to the direct mapping of events to operations, listeners also 
support data transformations in form of XSLT transformations, and the specification 
of more complex mapping logics via inline JavaScript. The definition of listeners 
represents the composition logic, while the layout of a composite application is 
specified by means of a suitable HTML template that contains placeholders, which 
can be used at runtime to embed and execute components, thereby re-using their UIs. 

Within this project, we will exploit Mixup as the basic engine for allowing users to 
mashup their self-service environment. The new issues to be investigated are related 
to the componentization of trusted services. We want to define some techniques to 
turn services providing dependable information (Web services, data services, but also 
Web applications publishing relevant and trusted information) into components for 

ComposableWeb'09

16



mashup combination. In [5], we already investigated a technique for turning Web 
applications into mashup components. The idea is that the HTML of generic 
(dynamic) Web pages can be augmented with annotations for event and operation 
tagging and combined with a descriptor specifying such events and operations. A 
wrapper then provides programmatic access to the application, i.e., an API. Under 
particular conditions, both the descriptor and the wrapper can be automatically 
generated from the HTML tags.  

We expect to further improve the previous results by introducing techniques for the 
componentization of generic Web and data services. Such may require mechanisms 
for the automatic selection of visualization widgets suitable for rendering the service 
data. Based on the semantic description of services, suitable UI widgets are used to 
display the data (e.g., a regional map is used to display postal addresses, 2D graphs 
are used to display historical financial data, graphs with nodes and arcs are used for 
depicting social networks). For this purpose, a registry of UI widgets, together with 
their semantic descriptions, will be designed and implemented. This feature, which 
will go beyond the provision of a mere Web programming environment exploiting 
ready-to-use components, is to our knowledge still unexplored. 

6 Conclusion and Future Work 
This paper has presented some ideas about a new research project that deals with the 
construction of self-service environments for the access to dependable information 
services. We are now working at the platform development, acting on two different 
fronts that reflect the two fundamental themes also discussed in this paper. On the one 
hand we are extending the quality broker with techniques for reputation assessment 
and for the assessment of the quality of mashup components [4]. On the other hand, 
we are developing an environment for the easy creation of mashup components, based 
on an automated technique for user interface construction. Our research is still in its 
infancy. However, given the recent trends in Web information access, we believe it is 
very promising and we hope to get soon sound results. 

References 
1. Ardagna, D., Cappiello, C., Comuzzi, M., Francalanci, C., Pernici, B.: A broker for 

selecting and provisioning high quality syndicated data. In: 10th International Conference 
on Information Quality (ICIQ 2005), pp. 262-279, MIT Press, Boston, 2005. 

2. Ardagna, D., Cappiello, C., Francalanci, C.: Reputation-based brokering of multisource 
data. Technical Report n. 12/2009, DEI - Politecnico di Milano, Jan. 2009. 

3. Batini, C., Cappiello, C., Francalanci, C., Maurino, A.: Methodologies for data quality 
assessment and improvement. ACM Comp. Surveys, 41(3), Sept. 2009. 

4. Cappiello, C., Daniel, F., Matera, M.: A quality model for mashup components. Proc. of 
ICWE 2009. 

5. Daniel, F., Matera, M.: Turning Web applications into mashup components: issues, models 
and solutions. Proc. of ICWE’2009. 

6. Ennals, R. Garofalakis, M.N.: MashMaker: Mashups for the Masses. Proc. of SIGMOD 
2007, pp. 1116-1118. 

7. Murugesan, S.: Understanding Web 2.0. IT Professional, 9(4), pp. 34-41, 2007. 
8. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A framework for 

rapid integration of presentation components. Proc. of WWW 2007, pp. 923-932, 2007. 

ComposableWeb'09

17



User Profile Elicitation and Conversion in a Mashup 
Environment  

Erwin Leonardi1, Geert-Jan Houben1,2, Kees van der Sluijs2, Jan Hidders1, 
Eelco Herder3, Fabian Abel3, Daniel Krause3, Dominikus Heckmann4 

 
1 Delft University of Technology, PO Box 5031, 2600 GA Delft, the Netherlands 

{e.leonardi, g.j.p.m.houben, a.j.h.hidders}@tudelft.nl 
2 Technische Universiteit Eindhoven, PO Box 513, 5600 MB, Eindhoven, the Netherlands 

k.a.m.sluijs@tue.nl 
3 L3S Research Center, Appelstr. 9a, 30167 Hannover, Germany 

{herder, abel, krause}@l3s.de 
4 German Research Center for Artificial Intelligence, Saarbrucken, Germany 

heckmann@dfki.de 

Abstract.  Many Web applications have offered personalization and adaptation 
as their features in order to provide personalized services to their users. The 
user profiles are gathered independently by these applications often through an 
explicit dialogue with the user. As a result, the users have to go through a 
similar elicitation process multiple times, that is, providing similar information 
that is used to build the user profiles to different applications.  In the springtime 
of mashup applications, we observe the importance of considering user 
information in order to make the presented content more relevant to the user. 
For this purpose, it is necessary to have a platform/framework that enables 
components in the mashup to reuse and exchange user profiles. In this paper, 
we present the Morpho framework that elicits, enhances, and transforms a user 
profile from one application to another application in a mashup environment. It 
deals with semantic and syntactic heterogeneity of data and schema of the user 
profile. We present the architecture of Morpho and a case study to exemplify 
the approach followed in this current work. 

Keywords:  user profile, interoperability, mashup 

1   Introduction 

With the evolution of the Web, Web applications have become more complex and 
offer their users many interesting and advanced features. Adaptation and 
personalization become important features of today’s Web applications. In order to be 
able to adapt and offer personalized contents for a specific user, a Web application 
must have enough information about this user. This information can be gathered 
explicitly and implicitly. The explicit approach is by asking directly to the user, for 
example, by using a survey form or by asking the user to give ratings to certain 
products, thus building up a user profile. In the latter approach, the Web application 
monitors the behaviors of the users while the users use the application in order to 
construct a user model fitting with the goal of the application. 

ComposableWeb'09

18



Parallel to the growing of the Web, the number of Web applications offering 
various services has also increased significantly. Consequently, Web users may be 
using more than one application that offer different products/services, and keep 
adding new applications. Each of these applications independently asks for the user 
profiles of its users that are used to provide personalized contents and services. They 
do not share or learn from one another. This leaves no choice for the users but to go 
through the same process again and again. That is, the users have to, for example, fill 
in different questionnaires for different applications or rate products until the 
applications have enough information to describe their interests. This can be a 
cumbersome thing to do for many users and something for which support to help 
them in constructing these profiles is welcome. 

Nowadays a new breed of Web applications called mashup has been deployed in 
several areas and increasingly becomes more popular. A mashup combines data from 
two or more sources into a single integrated tool. The data that originally belongs to 
other Web applications is blended in order to provide enriched user-oriented contents. 
Note that the Web applications from which a mashup tool fetches data may have their 
own specific ways to describe information about their users. We suggest that by 
considering information about a user we can have a better mashup - a mashup that 
provides more relevant contents for the user. In addition, the sharing of user profiles 
facilitates a better integration and cooperation between underlying applications in the 
mashup. For example, consider a mashup Web application named BookTour1 that 
combines Google Earth2 and Amazon3 to show book tours happening around the 
world. It would be more relevant and interesting for a user if BookTour shows only 
the events that are related to, for example, favorite authors of this user based on the 
books in Amazon that he/she buys and rates. So, BookTour uses what it knows about 
the user to ask more specific queries to Amazon resulting in more relevant 
information from Amazon. Observe that a user may only use several applications 
provided in a mashup, but never uses the rest of the available application. This causes 
the absence of a user profile in some of these applications. Consequently, these 
applications may not be able to provide customized and personalized contents for this 
user. The challenge is to develop a mechanism to reuse the information about a user, 
which is originally from one application, for another application [1,2]. We refer to 
this as user profile interoperability. 

One technique for user profile interoperability is by using a unified (central) model 
that serves as a predefined structure and is easily exchangeable and interpretable 
[1,11].  However, it is impractical to force Web applications to use a unified model 
because the Web is an open and dynamic environment [3]. A more flexible alternative 
approach is to provide a framework that elicits the data in the user profile of one 
application and transforms it into a user profile of another application. Thus the 
mashup can use the profiles to retrieve more relevant content from the underlying 
applications. If we do this integration by exploiting Semantic Web techniques, it can 
be flexible because the applications do not need to follow a fixed model for their user 
profile. This technique raises some main challenges, that is, to deal with semantic and 

                                                           
1 http://www.booktour.com/ 
2 http://earth.google.com/ 
3 http://www.amazon.com/ 

ComposableWeb'09

19



syntactic heterogeneity of data and schema of the user profile. The flexibility offered 
by this approach has a trade-off. The main advantage is that the “glue” that the 
mashup represents can be applied more precisely and that the connection between 
mashup and base applications works at an increased relevance level. However, in 
many situations (especially when starting the use of an application at the-so-called 
cold start [20]) an increase in relevance is welcome. Of course, a transformation of 
profiles will not be perfect as it may lead to the possibility of losing data during 
transformation process. It is also possible that the transformation cannot be made 
because the model is simply incompatible.  

In this paper, we propose a framework (called Morpho) that aims at eliciting the 
user profile of an application and transforming it to the one of another application. It 
is a part of our User Pipes project that aims to allow user profile reasoning by 
mashing up different user profile data streams. It can be used as a component in a 
mashup application to ensure user profile interoperability and sharing between other 
mashup components. It deals with semantic and syntactic heterogeneity of user 
profiles and ensures the interoperability of user profiles of different applications. In 
addition, it is configurable and extensible as the mashup application administrators 
(the administrators) are able to specify a configuration by which elicitation and 
transformation processes are guided. Note that this framework works with the 
assumption that user profile data can only be accessed and exchanged with explicit 
consent of the owner. This assumption is important because the privacy issue is 
critical for user profiles and modeling [4]. As Morpho can be used as a component in 
a mashup application, the explicit consent given by the mashup application users (the 
end-users) to the mashup application is also given to Morpho. 

This paper reports on our ongoing work related to Morpho and User Pipes and it is 
structured as follows. In Section 2, we present related work. Section 3 presents a 
motivating case study that is used as running example in the discussion. Section 4 
discusses the architecture of the Morpho framework and elaborates on user profile 
elicitation and transformation. Finally, Section 5 concludes the paper by highlighting 
some future directions of this research. 

2   Related Work  

To address the user profile interoperability there are basically two approaches: the 
shared format approach and the conversion approach. In the shared format approach, 
a common language for a unified user profile (a lingua franca) is needed. 
Applications have to follow the unified format [13]. Examples of this approach are 
the General User Model Ontology (GUMO) [1] and Composite Capability/ Preference 
Profiles (CC/PP)4. This approach is easily exchangeable and interpretable as there is 
no syntactic and semantic heterogeneity issue to be addressed [1]. However, this 
approach is not suitable for open and dynamic environments, such as the Web, as it is 
impractical and in many cases impossible to enforce Web applications to follow the 
lingua franca [3]. The conversion approach is more flexible and suitable for open and 

                                                           
4 http://www.w3.org/Mobile/CCPP/ 

ComposableWeb'09

20



dynamic environments [14]. In this approach, a technique has to be developed for 
converting a user profile of one application to another application. The developed 
technique should deal with the problem of syntactic and semantic heterogeneity. 
Observe that potential drawbacks of this approach are that it is possible that some 
information is lost during the conversion process, and that it is possible that models 
are simply incompatible. This means that there is no suitable mapping for these 
models. It is also possible that the mappings are incomplete because required 
information in one model is not available in the other model. 

Mashing up data and tools into one integrated tool has become increasingly 
popular recently [15, 16, 17]. One work in the mashup related environment that is 
closely related to our research is presented in  [18, 19]. In [18,19], Gosh et al. present 
a framework called SUPER (Semantic User Profile Management Framework) for 
capturing and maintaining user profiles using semantic web technology in the retail 
domain. SUPER aggregates user profile information that spreads over several 
services/data sources.  

There is a host of related work about user profiling and about mashup that could be 
discussed; however, we do not discuss this in this workshop paper. 

 

 
 

Figure 1: The PowerMash Application 

3   Motivating Case Study 

In this section, we present a case study to exemplify our approach discussed in the 
subsequent sections. Consider an end-user named Andrew that uses a mashup 
application called PowerMash as shown in Figure 1. Two of the underlying 
applications are Del.ious.us5 and Facebook6. Suppose Andrew has used Del.icio.us to 
bookmark web pages that are interesting for him. He has a Facebook account; 
however, he has not filled up many parts of his Facebook profile. PowerMash uses the 
Morpho framework as its component for user profile elicitation and transformation. In 
this scenario, the challenge is to see to what extent Morpho is able to use Andrew’s 

                                                           
5 http://delicious.com/ 
6 http://www.facebook.com/ 

ComposableWeb'09

21



bookmark entries in Del.icio.us to help him enhance his Facebook profile as much as 
possible. 

Figure 2 depicts three bookmark items of Andrew. Each bookmark item in 
Del.icio.us contains fields of information about creation date, URL, title, 
note/description, and tags for the bookmark item. The URL field identifies the 
resource location (or web address) of a bookmarked web page. The title field stores 
the title of a bookmarked web page. A user may write additional description or 
information about the web page. This information is maintained in the note field. Tags 
are typically one-word descriptors that a user can assign to his/her bookmarks to help 
him/her organize and remember them. Each bookmark item can have many tags and 
they do not form a hierarchy.  Note that the note and tags are optional. Consider the 
third bookmark item shown in Figure 2. This bookmark item was created on 8 April 
2009 and has URL www.youtube.com/watch?v=73-V2A3NuWo and title 
“Kelly Clarkson – Because of You”. Andrew has put a note “High quality video from 
official Kelly Clarkson channel at YouTube” and given the tags “pop” and “song”. 

For the purpose of enhancing and improving Andrew’s Facebook profile (as much 
as possible), PowerMash employs Morpho to elicit Andrew’s user profile in the form 
of bookmark entries in Del.icio.us and transform them into elements of his Facebook 
profile. In this situation, PowerMash retrieves Andrew’s bookmark entries from 
Del.icio.us. Note that the communications between a mashup application and its 
underlying basae application can be performed by using API, RSS feeds, RESTful 
service, or SOAP service. Since Morpho is for user profile elicitation and 
transformation, the way a mashup application retrieves and sends data to its 
underlying applications or web services is beyond the scope of our work in this paper. 
Having retrieved Andrew’s bookmark entries, PowerMash sends a request to Morpho 
to transform his bookmark entries into data for his Facebook profile.  

 

Figure 2: Three Bookmark Items of Andrew from Del.icio.us 

4   Morpho Framework 

Figure 3 depicts the architecture of the Morpho framework. Let us first give the 
overview of the modules in the framework. We will elaborate them in details in the 
subsequence sections. As the name suggests, the Interface module manages the 
interactions between the framework and a mashup application, in our case, 
PowerMash. It allows the mashup to submit inputs to the framework and to receive 

ComposableWeb'09

22



the converted user profiles produced by the framework. Next to the Interface is the 
Controller module that serves as the main controller of the framework. The Model 
Builder module processes the source user profile (in our case, Andrew’s bookmarks) 
and maps it into a corresponding internal conceptual model using a set of mapping 
rules. Then, it generates RDF based on this conceptual model, and stores it in the 
User Profile Repository. A set of concepts has to be extracted from the source user 
profile. Extraction is necessary because the content of a user profile is typically text 
that is meaningless for machine. The Concept Extractor performs this task by using 
available knowledge bases, in our case, DBpedia. The conversion of a source user 
profile to a target user profile takes place inside the Interoperability Engine. This 
engine measures the distance between the concepts in the source user profile and the 
concepts related to target user profile schema. Finally, the Result Builder generates 
the user profile of the target application. To simplify the discussion in our running 
example we consider only to fill up the ‘favorite music’ field of the Facebook profile. 

 

 
 

Figure 3: The Architecture of Morpho 

4.1   Controller 

After the mashup application sends the necessary input to the framework via the 
Interface, the Controller starts its task of managing the elicitation and transformation 
of user profiles. All inputs received from the mashup, except the configuration, are 
fed to the Model Builder. The configuration is sent to the Customization Controller. 
In some cases, the source and target applications are from the same application 
domain. For example, the source and target applications can be both social network 
sites. If the Controller detects such cases, several steps can be skipped. Let us 
elaborate further on this. Suppose the source application is Facebook and the target 
application is Hyves7. A set of mapping rules transforms a profile from Facebook into 
RDF based on Morpho internal conceptual model for social network sites. Then, this 
RDF is mapped into Hyves profile using another set of mapping rules that is 

                                                           
7 http://www.hyves.nl/ 

ComposableWeb'09

23



specifically used to transform Hyves profile into Morpho internal conceptual model 
for social network sites and vice versa. Observe that even though two applications 
from the same application domain share the same Morpho internal conceptual models, 
the user profile transformation among them will not be perfect as during 
transformation process it is possible to lose data. It is also possible that required 
information in target profile is not available in the source profile. 

4.2   Model Builder 

The main task of Model Builder is to parse and map the source user profile to a 
specific internal conceptual model in Morpho, and to transform this user profile into 
RDF based on this internal conceptual model. The mapping functionality is 
application specific. This means that for a particular Web application a set of mapping 
rules has to be defined. The internal conceptual model is domain specific. We use the 
same internal conceptual model for all applications that belong to the same 
application domain. For example, if the source application is a social network site, 
then the internal conceptual model can be based on the OpenSocial/RDF8 and FOAF 
specification9. Another example is that for bookmark data, we use our internal 
bookmark conceptual model that is inspired by the Annotea Bookmark Schema10. In 
our running example, the Model Builder transforms Andrew’s bookmarks depicted in 
Figure 2 into RDF as follows: 

 
<rdf:RDF ... > 
  <morpho:Bookmarks> 
    <morpho:hasItem rdf:resource="Bookmark_1" /> 
    ... 
  </morpho:Bookmarks> 
  <morpho:Bookmark rdf:ID="Bookmark_1"> 
    <a:created>2009-04-08T09:54:49+0100</a:created> 
    <dc:title>Kelly Clarkson - Because Of You</dc:title> 
    <dc:description>High quality video from official Kelly  
         Clarkson channel at YouTube</dc:description> 
    <b:recalls>http://www.youtube.com/watch?v=73-V2A3NuWo</b:recalls> 
    <a:hasAnnotation>pop</a:hasAnnotation> 
    <a:hasAnnotation>song</a:hasAnnotation> 
  </morhpo:Bookmark> 
  ... 
</rdf:RDF> 

 
 In addition, the Model Builder also builds an RDF model for the target user profile 

based on the target application and annotates it with default pre-defined related 
concepts. For instance, the property ‘music’ in the social network conceptual model 
that describes the user’s favorite music is annotated with the DBpedia concept labeled 
‘music’ (e.g. dbpedia:Category:Music). This RDF model acts as the schema for the 
target user profile. Its instances are generated from the source user profile. The 
generated RDF is stored in an RDF repository (e.g. Jena [6] and Sesame [7]).   

                                                           
8 http://web-semantics.org/ns/opensocial 
9 http://xmlns.com/foaf/spec/ 
10 http://www.w3.org/2001/Annotea/ 

ComposableWeb'09

24



4.3 Customization Controller 

Our framework employs various tools or external components that perform certain 
tasks in our modules, namely, in the Concept Extractor and Interoperability Engine 
modules. We shall discuss how these tools are utilized in the subsequent sections. One 
of the important features that we have is to allow the administrators to be able to 
guide how some modules should work by specifying the preferable combination of 
tools and components. For example, an administrator may prefer to aggregate the 
similarity scores that are returned by Levenshtein Distance [7] and Soundex [8] for 
the lexical matching step discussed in subsequent section. He/she might also want to 
specify, for example, which properties should be followed while expanding concepts. 
The Customization Controller takes the preferences and feeds the Concept Extractor 
and Interoperability Engine modules with necessary settings. The administrators do 
not specify their preferences, and then a default configuration is used. 

4.4 Concept Extractor 

The RDF data stored in the RDF repository is still raw and cannot be used directly to 
generate the target user profile. We need to connect this data to the concepts, in our 
case, the DBpedia concepts, such that it is meaningful for the machine. The Concept 
Extractor has to determine a set of concepts out of the RDF of the source user profile, 
in this case, Andrew’s bookmarks. Note that this module is inspired by Relco [9], a 
tool for relating tags to concepts. The Concept Extractor works as follows. 

Firstly, the Concept Extractor finds a set of keywords from the information 
available in Andrew’s bookmark items. The keywords can be discovered using two 
tools for natural language processing, namely, Part-Of-Speech Tagger (POS Tagger)  
[10] and Named Entity Recognition (NER) [11] tools. A POS tagger is a piece of 
software that reads text in some language and assigns parts of speech to each word 
(and other token), such as noun, verb, adjective, etc., although generally 
computational applications use more fine-grained POS tags like 'noun-plural'. NER 
labels sequences of words in a text, which are the names of things, such as person and 
company names. It facilitates the framework to determine, for example, the person 
name. We consider words that are detected as noun and preceded by zero or more 
adjectives as the keywords. In addition, one or more words, which are determined as 
the entity names, are also considered as a keyword. For example, the POS tagger 
assigns parts of speech to each word in the description of the third bookmark item of 
Andrew as follows: 

 
High quality video from official Kelly Clarkson channel at YouTube 
 JJ    NN      NN   IN    NN       NN    NN       NN    IN   NN 
 

There are seven keyword candidates: ‘high quality’, ‘video’, ‘official’, ‘Kelly’, 
‘Clarkson’, ‘channel’, and ‘YouTube’. The NER returns ‘Kelly Clarkson’ and 
‘YouTube’ as possible entity names.  Combining the results of these tools, we have six 
keywords: ‘high quality’, ‘video’, ‘official’, ‘Kelly Clarkson’, ‘channel’, and 
‘YouTube’. Note that another sets of keywords are extracted from URL, title, and tags 

ComposableWeb'09

25



of the bookmark items. We use the instance of the morpho:Keyword class to  describe 
the discovered keywords: 
  
     ... 
  <morpho:Bookmark rdf:ID="Bookmark_1"> 
     ... 
   <morpho:Keyword ID=”Keyword_1”> 
    <morpho:keywordValue>high quality</morpho:keywordValue> 
    </morpho:hasKeyword> 
   <morpho:Keyword ID=”Keyword_2”> 
    <morpho:keywordValue>video</morpho:keywordValue> 
    </morpho:hasKeyword> 
     ... 

 
The next step is to lexically match the discovered keywords from Andrew’s 

bookmarks to a set of candidate concepts from DBpedia. A concept in DBpedia is of 
type skos:concept and usually has a property that describes the label of this concept, 
such as rdfs:label. In some cases, a concept can have multiple labels denoted by, for 
example, skos:prefLabel and skos:altLabel. These properties are in the SKOS 
vocabulary11. These matches give us a set of candidate concepts that may be 
syntactically related to the keywords together with their similarity scores. For 
example, in our running example, the DBpedia concept labeled ‘Video’12 could be a 
good matching for the keyword ‘video’. Observe that the labels that are encoded in 
URIs are also considered [9]. In our implementation, the open source SimMetrics 
library13 is used. This library employs many well-known similarity metrics such as 
Levenshtein Distance [7], Soundex [8], etc. The administrators can choose which 
metrics they want to use and how they are aggregated. The instance of 
morpho:RelatedConcept is used to describe the DBpedia concepts that are related to 
the keywords: 

 
   ... 
 <morpho:Keyword ID=”Keyword_2”> 
  <morpho:keywordValue>video</morpho:keywordValue> 
  <morpho:RelatedConcept> 
   <morpho:extConcept rdf:resource=”DBpedia:Category:Video” /> 
   <morpho:similarityScore>1.0</morpho:similarityScore> 
  </morpho:relatedToConcept>  
  ... 
 

The third step is to find other DBpedia concepts that are semantically related to the 
DBpedia concepts discovered in the previous step. This can be done by following and 
exploiting some properties of the concepts, for example, rdfs:subClassOf, 
skos:related, or skos:broader. The administrator can configure additional properties 
that the framework should follow during semantic structure exploitation. In our 
running example, the concept labeled ‘Video’ is semantically related to the concepts 
labeled ‘Music and video’ and ‘Film’. Thus, they can also be related to the keyword 
‘video’ extracted from Andrew’s bookmarks. These found related concepts can be 
useful and might be a good alternative to the original concepts [9].  The 
morpho:relatedToConcept is also used to the new discovered concepts. The similarity 

                                                           
11 http://www.w3.org/TR/skos-reference/ 
12 http://dbpedia.org/page/Category:Video 
13 http://sourceforge.net/projects/simmetrics/ 

ComposableWeb'09

26



score of these new discovered concepts are based on the similarity score of the 
original concept, but lowered by a configurable reduction factor. 

The previous step might result many related concepts for each keyword. These 
related concepts are ranked according to their similarity scores; however, by knowing 
the properties of the source user profile, the related concepts can be processed and 
refined further. In our running example, we have a set of bookmark items of 
Andrew’s Del.icio.us bookmarks. Each bookmark item maintains information (e.g. 
URL, title, etc.) about one bookmarked website. By knowing this, we are able to 
disambiguate and to better select concepts that are most appropriate for each 
bookmark item. Intuitively, the probability is high that the keywords from a 
bookmark item will relate to concepts that are closed to each other. Consider the third 
bookmark item in Figure 2. For instance, the keyword ‘video’ is related to DBpedia 
concepts labeled ‘Video’, ‘Music and video’, and ‘Film’. However, if we consider 
another keyword from the third bookmark item, for example, keywords ‘pop’ and 
‘song’, then the concept labeled ‘Music and video’ is more appropriate and relevant 
for the third bookmark. Observe that the keywords ‘pop’ and ‘song’ are related to the 
DBpedia concepts labeled ‘Pop music’ and ‘Songs’, respectively. These concepts are 
closer to the concept labeled ‘Music and video’ than to the ones labeled ‘Video’ and 
‘Film’. Note that maximum distance between concepts to be considered as close to 
each other is configurable by the mashup application administrators. 

4.5 Interoperability Engine 

Section 4.4 discussed how the concepts are extracted from the source user profile (e.g. 
Andrew’s Del.icio.us bookmarks). In this section, we elaborate on how these 
extracted concepts are related to the annotated DBpedia concepts in the conceptual 
model of the target user profile (e.g. DBpedia concept labeled ‘Music’ that describes 
favorite music properties in the Morpho internal conceptual model of Facebook).  

The Interoperability Engine measures the distance between the concepts that are 
extracted from the source user profile and the annotated DBpedia concepts in the 
conceptual model of the target user profile. To measure the similarity and relatedness, 
we employ DBpedia Relationship Finder [12] that is able to compute the distance 
between two objects/concepts in DBpedia. In our running example, the 
Interoperability Engine computes the distances between the DBpedia concepts related 
to Andrew’s bookmark items and the DBpedia concepts labeled ‘Music’. The first 
bookmark item in Figure 2 is related to the DBpedia concept labeled ‘Laptops’. 
Recall that the third bookmark item is related to the DBpedia concept labeled ‘Pop 
music’. The path from the concept labeled ‘Laptops’ to the concept labeled ‘Music’ is 
much longer than the path from the concept labeled ‘Pop music’ to the concept 
labeled ‘Music’ and therefore the concept labeled ‘Laptops’ is considered not relevant 
for the concept labeled ‘Music’. Then, the Interoperability Engine establishes link 
between the concept labeled ‘Pop music’ and the concept labeled ‘Music’ using a 
property morpho:isRelevantTo. 

ComposableWeb'09

27



4.6 Result Builder 

In the previous step, a set of concepts that is semantically related to the concepts in 
the target schema has been determined. The Result Builder exploits the morpho: 
isRelevantTo property and maps the target user profile (based on our internal 
conceptual model) to the one of the target application using a set of defined mapping 
rules. In our running example, the concepts ‘Kelly Clarkson’, ‘music video’, and ‘pop 
music’ are relevant for the ‘favorite music’ in Facebook and can be used to enhance it.  

5   Conclusions and Future Work  

In this paper we emphasize the importance of sharing and exchanging user profiles 
between underlying applications in personalized mashup applications. We suggest 
that by considering and sharing information about a user we can have a better mashup 
- a mashup that provides more relevant contents for the user. In addition, the sharing 
of user profiles facilitates a better integration and cooperation between applications in 
the mashup. We also propose a framework called Morpho that is a part of our User 
Pipes project. It is used to elicit a user profile from an application, and transform it to 
a profile for another application. It can be employed as a component in a mashup 
application and helps the mashup to perform user profile interoperability. Also, it is 
extensible and configurable as the mashup application administrator is able to specify 
settings that guide some processes in Morpho.  

In the e-learning domain, in the context of the GRAPPLE project we are also 
working on a framework called GUMF (Grapple User Model Framework) for 
exchanging user model of various e-learning systems. The idea behind GUMF and 
Morpho is similar that is to enable user profile interoperability of various applications. 
However, GUMF is specifically designed and configured for the e-learning domain, 
while we intend to make Morpho applicable for various domains in which lightweight 
composition or mashups are relevant.  

Even though the Morpho framework is able to provide the basic framework for 
user profile elicitation and transformation in the mashup environment, its performance 
depends on the algorithms/tools that are employed. Further evaluation and 
experimentation of the framework has to be done in order to see to what extend-user 
profile elicitation and transformation can be done. In addition, the evaluation has to 
study additional requirements and further extensions of Morpho. Our ongoing 
research on User Pipes also helps us in extending the functionality and portability of 
this proposed framework. For example, we can observe how WordNet can also be 
exploited to determine the semantic relatedness between two terms. Consequently, 
this can be used as an alternative of computing the semantic distance performed by 
the Interoperability Engine. Similarly, using other kinds of natural language tools in 
the Concept Extractor can be beneficial.  

 
Acknowledgements: This work was partially supported by the European 7th 
Framework Program project GRAPPLE ('Generic Responsive Adaptive Personalized 
Learning Environment'). 

ComposableWeb'09

28



References   

[1] D. Heckmann, T. Schwartz, B. Brandherm, M. Schmitz, and M. von Wilamowitz-
Moellendorff. GUMO - The General User Model Ontology. In Proc. of 10th International 
Conference on User Modeling (UM 2005), Edinburgh, UK, Jul, 2005. 

[2] F. Cena and L. Aroyo. A Semantics-Based Dialogue for Interoperability of User-
Adaptive Systems in a Ubiquitous Environment. In Proc. of 11th International Conference 
on User Modeling (UM 2007), Corfu, Greece, Jun 2007. 

[3] T. Kuflik. Semantically-Enhanced User Models Mediation: Research Agenda. In Proc. of 
5th International Workshop on Ubiquitous User Modeling (UbiqUM'2008), workshop at 
IUI 2008, Gran Canaria, Spain, Jan, 2008. 

[4] A. Kobsa. User Modeling in Dialog Systems: Potentials and Hazards. In AI and Society, 
4(3):214-240, 1990. 

[5] B. McBride. Jena: A Semantic Web Toolkit. In IEEE Internet Computing, 6(6):55–59, 
2002. 

[6] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Architecture for 
Storing and Querying RDF and RDF Schema. In Proc. of International Semantic Web 
Conference (ISWC 2002), Sardinia, Italy, Jun, 2002. 

[7] F. Damerau. A Technique for Computer Detection and Correction of Spelling Errors. In 
Communications of the ACM, ACM, vol. 7, no. 3 (1964), 171-176. 

[8] D. E. Knuth. The Art of Computer Programming Volume 3: Sorting and Searching. 
Addison-Wesley (1973), 394-395 

[9] K. van der Sluijs and G.-J. Houben. Relating User Tags to Ontological Information. Proc. 
of 5th International Workshop on Ubiquitous User Modeling (UbiqUM'2008), workshop 
at IUI 2008, Gran Canaria, Spain, Jan, 2008. 

[10] K. Toutanova, D. Klein, C. Manning, and Y. Singer. Feature-Rich Part-of-Speech 
Tagging with a Cyclic Dependency Network. In Proc. of HLT-NAACL, 2003, 252-259. 

[11] J. R. Finkel, T. Grenager, and C. Manning. Incorporating Non-local Information into 
Information Extraction Systems by Gibbs Sampling. In Proc. of the 43rd Annual Meeting 
of the Association for Computational Linguistics (ACL 2005), USA, 2005. 

[12] J. Lehmann, J. Schüppel, S. Auer. Discovering Unknown Connections – the DBpedia 
Relationship Finder. In Proc. of 1st Conference on Social Semantic Web, CSSW2007, 
Leipzig, Sep 24–28, 2007.  

[13]  C. Stewart, A. Cristea , I. Celik , and H. Ashman. Interoperability between AEH user 
models. In Proc. of the Joint International Workshop on Adaptivity, Personalization & the 
Semantic Web, workshop at Hypertext 2006, Odense, Denmark, Aug, 2006. 

[14]  L. Aroyo, P. Dolog, G.-J. Houben, M. Kravcik, A. Naeve, M. Nilsson, and F. Wild. 
Interoperability in Personalized Adaptive Learning. Educational Technology & Society, 
9(2):14-18, 2006. 

[15] Yahoo! Pipes. http://pipes.yahoo.com/pipes/ 
[16]  Mircosoft Popfly. http://www.popfly.com/ 
[17]  Google Mashup Editor. http://editor.googlemashups.com/ 
[18]  R. Ghosh, and M. Dekhil. Mashups for Semantic User Profiles. In Proc. of the 17th  

International Conference on World Wide Web (WWW 2008), Beijing, China, Apr, 2008.  
[19]  R. Ghosh, and M. Dekhil. I, me and my phone: identity and personalization using mobile 

devices, HP Labs Technical Report HPL-2007-184, Nov, 2007. 
[20] H. Guo. SOAP: Live Recommendations through Social Agents. In Fifth DELOS 

Workshop on Filtering and Collaborative Filtering, Budapest, 1997.  

ComposableWeb'09

29



Lightweight Data Integration using the 
WebComposition Data Grid Service 

Ralph Sommermeier1, Andreas Heil2, Martin Gaedke1 

 
1Chemnitz University of Technology, Faculty of Computer Science, Distributed and  

Self-organizing Computer Systems Group, 09107 Chemnitz, Germany 
2Microsoft Research Cambridge, CB3 0FB Cambridge, United Kingdom 

1{firstname.lastname}@cs.tu-chemnitz.de, 2v-aheil@microsoft.com 

Abstract. With the advent of Web 2.0, the user becomes a producer creating 
lots of data by consuming the functionality of the respective Web applications. 
Even though more and more valuable data is created, it is difficult to reuse it 
due to lack of structure. In this paper we discuss easing data integration by 
using the WebComposition Data Grid Service (WebComposition/DGS). Our 
approach separates technology and information space concepts in a flexible and 
extendable component model, which yields simplicity for the end user. The 
model facilitates this by creating, managing and embedding data in different 
formats and representations to their used applications. Furthermore, machine-
readable metadata is implicitly supported and used to link the internal data and 
external data sources together. 

Keywords: WebComposition, Data Grid Service (DGS), Resource Description 
Framework (RDF), Metadata, Representational State Transfer (REST), Simple 
Object Access Protocol (SOAP), Service-oriented architecture (SOA)  

1   Introduction 

A growing number of different data types arise within the scope of Web 2.0 
applications, which yield a lot of interesting information. This information becomes 
even more interesting if multiple data sources are linked together. The power of 
linked data highlights more intriguing information [1], [2]. The current problem lies 
in the re-usability of this data. To address this issue, it is required to implement at 
least one interface for each data source. Obviously, this implementation is time 
consuming and costly thereby making the linking of different data sources hard to 
realize. The WebComposition/DGS approach addresses this issue by simplifying 
writing and reading data as produced or consumed by a Web 2.0 application [3], [4]. 
This approach enforces concepts of meaningful URIs [5], [6] when creating 
information spaces by allowing all data to be implicitly addressed by URIs. Beyond 
that, the WebComposition/DGS natively supports Resource Description Framework 
(RDF) statements related to these data objects so that they can be annotated with 
metadata described in a machine-readable format. 

 

ComposableWeb'09

30



In section 2 we examine the state of the art influencing our research. Section 3 shows 
our approach divided into three subsections. These describe the supported protocols, 
data formats and data referencing mechanism in the information space concept. In 
section 4 we discuss our experience with the implementation of components around 
the WebComposition/DGS to gradually compose and integrate data. Finally, section 5 
summarizes our work with a view on future research activities. 

2   State of the Art 

Many Web 2.0 applications are valuable data silos that mostly provide the 
corresponding data in very simple formats. This data can usually be accessed for 
reading by transfer or transport protocols. Often Web 2.0 applications even provide 
ways for adding and updating data. However, the data is mostly bound within the 
Web 2.0 application and linking the data in the Web is in most cases very difficult as 
the data is often not systematically addressable by any URI. In fact, the data produced 
by its users and held by the Web 2.0 application is its sole asset, distinguishing it from 
other business rivals. As such, major engineering challenges address the question of 
how to access data in such silos by using the “best” protocol for reading and writing it 
in a systematic way. In addition, simplicity in “working” with the data, i.e. the data 
formats, and its corresponding metadata is another challenge to be addressed in the 
context of the Web 2.0 domain and in the context of systematically integrating data. 

 
Protocols. Protocols, within the context of Web 2.0, are usually built on the 
Hypertext Transfer Protocol (HTTP). They define a set of rules which allow different 
components of a Web application to communicate with each other. To integrate each 
other’s data, each of the participating components must be capable of understanding 
the particular protocol and is, as such, limited to the protocols it supports.  

The Atom Syndication Format (ATOM) [7], [8] defines a format based on the 
Extensible Markup Language (XML), using HTTP for publishing and editing data of 
related resources. ATOM is a well adopted format for aggregating data mainly used 
by weblogs and wikis providing data through feeds. However, the capability of the 
ATOM format for writing, modifying and deleting data is barely used. While the 
format itself is extendable, there is no support for serving multiple representations of 
a resource. Consequently, the potential consumers integrating data using the ATOM 
format are forced to support the particular representation. 

The Google Data APIs [9] provide simple protocols for reading and writing data on 
the Web, based on the Really Simple Syndication (RSS) and ATOM formats. The 
four basic functions Create, Read, Update and Delete (CRUD) for working with data 
[10] are fully supported through an interface using HTTP. Metadata is provided in the 
form of additional feeds containing referential information using, for example, the 
Google Base schema. However, this strategy is limited in terms of the fixed semantic 
information provided by the metadata feeds. This is an issue the Semantic Web [11] 
aims to solve: data integration and interoperability. 

Less data centric protocols include the Simple Object Access Protocol (SOAP) and 
XML Remote Procedure Calls (RPC). These protocols are not limited to the use of 
HTTP and can be applied on top of different transport or transfer protocols. They do 

ComposableWeb'09

31



not focus on the resource as the primary unit and are often used on a procedural 
oriented data exchange. By calling business logic SOAP and RPC provide high 
flexibility in terms of data exchange, however, they are often used in ignorance how 
the underlying protocols (for example HTTP) work.  

 
While HTTP as a protocol has many advantages, it becomes evident that a solution to 
the data silos challenge requires not supporting one sole protocol, but as many 
different protocols as possible. 

 
Data Formats. Plenty of data exists on the Web – data, which could be shared or 
linked together. However, data in the context of Web 2.0 is mostly under the sole 
control of the particular Web application and stored in application-specific formats. 
Limited access to this data or even just subsets of this data is provided only through a 
small number of restrictive protocols including those described previously. Examples 
are, the common classical Web 2.0 services for sharing movies (www.youtube.com), 
pictures (www.flickr.com), private information (www.myspace.com) or private 
experience and knowledge (www.ciao.com).  

Weblogs provide chronologically ordered data, consisting of entries and different 
views (e.g. by topic) on the data. Wikis provide data with extensive change histories 
and references to data items that even do not yet exist. Both solutions store their data 
in platform and vendor specific formats, barely able to exchange. Limited access to 
the data is often provided using the ATOM or RSS format only. Nevertheless, for 
writing and modifying the data, the standardized capabilities of these protocols are 
ignored. Instead, dedicated programming interfaces are offered to access identical 
functionality. First attempts to establish standardized formats to interchange data 
between different platforms exist [12] but are not yet recognized by a wider 
community.  The community of DBpedia [13], for example, currently extracts data 
from various sources, changing this unstructured data into a machine-readable format 
according to linked data principles [14]. 

 
It becomes evident that the simple formats and restrictive mechanisms of these 
different approaches need to be supported by a solution for integrating as well as 
annotating this data. As such, a mix of simple data structures and more sophisticated, 
dedicated data structures, that facilitate reuse and annotation, is needed. We believe 
that this is a mix of application-specific data structures, usually based on XML, and 
RDF for annotating the application-specific data. 

3   The WebComposition/DGS Information Space 

The WebComposition/DGS addresses the proposed approach by adopting a local 
concept of the global information space. This information space enforces the co-
existence of data and corresponding metadata using the abstract components of 
containers, information stores and information items. Each addressable by a distinct 
URI to integrate all provided data and metadata within the global information space. 

 
 

ComposableWeb'09

32



Each WebComposition/DGS is accessible via a dedicated URI that identifies the 
service as a resource containing so called information stores. These information stores 
are accessible through nested URIs of the superjacent WebComposition/DGS 
container. Each information store in turn contains information items which can be 
addressed by a nested URI and extended by a user-defined path segment. The 
proposed solution provides the automatic creation of URIs in the information space 
every time a new information store or item is added. Fig. 1 depicts the composition of 
these URIs in the information space. 

 
Fig. 1. Information space concepts within the WebComposition/DGS. 

For each information store and item a corresponding store for metadata is maintained, 
which is referred to by extending the information space’s URI with the additional path 
segment /meta. This metadata describes the information store with all the relevant 
information semantically describing the data itself. The clear separation of data and 
metadata allows Web applications to easily access the data using simple protocols and 
mechanisms. Furthermore, the store for metadata stories is understood as a resource 
itself and can be addressed by its URI. Accordingly, data or metadata can be 
requested separately or be combined in terms of linked data [15]. 
 
Information Space. Each component within the local information space is addressed 
by its unique URI. Each sub-path of any particular URI, combined with the given 
authority, denotes a distinct URI identifying a unique resource within the path 
hierarchy thereby creating Semantic URIs [16]. Any resource within this information 
space is identified by its URI and the local information space in Fig. 1 (i) is spanned 
by one WebComposition/DGS container incorporated into the global information 
space of the World Wide Web in Fig. 1 (ii). 
 

i   Local Information Space

WebComposition/DGS Container
http://vsr-data.informatik.tu-chemnitz.de/datagridservice

Information Store
http://vsr-data.tu-chemnitz.de/datagridservice/people

Information Store
http://vsr-data.tu-chemnitz.de/datagridservice/news

Information Item
http://vsr-data.tu-chemnitz.de/datagridservice/people/sommermeier

Information Item
http://vsr-data.tu-chemnitz.de/datagridservice/people/gaedke

Meta data of Information Item
http://vsr-data.tu-chemnitz.de/datagridservice/people/sommermeier/meta

Meta data of Information Store
http://vsr-data.tu-chemnitz.de/datagridservice/people/sommermeier/meta

ii   Global Information Space

ComposableWeb'09

33



Container. The WebComposition/DGS service instance provides basic functionality 
to store, manipulate and easily query resources. The service is understood as a 
container comprising the functionality to be applied to the enclosed resource. 

 
Information Store. The information store is a logical concept containing a set of 
related resources. Depending on the applied technology, the information store could 
be understood as a list, XML file, database or similar. Different implementations of 
information stores can be hosted within a single container at the same time. It is 
important to point out that the underlying technology and its evolution are transparent 
to the consumer of the service and do not affect the data integration. 
 
Information Item. Information items represent the actual resources stored in an 
information store. Information items could be described in XML, a row in a relational 
database table, a file or an element out of a list. On a logical level, information items 
could even contain further information stores. 
 
All components introduced so far outline the fundamentals of an easy data integration 
process. Besides the standard representation of data using XML, unstructured data, 
even binary data, is supported in the actual implementation. Enforcing a strict policy 
of how URIs are generated within the WebComposition/DGS results in any stored 
information, as well as its corresponding metadata, to be addressed by a dedicated 
URI. The possibility to access any data and metadata without exception is the 
fundamental concept that allows us to perform a standardized data integration 
lifecycle within the WebComposition/DGS. 

4   Data Integration Lifecycle 

One outstanding engineering challenge to overcome is to simplify handling data used 
by different types of common protocols in the context of Web 2.0. A data referencing 
mechanism is required for automatically creating data URIs for each information 
store, or item, which support the principles of linked data. 

 
Data Referring. As information items are not necessarily bound by any entity (e.g., 
in form of a file), it is not possible to refer them natively by any URI. Therefore, the 
WebComposition/DGS provides the capability to create user-defined URIs by 
applying URI templates [17]. The URI of the information item’s superordinate 
information store is extended with a path segment, which maps to any key that 
uniquely identifies the item within its native representation. This could be a primary 
key within a database, a line in a text file or a certain tag within an XML file. Similar 
to the information store’s implementation this mechanism is transparent to the 
consumer of the service, which solely makes usage of the corresponding URI to 
integrate the corresponding data. 

When using XML as a data format, we can make explicit use of XPath queries to 
retrieve a particular information item. The XPath query is mapped to the 
corresponding URI template and saved as metadata for the information store.  Fig. 2 
depicts the representation of a resource representing a person as XML using a Telnet 

ComposableWeb'09

34



session to visualize the integration of the HTTP protocol and different content types. 
Fig. 2 (1) shows the execution of a HTTP GET to an information store accepting the 
content type text/xml request and the resulting XML data.  

 
Fig. 2. Data referring using content negotiation. 

Fig. 2 (2) shows the execution of a HTTP GET request to the same information store. 
However, here the difference is the accept header of application/rdf+xml. The 
resulting response provides a friend of a friend (FOAF) [18] resource (which is a RDF 
graph) and contains machine-readable data to be used in terms of linked data. The 
same result can be retrieved by adding /meta to the original URI of the request 
without specifying the accept header. This allows the human user to retrieve the same 
representation of the data using a convenient mechanism. This mechanism, however, 
is not restricted to those two content types. Additional components can be 
implemented and specified to handle further representations of a resource. This 
characteristic is a fundamental capability to serve as many different data integrators as 
not all of them are capable of dealing with a single data format (cf. section 2). 
 
Data Integration. The Telnet example above shows the technical realization of the 
data referencing mechanism using simple HTTP requests. The creation of information 
stores and information items, however, is not very convenient using these 
technologies. Data integration is more than simply providing structures of arbitrary 
data on the Web. Combining data from different sources as well as providing the user 
with a unified view of this data is an essential part of the data integration lifecycle.  

For human use there is still a need for more user-friendly clients. The Telnet way is 
reasonable for demonstration but not for practical use. A dedicated component within 

Content‐Type text/xml1

Content‐Type application/rdf+xml2

ComposableWeb'09

35



the WebComposition approach that addresses this issue is the 
WebComposition/Data Grid Service List Manager (DGSLM). This component, to be 
used in any Web browser allows creating, modifying or deleting data in the 
WebComposition/DGS information space. Using this component, we have the 
possibility to manage our information space via Web browsers without the need for 
programming. The component is build upon the unified interface of HTTP to read, 
write, manipulate and delete data. It uses data structures of information stores to 
dynamically create Web forms based on the metadata of that particular information 
store. Fig. 3 (a) illustrates the DGSLM displaying a list of information items from an 
information store.  

 

 
Fig. 3. Dynamic data integration lifecycle. 

The corresponding responsibility of the WebComposition/DGSLM, is to provide the 
data representation independent from the underlying data structures. Data stored in 
databases, flat XML or binary files can be handled and accessed using a single, 
simple interface. By requesting a particular information item, a corresponding form is 
dynamically created Fig. 3 (b) that allows creating or manipulating new or existing 
information items. 

To support the CRUD methods (cf. section 2) of the WebComposition/DGS, the 
WebComposition/DGSLM offers the complete functionality of HTTP to read, write 
manipulate and delete data. On behalf of the user the application creates 
corresponding HTTP request as defined by the endpoint, while the content of the 
request is dynamically allocated and sent to the WebComposition/DGS. Fig. 3 (c) 

WebComposition/DGSLMa

Representation of Resourcesd

Manipulation of Resourcesc

Dynamic Interface Generationb

ComposableWeb'09

36



depicts representation of the previously created data. Extensible Stylesheet Language 
(XSL) transformations, also stored within the WebComposition/DGS information 
store are used to represent the data, in this example at the Website of the Chemnitz 
University of Technology. 

The DGSLM provides the ability of easily managing information stores. It is not 
limited to a certain information store though. Hence, the WebComposition/DGSLM 
overcomes the typical difficulty of accessing multiple heterogeneous data sources 
from within a single Web application. 

5.   Conclusion and Future Work 

For more than nine months, the WebComposition/DGS service is used in a production 
environment, using real, externally visible data of the research group Distributed and 
Self-organizing Computer Systems at the Chemnitz University of Technology, 
Germany. During this time, the data model was gradually exposed and extended with 
new resources, new representations and new components, according to the emerging 
needs of the group, and demonstrated the DGS’s ability to deal with different 
representations of the data model for maximum reusability. Some parts of it were 
transformed from originally unstructured data, mainly managed with Wiki software 
before. This prior form of managing the data proved to be too hard for integrating and 
consuming outside of the Wiki itself. Therefore, a WebComposition/DGS 
implementation was used to successively expose data in accordance to Web standards 
and the REST principles. Over time, the data of publications, courses, projects, 
student projects and members of the research group were included. The data typically 
contains several hundred entries, describing historical and recent data. In addition, the 
data model was extended several times to accommodate for new information needs, to 
introduce links between different resources and to add new representations. The 
approach of encapsulating technologies in components appears to be an important 
factor for end user support. With the developed system, new data can be created ad-
hoc. It is automatically editable in Web forms, without any scripting or code 
deployment. It can be integrated into Web pages without the need to know the 
involved internal components, transformations, protocols and formats. Whereas in our 
current system XML schemas and XSL transformations need to be specified when 
creating new data, the architecture allows adding more user-friendly components that 
automate this process in the future. The applied components also favor the reusability 
of the resources by automating the process of generating content representations 
according to the content negotiation. On the Website, the data could be integrated at 
multiple locations for realizing different views on it, e.g. on personal homepages, on 
project pages and on central group pages. Furthermore, the study illustrates the 
system’s potential for bottom-up data growth [19]. As demonstrated, components 
were gradually added to the WebComposition/DGS, while the service was in 
productive use, i.e. integrated into the group’s Website. 

Future work includes the development of a publish/subscribe mechanism for every 
information store to support event driven linked data concepts. Another interesting 
open issue is the transparent handling of URIs as references to other data entries or 
machine-readable information on the Web with corresponding user interfaces. 

ComposableWeb'09

37



An online example of the WebComposition/DGS and its corresponding 
downloadable components can be found at http://www.webcomposition.net/dgs. The 
source code is available via http://www.codeplex.com/webcompostition. 

References 

1. Linked Data, http://www.w3.org/DesignIssues/LinkedData.html 
2. How to Publish Linked Data on the Web, http://www4.wiwiss.fu-

berlin.de/bizer/pub/LinkedDataTutorial/ 
3. Heil, A. and Gaedke, M.: WebComposition/DGS: Supporting Web2.0 

Developments with Data Grids. In IEEE International Conference on Web 
Services (ICWS), pp. 212-215. IEEE Computer Society, Los Alamitos 
(2008) 

4. What Is Web 2.0, 
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-
20.html 

5. Cool URIs don't change, http://www.w3.org/Provider/Style/URI 
6. Cool URIs for the Semantic Web, http://www.w3.org/TR/2007/WD-

cooluris-20071217/ 
7. The Atom Publishing Protocol – Requests for Comments: 5023, 

http://www.ietf.org/rfc/rfc5023.txt 
8. The Atom Syndication Format – Requests for Comments: 4287, 

http://www.ietf.org/rfc/rfc4287.txt 
9. Google Data APIs, http://code.google.com/intl/de/apis/gdata/ 
10. Kilov, H.: From Semantic to Object-oriented Data Modeling. In Proceedings 

of the First International Conference on Systems Integration, pp. 385-393. 
IEEE, Piscataway (1990) 

11. W3C Semantic Web Activity, http://www.w3.org/2001/sw/ 
12. Völkel, M. and Oren, E.: Towards a Wiki Interchange Format (WIF) - 

Opening Semantic Wiki Content and Metadata. In First Workshop on 
Semantic Wikis (2006) 

13. DBpedia, http://www.dbpedia.org/ 
14.  W3C SWEO Linking Open Data Community Project 

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOp
enData 

15. Linked Data, http://www.w3.org/DesignIssues/LinkedData.html 
16. Sahoo, S.S., et al.: Knowledge Modeling and its Application in Life 

Sciences: A Tale of two Ontologies. In 15th International Conference on 
World Wide Web, pp. 317-326. ACM,  New York (2005) 

17. URI Template, http://tools.ietf.org/id/draft-gregorio-uritemplate-03.txt 
18. FOAF Vocabulary Specification 0.91, http://xmlns.com/foaf/spec/ 
19. Heil, A., Meinecke, J., and Gaedke, M.: Components for Growing the 

RESTful Enterprise. In Fachtagung Modellierung betrieblicher 
Informationssysteme, pp. 273-283. Springer, Bonn (2008) 

 
 

ComposableWeb'09

38



FREDDY: A Web Browser-friendly Lightweight

Data-Interchange Method Suitable for

Composing Continuous Data Streams

Shohei Yokoyama1, Isao Kojima2, and Hiroshi Ishikawa1

1 Shizuoka University, Japan
2 National Institute of Advanced Industrial Science and Technology, Japan

Abstract. As a remarkable lightweight data-interchange format for use
with web browsers, JSON is well known. Recently, web browsers have
come to support rich applications called Software as a Service (SaaS) and
Cloud Computing. Consequently, data interchange between web servers
and web browsers is an important issue. A singleton, an array, or a nested
object (tree) can be represented by JSON, which is based on a subset
of the JavaScript Programming Language. It is valuable for SaaS appli-
cations because JavaScript programs can parse JSON data without the
need for special programs. However, web browsers and JSON are poorly
designed to address large amounts of data and continuous data streams,
e.g. sensing data and real time data. We propose here a novel data for-
mat and a data-interchange mechanism named ”FREDDY” to address
this deficiency. It is not merely a subset of the JavaScript; it can rep-
resent semi-structured data, just as JSON does. Moreover, FREDDY is
suitable for composing a continuous data stream on web browsers. Using
the small JavaScript library of FREDDY, web applications can access
streaming data via a SAX-style API; it works on all major browsers.
Herein, we explain FREDDY and evaluate the throughput of our im-
plementation. We loaded 400 MByte streaming data using our 5 kByte
library of FREDDY.

1 Introduction

Once it was believed that web browsers were useful merely to display static
pages that web servers would provide one after another. However web pages are
no longer static, as exemplified by Google Maps, which uses dynamic HTML and
Asynchronous JavaScript + XML (Ajax)[15]. Using JavaScript, web pages can
access Web servers, download data, and update pages themselves. This technique
has laid the foundations for next-generation web applications such as SaaS[16],
Web2.0[13], and cloud computing. In this case, the main logic of applications
is partially located on a client side and partially located on a server side. We
will address implementations of web applications with the question of how data
that applications need can be accommodated. JavaScript applications on web
browsers always run inside a security sandbox. Consequently, all data must be
either on primary storage (main memory) of a local computer or on secondary

ComposableWeb'09

39



storage (hard disks) of web servers, which is not of the local computer. That is
to say, data interchange between a web server and a web browser is an extremely
important issue for web applications.

Ajax and JavaScript Object Notation (JSON: RFC4627)[5] are attractive so-
lutions for interchange of data between web servers and web browsers. However,
the combination of Ajax and JSON can download only a chunk of data simulta-
neously. They cannot handle continuous data streams, e.g. sensing data and real
time data. Numerous sensors are installed in devices from toilets to satellites,
but no lightweight integration method exists for handling sensing data on the
Web.

The purpose of this paper is to propose a lightweight data stream interchange
mechanism named FREDDY. Our implementation provides a Simple API for

XML (SAX)[3] style programming. Therefore, FREDDY can accommodate not
only a continuous data stream, but also semi-structured data, equivalently to
XML. Using FREDDY, users can accommodate continuous data streams via a
SAX event handler, which is written in JavaScript.

In this study, we also evaluate the throughput of our implementation of
FREDDY when the application loads a large SAX event stream. The results
of experiments show good throughput, about 1 MByte/s, of data interchange
between a web server and a web browser. However, we do not emphasize the
velocity of data interchange; also, FREDDY is a lightweight method in terms of
the security sandbox of web browsers. The remainder of this paper is organized
as follows. Section 2 expresses an overview of FREDDY. The data format and
our implementations of FREDDY are described in Section 3 and Section 4. In
Section 5, we present our experiments and evaluations. In Section 6, we describe
related works. Finally, Section 7 concludes the paper.

2 Overview of FREDDY

The main contributions (Fig. 1) of this paper are: (a) a lightweight data format
that is suitable for streaming data exchange using only JavaScript, (b) a stream-
ing delivery mechanism on the Web, (c) a lightweight library, whose size is about
5 kByte, to realize SAX-style programming for handling both semi-structured
data and continuous data streams.

Web Browser
Data Source

Web

FREDDY
data

format

SAX
Style
API

Streaming
data

delivery

FREDDY: lightweight data-interchange method

Fig. 1. Software components and data flow of FREDDY and JSON.

ComposableWeb'09

40



Web Browser

Office

Temperature, Motion...

Dam

Weather, Water level...

Factory

NOx, Fire alarm...

XML
Data

Emploee List, 
Data Mining Result,
Output of Web Services...

XML
Emploee List

, 

Computation

FREDDY

FR
ED

DY

FREDDY

FREDDY

FREDDY

FREDDY
FRFRFRFRFRFRFRFRFRFRFREDEDED

DYFR

ED

DY

Logistics

Location, Speed, Vibration...

FR

EDDYDYDYDYDYDYDY

FR

EDDYDYDYDYDYDY Home

Temperature, 
illumination,
Car security...

Mashup!

Continuous Data Stream

Continuous Data Stream

Realtime Data

SAX Event Stream

Fig. 2. Our Goal, Stream Data Mashups using FREDDY.

Figure 2 presents the goal of our research. FREDDY provides a lightweight
JavaScript API that is equivalent to the SAX API of XML document processing.
In fact, SAX API is the de-facto standard API. For that reason, we expect that
many users have sufficient knowledge of SAX. Using the proposed FREDDY,
users can easily develop Web mashups that compose web services to output
continuous data streams. Because space is limited, we have concentrated on data
interchange and have devoted scant attention to how to translate the output
signal of a sensor into our proposed data format.

3 Data model

3.1 Outline of Data Format

The data format for FREDDY, FREDDY Format, can represent both a flat
data stream and a semi-structured data stream. The FREDDY format is simple.
Figure 3 portrays instances of the FREDDY format as an XML tree and a data
stream representation. What the right of that figure readily clarifies is that the
FREDDY format uses function calls written in JavaScript. Each line of FREDDY
data expresses a type of SAX event and its property. We named each function
call event container a generic name.

The main characteristic of the FREDDY Format, contrasted against that of
JSON, is that it is splittable because it is a simple repetition of event containers.
Actually, FREDDY realizes streaming between web servers and web browsers

ComposableWeb'09

41



beer

I like it!

guinness
@label:Extra Stout

guinness
@label:Draught

sd();
s(”beer”);
s(”guinness”,{”label”:”Draught”});
c(”I like it!”);
e(”guinness”);
s(”guinness”,{”label”:”Extra Stout”});
e(”guinness”);
e(”beer”);
ed();

sd();
s(”thermometer”);
s(”temperature”,{”unit”:”Celsius”});
c(”30”);
e(”temperature”);
s(”temperature”,{”unit”:”Celsius”});
c{”28”}
e(”temperature”);
...

thermometer

temperature = 30
@unit:Celsius

temperature = 28
@unit:Celsius

time t

Semi-structured data

FREDDY Format

FREDDY Format

Continuous

data stream

Fig. 3. Examples of semi-structured data representation: the four expressions are mu-
tually equivalent.

Table 1. Event containers

SAX event Usage Event container

XML Document start Data stream start ds();
XML Document end Data stream end ed();

XML Text Node Property c(value);

XML Element start Tuple start s(element-name , attr
†
);

XML Element start‡ Tuple start‡ S(simplified-name, attr
†
);

XML Element end Tuple end e(element-name
†
);

†: optional argument
‡: with simplified element name

by sending and receiving small fragments of all data one by one. Later in this
paper, a more precise account of the split FREDDY format is provided. We now
address the event container in detail.

3.2 Event container

Table 1 portrays a list of all event containers. The events of the XML Docu-
ment start and XML Document end are represented as ds() and de(). The
data stream must start with a ds() event container and end with a de() event
container. The two containers must appear only once.

The second argument of c(...), which represents an XML Text node, is
optional. It is always omitted from the representation of XML Tree because the
XML Text Node has only a value.

The events of an XML Element start and end are represented as s(...),
S(...), and e(...). The argument of e(...) is optional. The element name
is associated with an XML Element start event, which corresponds to that if
no argument is given. The reason is data size reduction. For the same reason,
the second argument of s(...) and S(...), which represents XML Element
Attributes, is optional.

ComposableWeb'09

42



3.3 Compression of verbose elements’ name

Actually, XML is known to be verbose by design[12], particularly in terms of ele-
ments that appear many times. The SAX event stream has the same problem. For
example, bibliographic information of Digital Bibliography and Library Project
(DBLP)[1] has about 2,300,000 <author> tags, about 600,000 <inproceedings>
tags, and about 350,000 <journal> tags.

Efficient SAX event stream interchange must tackle that data verbosity. In
this context, XML compression is an important issue. In addition, XML compres-
sion is our concern: we proposed XML compression according to the simplified
element name[7, 17]. The FREDDY Format tackles XML verbosity using the
method of simplified element names. The reason that two event containers exist
for the XML Element start event is data size reduction.

See Fig. 3. Two <Guinness> tags and two <temperature> tags exist. If
the element name is <a> instead of <Guinness> and <temperature> then
the amounts of data become small. This is the conceptual foundation of the
compression method.

Algorithm 1 shows an algorithm for creation of an XML Element start event
container from the element name. Whenever the parser captures the element
start event, this procedure is called, where input T is a stack of visited element
names and argument name is an element name. The procedure then returns a
simplified element name derived from the original element name.

Algorithm 1: SimplifiedFREDDY(T, name)

procedure GetSimpleName(idx)
X ← [a, b. . .y, z, A,B. . .Y, Z, 0, 1. . .8, 9]
len← LengthOf(X)
if len ≤ idx

then















y ← X[idx%len]
z ← idx/len
return (GetSimpleName(z) + y)
comment: + means connection

else return (X[idx])

main

if T [name].IsExist()

then

{

evtContainer ← ”S(′” + sName + ”′)”
return (T, evtContainer)

else































comment: First appearance of the element

idx← LengthOf(T )
sName← GetSimpleName(idx)
T [name]← sName
evtContainer ← ”s(′” + name + ”′)”
return (T, evtContainer)

ComposableWeb'09

43



sd();
s(”temperature”);
s(”temperature”,{”unit”:”Celsius”});
c(”30”);
e(”temperature”);
s(”temperature”,{”unit”:”Celsius”});
c{”28”}
e(”temperature”);
...

L
o
g
ia

l 
d
a
ta ,{”uni

,{”uni

unit”:

np(1,10);
sd();
s(”thermometer”);
s(”temperature”,{”unit”:”Celsius”});
c(”30”);
e();

Physical data

unit”:”Celsius”});

np(2,10);
S(”b”,{”unit”:”Celsius”});
c{”28”}
e();

Web Browser

page 1

page 2

(1)Request

(2)Response

(3)Request

(4)Response (5)Request....

Fig. 4. Split of FREDDY data.

GetSimpleName(...) function generates the simple name for each new in-
coming element name. The original element name will be replaced with the sim-
ple name whenever this element re-appears later in this XML document. The
original element name itself is kept within the XML document by not replacing
the first entry of this element name.

3.4 Splitting data streams into small fragments

A salient difference between FREDDY and JSON is that FREDDY data can be
split by line into valid fragments, which maintains a subset of the JavaScript
programming language. All lines of FREDDY data are actually a subset of
JavaScript.

Switching our attention to the continuous data stream, the data sources (e.g.
thermometer and NOx sensor, etc.) always output data continuously, but HTTP,
which enables any Web browser to communicate with any Web server, cannot
handle continuous data streams. Therefore, FREDDY can split continuous data
streams into small fragments, named Pages, as physical data.

Figure 4 presents an example of split data. The function-call np(pointer,
sleep-time); in the first line of each Page is a pointer to the next Page.
FREDDY can start downloading the subsequent page when the function np is
called. The Pages are valid JavaScript code. For that reason, the web browsers
can download them dynamically using HTTP.

Actually, FREDDY uses the dynamic <script> tag technique for download-
ing Pages. The dynamic <script> tag technique is a kind of Ajax based on
Dynamic HTML. JavaScript applications can append HTML elements into the
DOM tree of the HTML page. For example, if <img> tag with the src attribute
is appended directly to the inside of the <body> tag of the DOM tree, then the
image that the src attribute refers to is readily apparent. Similarly, using the
dynamic <script> tag, one can access all HTTP-enabled resources.

ComposableWeb'09

44



Page Page

Web Browser

Switch 
every 10 pages

Delete PagesDelete Pages Pagesgesgesges

Flush !

Web Browser

every 10 pag

FREDDY
Library

Page
PagePagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPagPage

Pag
e

Fig. 5. Our client implementation.

4 Implementation

4.1 Dynamic <script> tag

In the following section, we describe our implementation for data interchange
using FREDDY. The SAX-style programming makes only one pass through the
document from top to bottom. For that reason, FREDDY deletes Pages after
execution because they become unnecessary. An important problem was that
web browsers did not release the <script> element from memory even when
FREDDY deleted the element from the DOM tree. For that reason, our imple-
mentation adopts a hybrid of <iframe> and <script> because the web browser
released the tags from the memory of the client PC when FREDDY flushed the
<iframe> element.

Because of the hybrid implementation, FREDDY achieves both lower pro-
cessing costs and higher throughput. Our client implementation is portrayed in
Fig. 5. Actually, FREDDY uses two <iframe> elements alternately. FREDDY
appends <script>, which includes a Page, as a child node of one <iframe> ele-
ment at the beginning. It flushes the <iframe> and switches the other <iframe>
area if the number of Pages containing the <iframe> area reaches 10. Two
<iframe> are used because of the synchronism of the dynamic <script> tag
technique. That is to say, when Pages are appended into a <iframe>, the other
<iframe> element is flushed; then Pages are released from memory simultane-
ously.

4.2 Streaming delivery system

Figure 6 shows how web applications load a data stream over HTTP protocol.
The data interchange between data source and web application consists of the
following four steps:

1. Raw data are translated into Pages of FREDDY format by the gateway
specializing in each data source.

2. FREDDY requests to the data source and receives Pages one by one using
the dynamic <script> tag technique.

3. The downloaded page is executed using a JavaScript engine of a web browser.

ComposableWeb'09

45



Web BrowserServer

Web
Application

SAX APIFREDDY
Library

httpdRaw data to FREDDY
Gateway

Page.1

Page.2

Page.3

Page.1
Event

Event

Event

Event

S
A

X
 E

ve
nt

 H
an

dl
er

Send a page

Send a page

Request of a next page

Split into pages

FREDDY Data

The Internet

e.g. Sensor network
       XML Document

SplSpl

e.g. Sensor network
       XML Document
e.ge.g

Data Source
Event stream

d a pa page

HTTP

Fig. 6. Continuous Data Stream over HTTP.

4. The SAX event is noticed to the user defined event handler. If the function
np(...) is called, then FREDDY requests download of the following Page.

It seems complex, but, in fact, it is very simple for users because the steps
above are hidden by our implementation. Therefore, the web application can
receive a continuous data stream easily via a SAX event handler. Furthermore,
the size of the FREDDY library, which is written in JavaScript, is only 5 kByte
because it is sufficiently lightweight to include into web applications.

4.3 JavaScript SAX API of FREDDY

Next, describing the usage of FREDDY, the FREDDY streaming delivery system
is executed behind the SAX API, so that the SAX API is the only interface for
FREDDY.

The usage of JavaScript SAX API has three steps. The first is creating meth-
ods of the SAX event handler. The name of the method is the same as that of
the methods of Java DefaultHandler class. The next is creating instances of both
the SAX Parser and event handler and setting the handler to the parser. Finally,
execute and start parsing document.

For example, if the events of a documents are counted, then an event handler
can be created, as portrayed in Fig. 7 left. The right part of Fig. 7 shows the
code to count up the events of the data.

This is a general procedure related to all SAX Parsers, so that FREDDY
is not only accessible by web programmers; it is also easily applicable by XML
programmers.

5 Experiments and results

5.1 Dataset and environment

For experiments, we used large-scale data of four XML documents up to 400
MByte. The three small XML documents dataS.xml, dataM.xml, and dataL.xml

ComposableWeb'09

46



01: CountEventHandler.prototype = {
02:   count : 0,
03:   startElement : function(name,attr){
04:     this.count++;
05:   },
06:   endElement : function(name){
07:     this.count++;
08:   },
09:   Characters : function(data){
10:     this.count++;
11:   }
12: };

01: p = new freddy.SaxParser();
02: h = new freddy.CountSaxHandler();
03: p.setSimpleEventHandler(h);
04: p.parse("http://url/of/data/source");

SAX Event Handler

Recieve and parse data stream

Fig. 7. JavaScript code for using FREDDY.

Table 2. Machine environment

Web Server Client A Client B

Hardware IBM ThinkPad X41 Tablet DELL Precision 390
CPU Intel Xeon 2.33 GHz Pentium M 1.6 GHz Core2 Duo 2.4 GHz

Memory 4GB 1GB 2GB
OS Linux (Fedora Core 7) Windows XP Windows Vista

HTTPD Apache 2.2.4

are 1 MByte, 10 MByte, and 100 MByte files created using the xmlgen from
the XMark benchmark project[14]; the biggest XML document is a 400 MByte
DBLP bibliographic information document.

The computers used for the experiments are described in Table 2. We used
two different computers to estimate performance: a desktop computer (Client A)
and a laptop computer (Client B). The client machines and the server machine
are connected via a Giga-bit Ethernet network.

Regarding the case in which FREDDY is used as an intermediate form for
XML handling with a web browser, the system has the following four tiers: (1) a
client machine on which the web browser is running, (2) a web server which hosts
web applications, (3) an SAX event stream-to-FREDDY gateway server, and (4)
a web server which holds XML documents. However, we specifically address the
interchange of FREDDY data between a server and a client. Therefore, the three
servers described above are located on the same server.

5.2 FREDDY vs. JSON

Actually, JSON is well known as a browser-friendly, lightweight data-interchange
format. As described earlier, JSON has a simple structure and great power of
expression, but it has limited scalability. For large amounts of data, it is im-
practical to store all data into main memory using JSON. For this reason, we
propose a novel data-interchange method, FREDDY, which is suitable for use
with large amounts of data. We have performed measurements of FREDDY for
comparison with JSON.

In this experiment, we measured the execution time for loading the whole
XML document of each dataS.xml, dataM.xml, dataL.xml, and dblp.xml using

ComposableWeb'09

47



1

10

100

1000

1 10 100 1000
Size (Mega-Byte)

T
im

e 
(s

ec
o

n
d

)

FREDDY+IE JSON+IE FREDDY+Firefox JSON+Firefox

(a) Client A

1

10

100

1000

1 10 100 1000
Size (Mega-Byte)

T
im

e 
(s

ec
o

n
d

)

(b) Client B

Fig. 8. Execution time of FREDDY and JSON.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Throughput (Mega-Byte-per-Sec.)

J
S

O
N

F
R

E
D

D
Y

(a) Client A

Internet Explorer

Firefox

Internet Explorer

Firefox Slow Fast

dataS.xml (1MB) dataM.xml (10MB) dataL.xml (100MB) dblp.xml (400MB)

dblp.xml
dataL.xml
dataM.xml
dataS.xml

dblp.xml
dataL.xml
dataM.xml
dataS.xml

dataM.xml
dataS.xml

dataM.xml
dataS.xml

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Throughput (Mega-Byte-per-Sec.)

J
S

O
N

F
R

E
D

D
Y

(b) Client B

Slow Fast

Internet Explorer

Firefox

Internet explorer

Firefox

dblp.xml
dataL.xml
dataM.xml
dataS.xml

dblp.xml
dataL.xml
dataM.xml
dataS.xml

dataM.xml
dataS.xml

dataM.xml
dataS.xml

Fig. 9. Throughput (MByte/s) of FREDDY and JSON.

FREDDY and JSON on both Internet Explorer (Microsoft Corp.) and Mozilla
Firefox of the client machines: Client A and the Client B. We used an XML-
to-JSON gateway, which is implemented using IBM[11]. We measured all cases,
which are combinations of 2 clients, 2 browsers, 2 systems, and 4 datasets, 10
times each. In this case, JSON was unable to load dataL.xml and dblp.xml because
the server had exhausted the allowed memory size.

Results of this experiment are presented in Fig. 8 and Fig. 9. Figure 8 shows
the average execution time of FREDDY and JSON. The throughput, the amount
of loaded data per second, is presented in Fig. 9. The results of the experiment
are that, irrespective of data size, the throughput of FREDDY is greater than
that of JSON. We shall next examine the results more carefully.

– Internet Explorer versus Firefox.

We can find no significant difference of loading times between Internet Ex-
plorer (Microsoft Corp.) and Mozilla Firefox, but Internet Explorer (Mi-
crosoft Corp.) sometimes failed to load Pages. Therefore, we developed a
retransmission mechanism for FREDDY.

– Client A versus Client B.

The result of FREDDY shows that Client B is faster than Client A. However,
regarding the result of JSON, we can find no obvious difference between
Client A and Client B. The result suggests that FREDDY is bottlenecked

ComposableWeb'09

48



by CPU power. On the other hand, we infer that the result of JSON is not
influenced by client-machine specifications.

– FREDDY versus JSON.

Because JSON must store all data into the main memory, it is difficult for
JSON to handle a large amount of data. The result also shows that JSON
was unable to load datasets of 100 MByte and 400 MByte.
Figure 9 presents that FREDDY is faster than JSON.
We find that FREDDY has a feature resembling that of SAX in the context
of XML processing.

6 Related Works

The proposed FREDDY splits large data into small fragments for data inter-
change. Indeed, splitting large data into small fragments is a common solution
to the problem of data interchange. Nevertheless, some problems persist in im-
plementation of data interchange on the web browser because a JavaScript web
application program must always run inside of a security sandbox. Applying
common problems of information technology to the web application domain is a
recent trend of research.

Klein and Spector proposed distributed computation of genetic programming
via Ajax[9]. In the context of data interchange, Huynh et al. proposed sophis-
ticated user interfaces for publishing structured data on the Web[6], but that
method merely addresses the contents’ presentation. It includes no solution for
large documents.

The target of comparison in this study, JSON, has spread quickly on the In-
ternet. The W3C proposed an application for semantic web for representation of
SPARQL query results[4]. The JSON-RPC[2] is a lightweight remote procedure
call protocol, which resembles XML-RPC. Results of several studies suggest it
as a future direction of FREDDY development.

Natarajan describes an innovative transport layer protocol for data inter-
change on the Web[10]. However, to the best of our knowledge, no method exists
for the application layer. FREDDY is an application layer method. Consequently,
users use FREDDY in an existing HTTP and TCP/IP environment.

An extremely important issue related to JavaScript applications is security
management. Jackson and Wang tackle the security of cross-domain scripting[8].
We also devote attention to the security of web applications, but a more com-
prehensive study of security is beyond the scope of this paper.

7 Conclusions

As described herein, we have presented FREDDY, a browser-friendly lightweight
data-interchange method that layers efficient data stream interchange between
a web server and a web browser. We also proposed an SAX style API to load a
continuous data stream. Results of our experiments show that FREDDY can be
a good solution for data interchange on the Web.

ComposableWeb'09

49



The future direction of this research will be one that encompasses data
sources. We seek to focus attention how to translate raw data into FREDDY
format. We plan to extend the design to an infrastructure of a web mashup that
can communicate between the Web and a sensor network. We believe that JSON
and FREDDY can serve as a basis for data interchange for web applications.

References

1. Digital bibliography and library project (dblp). http://dblp.uni-trier.de/.
2. Json-rpc. http://json-rpc.org/.
3. Sax. http://sax.sourceforge.net/.
4. K. G. Clark, L. Feigenbaum, and E. Torres. Serializing sparql query results in json.

http://web5.w3.org/TR/2007/NOTE-rdf-sparql-json-res-20070618/.
5. D. Crockford. Introducing json. http://json.org/.
6. D. F. Huynh, D. R. Karger, and R. C. Miller. Exhibit: lightweight structured

data publishing. In WWW ’07: Proceedings of the 16th international conference
on World Wide Web, pages 737–746, New York, NY, USA, 2007. ACM Press.

7. H. Ishikawa, S. Yokoyama, S. Isshiki, and M. Ohta. Project xanadu: Xml- and
active-database-unified approach to distributed e-commerce. In DEXA ’01: Pro-
ceedings of the 12th International Workshop on Database and Expert Systems Ap-
plications, pages 833–837, Washington, DC, USA, 2001. IEEE Computer Society.

8. C. Jackson and H. J. Wang. Subspace: secure cross-domain communication for
web mashups. In WWW ’07: Proceedings of the 16th international conference on
World Wide Web, pages 611–620, New York, NY, USA, 2007. ACM Press.

9. J. Klein and L. Spector. Unwitting distributed genetic programming via asyn-
chronous javascript and xml. In GECCO ’07: Proceedings of the 9th annual con-
ference on Genetic and evolutionary computation, pages 1628–1635, New York,
NY, USA, 2007. ACM Press.

10. P. Natarajan, J. R. Iyengar, P. D. Amer, and R. Stewart. Sctp: an innovative
transport layer protocol for the web. In WWW ’06: Proceedings of the 15th in-
ternational conference on World Wide Web, pages 615–624, New York, NY, USA,
2006. ACM Press.

11. S. Nathan, E. J. Pring, and J. Morar. Convert xml to json in php. http://www.

ibm.com/developerworks/xml/library/x-xml2jsonphp/.
12. W. Ng, W.-Y. Lam, and J. Cheng. Comparative analysis of xml compression

technologies. World Wide Web, 9(1):5–33, 2006.
13. T. O’Reilly. What is web 2.0. http://www.oreilly.com/pub/a/oreilly/tim/

news/2005/09/30/what-is-web-20%.html.
14. A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse.

Xmark: a benchmark for xml data management. In VLDB’01: Proceedings of the
International Conference on Very Large Data Bases, pages 974–985, Hong Kong,
China, 2001.

15. Wikipedia, the free encyclopedia. Ajax. http://en.wikipedia.org/wiki/Ajax_

%28programming%29.
16. Wikipedia, the free encyclopedia. Software as a service. http://en.wikipedia.

org/wiki/Software_as_a_service.
17. S. Yokoyama, M. Ohta, and H. Ishikawa. An xml compressor by simplified element

name (in japanese). In Proceedings of DBWeb2000, 2000.

ComposableWeb'09

50



Introducing collaborative Service Mashup design

Martin Vasko and Schahram Dustdar
{vasko|dustdar@infosys.tuwien.ac.at}

Vienna University of Technology
Institute of Information Systems

Distributed Systems Group
Argentinierstreet 8, 1040 Vienna, Austria

Abstract. The adoption of REST - an architectural paradigm focus-
ing on resources - by various providers like Google, Facebook and Ya-
hoo strongly influences traditional Business Process design approaches
layered atop of Web service description language (WSDL) and SOAP
based Web services. Beside the architectural differences manifested in in-
tegration challenges for existing business process environments this new
paradigm eases service development and enables lightweight integration
in Web-oriented architectures. This paper introduces a model-driven ap-
proach to integrate different domains into Service Mashups: a) Orchestra-
tion information derived from WS-BPEL processes, b) Coequal integra-
tion of RESTful Web services and WS-* Web services and c) Role-based
collaboration of process participants. The introduced concepts are im-
plemented as a platform to enable collaborative Service Mashup design.
The prototype is realized as a Rich Internet Application to maximize
design performance and user experience.

1 Introduction

The emergence of Web services adhering to the REST (Representational State
Transfer) paradigm - referred as RESTful Web services - and the widespread
adoption and dispersion by different providers1 strongly influences traditional
business process environments. The benefit of the exposed services for individ-
ual business needs evolved over time from general services like for example the
Google Search to specialized services like access to Social Network portals - refer
to the Facebook services2 as an example - or commercial services like Amazon’s
Web services. Beside the increasing number of services the ease of integration
and the flexibility to changes awakes the interest to integrate these services
into existing business process management approaches. The architectural differ-
ences between established Service Oriented Architectures and newly emerging
lightweight resource oriented architectures complicate this endeavor.

1 The programmable web - a directory of Web APIs,
http://www.programmableweb.com, last accessed on April 2009

2 http://developers.facebook.com, last accessed on April 2009

ComposableWeb'09

51



Different approaches [1], [2] try to solve the integration hurdles from the
WS-BPEL (Web Service Business Process Execution language[15]) perspective
(Pautasso [1]) whereas others provide an abstract simplified language to enable
a unique service integration (Rosenberg et al. [2]). The latter is closely related to
the approach introduced in this work. Whereas we do not try to provide an alter-
native language we encourage the model-driven approach to maintain extensibil-
ity. The abstraction of orchestration information, service integration information
and participant integration information results into a simplified process abstrac-
tion. The orchestration information is derived from business processes defined
in WS-BPEL. The service integration information is derived from WSDL (Web
Service Description Language [16]) based Web services and RESTful Web ser-
vices. Due to the lack of standards for human participant integration this work
derives the role model information from BPEL4People (WS-BPEL Extension
for People [14]). This enables a structured collaboration on Service Mashups.
Beside the generic role model of human participants, newly emerging REST-
ful Web services enable the programmatic access to Social Network platforms
and thus intensify the interactions with human participants. Currently different
providers work on the definition of a set of functions summarizing a common
access to Social Networks3. These trends facilitate the combination of such ser-
vices with existing services to Mashups. As a consequence, not even the designers
of Service Mashups might have access to collaborative Service Mashup design
tools through Social Networks but also the Mashups themselves comprise Social
Network Services as part of the Service Orchestrations. The underlying concepts
of these correlations are described in Section 3. Existing platforms to create
and administrate Mashups (like Google Mashup Editor, Intel Mash Maker, Mi-
crosoft Popfly and Yahoo Pipes to name the most prominent ones) currently
provide limited support for collaborative Mashup design. Our work introduces a
model-driven approach to collaboratively design Service Mashups. We developed
a Rich Internet Application prototype to exemplify the introduced concepts and
propose an approach to model Service Mashups.

The work is organized as follows: Section 1.1 tries to clarify the definition of
Service Mashups by providing existing definitions and relating akin appellations
like Mashups and Business processes. Section 2 summarizes existing approaches
and relates them to the approach introduced in this paper. Section 3 introduces
collaborative service orchestration based on a generic role model derived from
BPEL4People, a established specification in Web service environments. Section
4 motivates the need for collaborative Service Mashup design approaches on the
basis of a well-known process scenario. The combination of orchestration infor-
mation, service integration information and collaboration information resulted
in the Service Mashup Abstraction described in Section 5. This abstraction is
realized in a framework which is implemented as a Web-based prototype and
deploys a Rich Internet Application. Finally Section 6 concludes the paper and
gives an outlook of the Future Work.

3 http://www.opensocial.org, last accessed on April 2009

ComposableWeb'09

52



1.1 Service Mashups

The increasing number and diversity of RESTful Web services exposed on the
internet blurs an adequate classification of orchestration paradigms. In the do-
main of Web applications lightweight integration approaches - summarized as
RESTful Web services - dominate the service infrastructure. In the domain of
Enterprise Computing the ”Big” Web service technology stack (SOAP, WSDL,
WS-* specifications, WSBPEL, etc.) delivers interoperability for heterogeneous
service infrastructures. The architectural differences of these two worlds result
in challenging combination efforts (outlined by Pautasso et al. [3]). From the or-
chestrational point of view both provide interesting techniques: WSBPEL is an
XML based orchestration language to formulate business processes in Web ser-
vice environments. The orchestration of services is achieved by a set of activities
providing simple and complex Web service interaction capabilities. In contrast
to this specification Mashups - refered as combinations of Web API calls - cur-
rently lack a comparable notation. Mashups indicate a way to create new Web
applications by combining existing Web resources and Web APIs. According to
[4] Service Mashups combine WS-BPEL based orchestrations with RESTful Web
services. This work adheres to this definition and extends the idea of integrating
new paradigms by the use of a model-driven approach.

2 Related Work

Hoyer et al. [5] sketch design principles for emerging Enterprise Mashups. The
authors identify several shortcomings in established implementations of Service
Oriented Architectures due to: a) high technical complexity of the relevant stan-
dards b) their inflexibility to react on changing requirements quickly and c)
missing involvement of actual end-users. By allowing end-users to compose col-
lections of services according to their individual needs, Mashups empower end-
users to create their own workspaces which fit best to solve their heterogeneous
business problems.

Swashup DSL introduced by Maximilien et al. [6] provides a domain-specific
language to represent Mashups. The proposed language is focused on the de-
scription and propagation of data in Mashups. The approach is implemented by
the use of the Rails framework and identifies three main concepts of mashups:
data and mediatiation, service APIs and a means to generate Web applications
from the resulting mashups. Curbera et al. [7] introduce Bite, a workflow-based
composition model for Web applications. Bite allows the definition of interactive,
asynchronous workflows with multiparty interactions and enables comprehensive
data integration.

HOBBES [8] deploys an Adobe Flex - based WSBPEL designer and enables
the collaborative modeling and administration of Business processes. The ap-
proach implements a Rich Internet Application to design and share WSBPEL
processes. In contrast to HOBBES the approach introduced in our work focuses
on the collaborative design of Service Mashups.

ComposableWeb'09

53



Tran et al. [10] introduce a novel approach to integrate existing process mod-
eling languages at different abstraction levels using the concept of an architec-
tural view. Their approach overcomes the divergence in term of syntax, seman-
tics and levels of abstraction of existing process modeling approaches. Our work
derives the concept of integrating different modeling languages at different ab-
straction levels using the concept architectural view and applies this idea on
the domains of orchestration information, service integration information and
collaboration integration.

3 Collaborative Service Orchestration

With the increasing number of services exposed by different providers on the in-
ternet the combination of these services to Service Mashups gains popularity. The
broadening of functionality enables the recombination of Services to advanced
Service Mashups orchestrating services from different domains. This trend leads
to increasing specialization of Mashups and requires know-how from different do-
mains: For example HousingMaps.com4 combines data from craigslist.org5 with
Google Maps6. This Mashup requires knowledge in the domain of real estate
markets and web application development. The trend to interdisciplinary com-
bination of Services is encouraged by the effort to coequal integration of RESTful
Web services and WS-* Web services as exemplified in the sample process sce-
nario in the next section. This evolution of process environments from closed
company-intern systems to open Web service environments crossing organiza-
tional boundaries requires the collaboration of different experts on the design
of Service Mashups. Existing platforms to administrate Mashups currently lack
support for this endeavor. Even simple role models are not supported.

The importance of role models in collaborative environments was depicted by
Ellis et al. [9]. In the domain of Service Oriented Architectures BPEL4People7,
a specification proposed by IBM and SAP, shape up as an effort to integrate and
structure human participants based on roles in WS-BPEL based Business pro-
cesses. The specification defines a generic role model consisting of three human
roles:

– The process initiator triggers the process instance at its creation time
– Process stakeholders can influence the progress of a process instance, for

example, by adding ad-hoc attachments
– Business administrators are allowed to perform administrative actions on

the business process, such as resolving missed deadlines.

The role model covers the whole business process lifecycle from design time to
runtime issues. To continue the combination of Service Oriented Architecture
principles with REST based web application paradigms the approach presented
4 http://www.housingmaps.com/, last accessed on April 2009
5 http://www.craigslist.org, last accessed on April 2009
6 http://maps.google.com, last accessed on April 2009
7 WS-BPEL Extension for People, BPEL4People

ComposableWeb'09

54



in this paper introduces a role model derived from the BPEL4People roles. In
contrast to BPEL4People the role model introduced in this paper covers design
time issues only as the integration of runtime issues is part of the future work
described in section 6. The derived role model consists of the following roles:

– Creator - the Creator is determined automatically by the infrastructure dur-
ing design time and refers to the participant creating the initial Service
Mashup design

– Stakeholder - the Stakeholder may influence the progress of the Mashup
design by adding attachments, process notes or forwarding tasks but has no
privileges to change the Mashup design

– Administrator - the Administrator is allowed to perform administrative ac-
tions on the Mashup design. In addition to the privileges granted to Stake-
holders Administrators are able to change the Service Mashup design

Beside the role model the visibility and propagation of changes to the instance
edited by different members is crucial in collaborative service orchestration. In
contrast to real-time collaboration systems enabling the concurrent editing and
session sharing between members the approach introduced in this work is realized
regarding relaxed WYSIWIS (What-You-See-Is-What-I-See). A Service Mashup
instance is locked exclusively by the member editing the instance. After propa-
gating all changes to the server the instance is released and the involved members
are able to check changes by loading the instance. This roundtrip approach ad-
heres to the REST paradigms as Service Mashups are exposed as resources by
the server. By updating the changes of the process model only, the introduced
architecture minimizes server processing load. The disadvantages of late prop-
agation of changes is compensated by full access to the Mashup design by the
processing member.

4 Process Scenario

The coequal integration of RESTful Web services and WS-* Web services into
established business process environments neglects the different underlying ar-
chitectures of these two concepts. The growing interest and the low integration
hurdles of RESTful Web services result in the dispersion into non-technical do-
mains. This trend amplifies the coequal integration of mostly publicly available
RESTful Web services and existing company-internal WS-* Web services into
daily business processes.

To exemplify the previously stated assumptions we introduce a sample pro-
cess scenario illustrated in figure 1. The process executes a revisited example of
a travel agency using existing Web 2.0 services: A user submits a holiday request
through the Web frontend containing details of the start date, the end date and
the destination. This order is submitted automatically to the agency-internal
Order Processing Web service to track incoming orders. After the successful
completion of this Web service operation the order is assigned to a responsible
travel agent by the agency-internal HR Service. This service administrates all

ComposableWeb'09

55



travel agents and automatically assigns the appropriate travel agent to the user
request on the basis of the agent’s expertise. The assigned travel agent prepares
the user order. This is modeled in a separate process administrated by the travel
agent. The travel agent searches for the best photos of the destination, plans on-
site trips and searches for the cheapest hotels. After the travel agent arranged
the on-site trip details and ordered them he assembles all details into the re-
sulting trip. This step concludes the Process Order under his responsibility. He
propagates the package containing the order details to the main process. The
Order Manager responsible for the main process publishes the trip and responds
to the user request.

The Web Application Expert is responsible for the appropriate execution of
the process. He maps the service requirements defined by the travel agent and
the Order Manager to available Web services. As already mentioned the task
Assemble Order is performed by the Order Service. The assignment of the order
request to an adequate travel agent is done by the HR service. Both services
are company-internal WS-* Web services hosted on the Travel Agency servers.
To enable the search for the best photos of the destination the Web Application
expert decides to integrate the Flickr Web service. To plan on-site trips and
calculate the distances he decides to use the Google Maps Web service. The
search for the cheapest hotels is enabled by the Hotels Combined Web service.
All of these services expose their APIs as RESTful Web services.

Assemble Order

Assign Order

Prepare Order

Publish Trip

Incoming User Request

Order Service
WSDL

HR Service
WSDL

Google Maps
REST

Process Order Service

WSDL

Outgoing User 
Response

Search Locations

Order Trips

Assemble Trip

Order Manager Travel Agent Web Application Expert

Flickr Service
REST

Hotels Combined
REST

Google Maps + Flickr

Service Mashup

Fig. 1. Travel Agency scenario revisited

ComposableWeb'09

56



As a special service for the customer all on-site trips packaged in the resulting
trip are exposed to the travel agency web site. The user is able to retrace the
arranged trips on-site by the combinatorial use of Google Maps and Flickr. This
Service Mashup was created by the travel agency to present a reproducible book-
ing process to the customer. Before the user starts his trip he may familiarize
with local details of the desired destination.

The process outlined in figure 1 exemplifies the coequal consumption of
RESTful Web services and WS-* Web services. In the following section the
abstraction is outlined to examine both Web service concepts coequally and
motivate the use of role-based collaboration in the design of Service Mashups.

5 Service Mashup Abstraction

The scenario illustrated in the previous section outlines the blur of distinction of
service integration into conventional process environments. Beside the coequal
integration of RESTful Web services and WS-* based Web services the demand
of human participant integration rises complexity of the process landscapes. In
the SOA paradigm BPEL4People shape up as an accepted approach to intro-
duce generic role models to structure human participant integration. As until
now in the domain of Mashups no comparable approach is widely accepted this
work proposes a role model derived from the BPEL4People model as introduced
in section 3. Beside the two mentioned domains (Service Integration and Par-
ticipant Integration) the integration of orchestration information into Service
Mashups is of vital interest.

OrchestrationElement

CollaborationElement IntegrationElement

** * *

AtomicActivity CompositeActivity MessagingActivity

* * * *

Participant Role

* *

Service Resource

0..* 0..*

Collaboration view Integration view

Orchestration view

core meta-model

Fig. 2. The Service Mashup Meta-Model

ComposableWeb'09

57



In the WS-* based Web service environment WS-BPEL is the standard to
describe and design the orchestration of Web services. WS-BPEL is layered atop
of WSDL and decouples the orchestration logic from the service invocation logic
by the use of Partner Links. The consequent separation of invocation details
is reflected in the use of basic activities which refer to Partner Links and hide
the concrete invocation mechanisms from the process definition. The Service
Mashup Abstraction continues this separation of invocation details and extends
the approach introduced by Tran et al. [10]. Tran et al. use the concept of an
architectural view to integrate business process modeling languages at different
abstraction levels. The approach maps process descriptions onto appropriate
high-level or low-level views. In contrast to the approach elaborated by Tran et
al. our work introduces a Control flow view and a Collaboration view on a higher
abstraction level from WS-BPEL. This concept maps to the architectural views
introduced by Tran et al.

The Service Mashup Abstraction emerges from the model-based integration
of different domains into one model. Figure 2 illustrates the underlying meta-
model.

+name : String
+type : String
+location : String
+creator : Participant
+accessor : Participant
+creationTime : Date
+accessTime : Date

Assignment

+name : String
+type : String
+previous : Activity
+next : Activity
+participant : Participant
+delay : Date

Activity

Parallel
-expression : String

If

+message : String
+sender : Activity
+receiver : MessageHandler

Message

+name : String
+type : String

MessageHandler

+isExecuting : Boolean
CompositeActivity

+expression : String
Switch

-match : String
Case Default

Core Classes

-handler : MessageHandler
Scope

+name : String
+role : Role

Participant

-name : String
-type : String

Role

-rule : String
IfBranch

+from : Assignment
+to : Assignment

Copy
+input : Assignment
+output : Assignment

Invoke

Core Composite Classes

+assignment : Assignment
Receive

+url : String
+timestamp : Date
+publish : Boolean
+username : 
Participant
+wadl : WADL

WADL
+url : String
+timestamp : Date
+publish : Boolean
+username : 
Participant
+wsdl : WSDL

WSDL

+name : String
Service

Resource

ElseBranch

Participant Classes

ParallelBranch

Fig. 3. The Service Mashup Abstraction represented using UML

The core meta-model consists of three elements each representing the base el-
ement for the particular view. This language design relates the views and enables
a flexible combination of different views. Consider a combination of an Orches-
tration element like an Activity with a Collaboration Element like a Participant.
As Orchestration Element is the parent of each Activity and is related to the
Collaboration Element which represents the basis for Participant, each Activity

ComposableWeb'09

58



might have one or more Participants. The Integration Element is not directly
connected to the Collaboration Element as the Service Mashup Abstraction re-
flects the decoupling principle of WS-BPEL to hide invocation details. The re-
lation of Collaboration Elements with Service Invocations is achieved by linking
elements of Orchestration Elements. A detailed class structure of the emerging
Service Mashup Abstraction is illustrated in figure 3.

Creator: 
Travel Agent

Business Administrator: 
Web Application Expert

Creator: 
Travel Agent

Business Administrator: 
Web Application Expert

Creator: 
Order Manager

Order Manager Travel Agent Web Application Expert

Fig. 4. Process Scenario resolved

1 <Process name="Web Application Expert Process" creator="Travel Agent">
2 <Variables >
3 <Variable name="Variable1" />
4 ...
5 </Variables >
6 <Invoke ... type="WSDLInvoke" input="Variable1" output="Variable2">
7 <WSDL id="1c21aefb -78d2 -4963-af0f -9 ba8f16df294" operation="GetValues"/>
8 </Invoke >
9 <Invoke ... type="RESTInvoke" input="Variable5" output="Variable6">

10 <Resource uri="http: //api.flickr.com/services /..." />
11 </Invoke >
12 <Invoke ... type="RESTInvoke" input="Variable7" output="Variable8">
13 <Resource uri="http: //maps.google.com/maps ?..." />
14 </Invoke >
15 <Invoke ... type="RESTInvoke" input="Variable9" output="Variable10">
16 <Resource uri="http: //www.hotelscombined.com/api ?..." />
17 </Invoke >
18 <Activity name="Assemble Trip" type="Activity" user="martin"/>
19 </Process >

Listing 1.1. Web Application Expert Process

ComposableWeb'09

59



Applying Service Mashup Abstraction on the process scenario introduced
in section 4 results in the models illustrated in figure 4. The Order Manager
orchestrates two WS-* Web services and refers to the Travel Agent process.
The Travel agent models the abstract actions Search Location, Order Trips and
Assemble Trip. After modeling this sequence she adds the Web application expert
as Business Administrator to the Service Mashup. The Web Application Expert
has now full access to the Service Mashups and refines the abstract activities
by the according Service invocation elements. The resulting Service Mashup is
depicted in listing 1.1. The process model is exposed by the prototype as a
resource and might by accessed by HTTP GET operations.

5.1 Service Integration Pitfalls

The abstraction of Service descriptions comes with a risk to neglect the original
Service integration paradigm. This might lead to a flippant orchestration of
Web services. To prevent misleading orchestrations of Web services this work
introduces pitfalls occurring in the coequal integration of RESTful Web services
and WS-* Web services.

REST Service enforcement According to Fielding [12], a central concept in a
resource oriented architecture is the focus on resources. To adhere to the REST
paradigm a uniform interface provides stateless access to resources. Requests to
RESTful Web services should include all data needed to fulfill a certain service
function. The current trend to expose services of existing Web applications by
the use of RESTful Web services to a broader audience blurs these conventions.
Consider the RESTful access to a Photo sharing portal8 as an example: The
RESTful Web service client requests a list of 10 photos and exposes these pho-
tos on a Web site. The visitor of the web site can navigate through the lists of
photos. Each navigation step triggers the RESTful Web service client to request
the next list of 10 photos from the photo sharing portal. Figure 5 a) illustrates
a stateful service design: The Web service increments and stores the lists to be
able to respond to the next request. The second invocation trace in figure 5 b)
illustrates a stateless RESTful Web service: The Web service client includes in
the invocation, which list of photos it requests. All data needed to fulfill the re-
quest is included. This design ensures scalability (Web services are distributable
across different load-balancers) by shifting state management responsibility to
the client.

The trend to enforce a remote procedure call alike behavior by exposing
RESTful Web services must be kept in mind during the design of Service Mashups
consuming REST APIs.

8 f.e. flickr services http://www.flickr.com/services/api/, last accessed on April
2009

ComposableWeb'09

60



GET /photos/getNextList? previousList++;
nextList = previousList;

return nextList;List of Photos

GET /photos/?list=2

List of Photos

a) Stateful

b) Stateless

Fig. 5. REST Service enforcement

Protocol neglect HTTP provides different methods for requests9. To minimize
integration hurdles existing RESTful Web services tend to reduce the HTTP pro-
tocol method support to GET and POST requests only. This results in exposing
functions like sending a POST request to a RESTful Web service to delete an ex-
isting resource. Pautasso et al. [3] refer to the classification of supported HTTP
verbs as Hi-REST and Lo-REST. The former refers to the support for four verbs
(GET, POST, PUT, DELETE) and the latter refers to the use of GET and POST verbs
only.

Concerning Service Mashup design Hi-REST architectures ease the integra-
tion of RESTful Web services by adhering stricter to the REST paradigm. The
support for PUT and DELETE verbs indicate more clearly the operation on the
resource and therefore the implications on the overall Service Mashup. RESTful
Web services adhering to the Lo-REST architecture do not provide transparent
access to the resources and therefore bear the risk to misleading orchestrations
in Service Mashups.

These Service Integration pitfalls might be expanded to a collection of An-
tipatterns [13] as part of a Service Mashup framework in future work.

6 Conclusion and Future Work

This work introduces a model-driven integration approach towards: a) coequal
integration of RESTful Web services and WS-* Web services, b) coequal Web
service orchestration and c) collaborative Service design of Service Mashups. The
approach derives concepts from established standards and provides an emerged
Service Mashup Abstraction. The approach is exemplified in a web-based proto-
type. The implementation enables the asynchronous design of Service Mashups
by implementing a Rich Internet Application. The prototype is reachable under
http://www.expressflow.com.

Section 3 introduces the role model derived from BPEL4People. This role
model is currently limited to design time issues of collaborative Service Mashup
design. The expansion of this role model to runtime issues is planned for future
work.
9 For an exhaustive list of methods the interested reader may refer to RFC 2616

ComposableWeb'09

61



Section 5 introduces the Service Mashup Abstraction from the consequent
model-driven abstraction of different Web service domains. Whereas the WS-
BPEL based business process abstraction seems to be straight forward the co-
equal integration of WS-* Web services and RESTful Web services comes with
diverse risks. The pitfalls described in this work might be expanded to the defi-
nition of Antipatterns as part of the future work.

References

1. Pautasso, C.: BPEL for REST. 7th International Conference on Business Process
Management (2008)

2. Rosenberg, F., Curbera, F., Duftler, M. J., Khalaf, R.: Composing RESTful Services
and Collaborative Workflows: A Lightweight Approach. IEEE Internet Computing
(2008) 24–31

3. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web services vs. ”Big” Web
services: making the right architectural decision. Proceedings of the 17th interna-
tional conference on World Wide Web (2008) 805–814

4. Benslimane, D., Dustdar, S., Sheth, A.: Service Mashups: The New Generation of
Web Applications. IEEE Internet Computing (2008) 13–15

5. Hoyer, V., Stanoesvka-Slabeva, K., Janner, T., Schroth, C.: Enterprise Mashups:
Design Principles towards the Long Tail of User Needs. IEEE International Confer-
ence on Services Computing (2008) 601–602

6. Maximilien, E. M., Ranabahu, A., Tai, S.: Swashup: situational Web applications
Mashups. Conference on Object-oriented programming systems and applications
(OOPSLA) (2007) 797–798

7. Curbera, F., Duftler, M., Khalaf, R., Lovell, D.: Bite: Workflow Composition for
the Web. Proceedings of the 5th international conference on Service-Oriented Com-
puting (2007) 94–106

8. Held, M., Blochinger, W.: Collaborative BPEL Design with a Rich Internet Ap-
plication. 8th IEEE International Symposium on Cluster Computing and the Grid
(2008) 202–209

9. Ellis, C. A., Gibbs, S. J., Rein, G.: Groupware: some issues and experiences. Com-
munications of ACM (1991) 39–58

10. Tran, H., Zdun, U., Dustdar, S.: View-Based Integration of Process-Driven SOA
Models at Various Abstraction Levels. Model-Based Software and Data Integration
(2008) 55–66

11. Van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases (2003) 5–51

12. Fielding, R.: Architectural Styles and the Design of Network-based Software Ar-
chitectures. University of California, Irvine, PhD Thesis (2000)

13. Brown, W., Malveau, R., Mowbray, T.: AntiPatterns: Refactoring Software, Ar-
chitectures, and Projects in Crisis. Wiley (1998)

14. WS-BPEL Extension for People, IBM and SAP Specification http://www.ibm.

com/developerworks/webservices/library/specification/ws-bpel4people/

last accessed April 2009
15. Web Services Business Process Execution Language, OASIS Standard http://

docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, last accessed April 2009
16. Web Service Description Languag, W3C Technical Report http://www.w3.org/

TR/wsdl, last accessed April 2009

ComposableWeb'09

62



Service Composition at the Presentation Layer

using Web Service Annotations

Tobias Nestler1, Marius Feldmann2, Andre Preuÿner1, and Alexander Schill2

1 SAP Research CEC Dresden, 01187 Dresden, Germany
{tobias.nestler, andre.preussner}@sap.com

2 Technische Universität Dresden, Department of Computer Science, Institute for
Systems Architecture, Computer Networks Group

{marius.feldmann, alexander.schill}@tu-dresden.de

Abstract. In the �eld of Service-Oriented Architectures the implemen-
tation of business logic and business processes is well-understood and
covered by existing development approaches, but concepts for a light-
weight service consumption in order to build interactive service-based ap-
plications are still in a preliminary phase. This lack of service-consumer-
orientation prevents users with limited IT skills to get easy access to ser-
vices and their o�ered functionalities. The paper presents an approach
that follows the idea of integration at the presentation layer enhanced
by user interface (UI) related service annotations. It describes the rela-
tionship of these ideas to already existing mashup approaches and gives
an insight into how services can be composed to complex interactive
applications in a visual manner without the need to write any code.

1 Motivation and Background

Service-Oriented Architectures (SOA) promise to break former monolithic ap-
plications into loosely coupled services that can be distributed across several
systems. These services are composed to implement business applications and
processes. Even though service composition is well-understood and covered by
existing approaches for technical developers using languages such as BPEL, tools
and methodologies for enabling end-user service composition have been largely
ignored [1]. A promising approach for bridging this gap are mashups that focus
on a user-centric and lightweight UI integration [2] by combining the philoso-
phy of SOA and approaches of End-User Development [3]. The need for such
situational applications to address individual and heterogeneous needs as well as
the shift to more �exible and dynamic business environments encourage the idea
of integrating mashup concepts into the enterprise. Our approach shows a way
of overcoming limitations of existing mashup approaches [4] in order to build
complex interactive service-based applications. Following our preliminary inves-
tigations and description of related work [5], this paper discusses the following
contributions:

� We propose the usage of UI related service annotations to ease service in-
tegration and composition. This limits the e�ort for the development of

ComposableWeb'09

63



service-based applications to a purely model-driven, visual composition of
annotated services that can even be done by end-users. Although existing
approaches, such as Dynvoker [6], already cover the generation of user inter-
faces for single web services dynamically, no solution is available for service
composition.

� We adopt the idea of integration at the presentation layer [7] to compose
services by combining their presentation front-ends, rather then their ap-
plication logic or data [2]. Typically, web services are integrated into the
application layer of a composite application via their well-de�ned service in-
terfaces. The service annotations add the missing information about the UI
of a single service to lift the integration to the presentation layer.

� We propose a tool environment that allows the creation of interactive service-
based applications to nonprogrammers. Most of the existing lightweight
composition approaches (overview provided by [8]) support the user only
in building complex data representations in form of widgets or feeds, but
lack sophisticated concepts following the idea of process mashups [9].

� We propose a automatic Model-driven generation approach for the designed
interactive service-based applications. The models used within the approach
can be applied for representing applications for various target platforms and
di�erent sorts of application partitioning.

2 Towards Visual Service Composition

This section presents our idea of composing services in a visual manner to ease
and speed up the development of interactive applications that goes beyond exist-
ing visual mashup solutions. These applications combine concepts like multi-page
support, dynamic UI behavior (e.g. input suggestion functionality, client-side in-
put validation). Therefore, we introduce the concept of UI related service annota-
tions. These are reusable information fragments attached to the service descrip-
tion, which are typically not available for the application developer. They cover
static UI aspects, the behavior of UI elements, and relations between services.
Annotations facilitate e.g. the grouping and ordering of UI elements, completion
of forms, continuous �eld updates, or data conversion (more examples in [5]).

UI development is usually a very time consuming task and cannot be done by
the targeted end-user group. A trained application developer has to build the UI
and integrate the services manually. The developer has to understand the o�ered
interface to integrate the service in an application. This is not necessary anymore,
since the integration at the presentation layer is done on a much higher level of
abstraction. The user (in the role of the service composer) only works with the
presentation front-end of a service instead of an abstract representation in form of
a prede�ned service widget. Therefore, UI fragments are automatically generated
for the interaction with the services and represent the interfaces for service input
and expected output. The fragments can be inferred from technical details such
as the data types of parameters, and be further improved by leveraging the
annotations attached to the service. UI fragments consist of freely arrangeable

ComposableWeb'09

64



UI elements like input �elds or buttons. A manual implementation of a service
wrapper, as usually required in existing visual mashup environments, is not
needed anymore.

Our approach facilitates the development of interactive single- and multi-
page applications. A page acts as a container for UI elements and represents a
screen in the �nal application. The integration of services (as described above)
and the actual service composition can be done for each page separately. The
service composer can de�ne data �ows between the integrated service operations
on a single page (intra-page �ow) and between pages (inter-page �ow). These
data �ows can be partially derived from service dependencies de�ned in the
annotations or modeled manually by the service composer in a visual way. Dif-
ferent approaches to support this speci�c task are currently under investigation.
One solution could be the selection of a speci�c output �eld of service opera-
tion A and drawing a line to the input �eld of the service operation B. Another
way could be that each generated UI fragment o�ers all of its outputs and the
user can select the associated service operation via a context menu or wizard.
To transport the idea of multi-page applications to nonprogrammers we use a
metaphor which most of the people are familiar with - Microsoft PowerPoint.
Each page (or screen) in the �nal application will be presented like a slide in
PowerPoint. Furthermore, it is possible to de�ne a master layout that all pages
will use. To build multi-page applications, the pages can be linked to each other
by specifying a navigation path.

3 End-User Centric Tool Support

Our visual composition editor which implements the concepts introduced in Sec.
2 is currently under development in the frame of the EU funded project ServFace
[10]. The main focus of the composition editor is the empowerment of end-users
to develop interactive applications. Multiple design decisions were made based
on this requirement. The tool is designed as a rich internet application (RIA)
which runs in the web browser of the user and makes an installation dispens-
able. The annotations facilitate the understanding and simplify the composition
of web services. Finally, the visual composition concepts guide the user through
the development process by providing intuitive metaphors and hide the complex-
ity of the actual programming task. Our user-centric implementation approach
involves iterative evaluations with end-users.

The composition editor is integrated into a three step methodology for the
development of interactive applications as explained in [11]. The annotations are
created by an IT expert and stored in an annotation model based on a formally
de�ned Meta-model. The visual service composition tool imports in a �rst step
the functional interface descriptions of the web services and their attached an-
notation models. The result is a platform-speci�c object model structure kept
in the tool representing the complete designed application.

Figure 1 shows a mockup of the envisioned composition editor. The user can
import annotated services that shall be used in the application. These services

ComposableWeb'09

65



are displayed with their operations in the Service Operations palette. The
user can drag service operations from the palette to the composition area. The
editor displays the UI fragment inferred from the operation interface and the
service annotations. The user can re�ne the layout, delete unwanted UI widgets
or add additional ones from the Widgets palette, and de�ne intra-page data
�ows. Besides this basic mashup editor functionality our composition editor pro-

Fig. 1. Mockup of the Visual Composition Editor

vides innovative features especially designed towards the development of process
mashups. The user can de�ne inter-page data �ows by dragging parameters or
return values to the Data Storage and use them to �ll UI elements at other
pages. The editor supports the de�nition of the navigation �ow of multi-page
applications. This can be done either implicitly by separating the input and
output of an operation to di�erent pages, or explicitly by creating a new page
and adding navigation buttons for the page transition. Concepts for an end-user
friendly design of features like the inclusion of additional operations for data �l-
tering or conversion, and the merging of UI elements to call multiple operations
with one user interaction are under investigation.

After �nishing the application development, the mentioned object structure
is serialized to a model coined Composite Application Model (CAM). Its under-
lying Meta-model is reused for representing applications for various platforms. A
serialized CAM is used as storage format for the composition tool and as input
for generating executable application as described in the next section.

4 Generating Applications

In regards of bringing the composed interactive application to execution, the
decision has been made to use a code generation mechanism. In comparison

ComposableWeb'09

66



to deploying the design-time outcome on a speci�c interpreter, code generation
promises a higher e�ciency. The chosen approach is realized in a model-driven
manner. In order to bring the instance of the CAMMeta-model closer to the exe-
cutable application and to resolve the annotations that are explicitly represented
within the CAM to runtime information, a Model-to-Model transformation is ap-
plied in a �rst step. As it is the case for the CAM, the target Meta-model (named
PROSAIC) can be reused for representing applications for a variety of platforms.
A major challenge in realizing this approach has been to de�ne a reference ar-

chitecture for service-based interactive applications re�ected in this Meta-model
that can be used as an abstraction from concrete platforms and frameworks.
Figure 2 shows an example of the control and data �ow within the reference ar-

Fig. 2. UI- to Service-interaction within the reference architecture

chitecture developed for our approach. To support single page applications (e.g.
RIAs) as well as multi-page applications, a di�erentiation between a page �ow
controller and a behavior controller has been introduced. Both controllers are lo-
cated within the Model-Control-Adapter (MCA). Its major task is to coordinate
the interaction between the user interface and the service infrastructure. The
page �ow controller contains a set of states and transitions between states. On
state activation the state registers a set of commands within the behavior con-
troller. These commands are mapped to a set of activities where an activity can
contain actions such as the invocation of a service or assigning values to global
variables. The commands are used for realizing the behavior of the user interface
of the page associated with the state. For example if a widget displaying stock
information should be updated in regular intervals, it triggers a command in a
loop and sends it to the MCA (e.g. via Ajax functionalities). The MCA calls the
service that returns the stock data and sends a reply to the UI that includes the
new stock values into the widget.

This proposed reference architecture is re�ected within the PROSAIC Meta-
model. During several tests it has been evaluated that instances of this Meta-
model can be transformed via Model-to-Model and Model-to-Code transforma-
tion to several platform and framework speci�c source code. Besides transform-
ing it to Web applications (Dojo toolkit and the Spring framework) it has been
proven that it can be applied for generating fat clients e.g. for mobile devices
(Google Android applications).

ComposableWeb'09

67



The generation of the resulting application is done completely automatically

by using an automatic build script for Ant that is triggered by the composition
editor and that starts the M2M transformation implemented in ATL and the
M2C transformation implemented by using openArchitectureWare. Furthermore
this script enables the packaging and deployment of web applications.

Yet an open issue is the formal de�nition of the relations between the service
annotations kept explicitly within the CAM and the PROSAIC Meta-model. This
formal de�nition promises a starting point for a simpli�cation of the template
creation for the M2M transformation.

5 Conclusion and Future Work

The concept of presentation integration can be seen as the next major step in
the integration area [7]. Our paper presented an approach to lift the service
composition to the level of presentation integration via UI related service anno-
tations. The presented visual composition concepts as well as the associated tool
will empower nonprogrammers to create composite applications, which suit their
requirements and individual needs. The active involvement of the actual service
consumer in the integration and composition process can result in a more su�-
cient usage of knowledge, speci�c for their domain, and raise their productivity.

References

1. Ro, A., Xia, L.S.Y., Paik, H.Y., Chon, C.H.: Bill Organiser Portal: A Case Study
on End-User Composition. In WISE (2008)

2. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Under-
standing UI Integration: A survey of problems, technologies, and opportunities.
IEEE Internet Computing (May/June 2007)

3. Hoyer, V., Stanoevska-Slabeva, K.: The Changing Role of IT Departments in
Enterprise Mashup Environments. In 2nd International Workshop on "Web APIs
and Services Mashups" (Mashups08) (2008)

4. Nestler, T.: Towards a Mashup-driven End-User Programming of SOA-based Ap-
plications. In 10th International Conference on Information Integration and Web-
based Applications & Services (iiWAS) (2008)

5. Nestler, T., Feldmann, M., Schill, A.: Design-Time support to create user Interfaces
for service-based applications. In International Conference WWW/Internet (2008)

6. Spillner, J., Feldmann, M., Braun, I., Springer, T., Schill, A.: Ad-hoc Usage of
Web Services with Dynvoker. Towards a Service-Based Internet, First European
Conference, ServiceWave 2008, Madrid, Spain (2008)

7. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A Frame-
work for Rapid Integration of Presentation Components. In WWW'07 (2007)

8. Hoyer, V., Fischer, M.: Market Overview of Enterprise Mashup Tools. In ICSOC
(2008)

9. Young, O.: The Mashup Opportunity. In Forrester Research Report (May 2008)
10. ServFace Consortium: ServFace Research Project (2008) http://www.servface.eu/.
11. Feldmann, M., Janeiro, J., Nestler, T., Hübsch, G., Jugel, U., Preussner, A., Schill,

A.: An Integrated Approach for Creating Service-Based Interactive Applications.
In INTERACT 2009 (to appear)

ComposableWeb'09

68



Towards Flexible Integration of Any Parts from

Any Web Applications for Personal Use

Hao Han, Junxia Guo and Takehiro Tokuda

Department of Computer Science, Tokyo Institute of Technology
Meguro, Tokyo 152-8552, Japan

{han, guo, tokuda}@tt.cs.titech.ac.jp

Abstract. Mashup has brought new creativity and functionality to Web
applications by the integration of Web services from different Web sites.
However, most existing Web sites do not provide Web services currently,
and the Web applications are more widely used than Web services as a
method of information distribution.
In this paper, we present a method to integrate any parts from any Web
applications for personal use. For this purpose, we propose a flexible in-
tegration method by the description and extraction of Web application
contents. Our implementation shows that we can integrate any parts
easily from not only the ordinary static HTML pages but also the dy-
namic HTML pages containing Web contents dynamically generated by
client-side scripts.
Keywords: Web Application, Web Service, Information Extraction,
Information Integration, Mashup, DHTML, JavaScript

1 Introduction

More and more information/knowledge is available on the Web with the de-
velopment of the Internet, but they are not always in the forms that support
end-users’ needs. Mashup implies easy and fast integration of information in
order to enable users to view diverse sources of data in an integrated manner.
However, the contents used in most of the current mashup Web applications are
typically obtained from the third party sources through the public Web service
APIs, and the integration is limited to the Web sites that provide the open Web
service APIs mostly. Although there are widely popular and successful Web ser-
vices such as Google Maps API [1] and YouTube Data API [2], unfortunately,
most existing Web sites do not provide Web services. Web applications are still
the main methods for the information distribution. For example, the famous
global news site CNN [3] provides the online news search function at site side
for general users. However, this news search function can not be integrated into
other systems because CNN does not open search function as a Web service.
Similarly, BBC Country Profiles [4] does not provide the Web service APIs and
it is difficult for the developers to integrate it with other Web services.

In this paper, we present a method to integrate any parts from any Web
applications for personal use. For this purpose, we propose a flexible integra-
tion method by the description and extraction of Web application contents. We

ComposableWeb'09

69



defined WACDL (Web Application Contents Description Language), an XML-
based language that provides a model for describing Web application contents, to
configure the locations and scopes of target contents from Web applications. We
also constructed an extraction and integration system, which extracts the tar-
get contents and executes the contents integration to generate the mashup Web
applications. Our implementation shows that we can integrate any parts easily
from not only the ordinary static HTML pages but also the dynamic HTML
pages containing Web contents dynamically generated by client-side scripts.

The organization of the rest of this paper is as follows. In Section 2 we give
the motivation of our research and an overview of the related work. In Section
3 we construct an example of mashup Web application, and explain our Web
application contents description and integration system in detail. We give an
evaluation of our approach in Section 4. Finally, we conclude our approach and
give the future work in Section 5.

2 Motivation and Related Work

Most integration technologies are based on the combination of Web services or
Web feeds. Yahoo Pipes [5] and Microsoft Popfly [6] are the composition tools
to aggregate, manipulate, and mashup Web services or Web feeds from different
Web sites with a graphical user interface. Mixup [7] can quickly build complex
user interfaces for easy integration by using the Web service APIs available.
Mashup Feeds [8] supports integrated Web service feeds as continuous queries.
It creates the new services by connecting the Web services using join, select and
map operations. Like these methods, Google Mashup Editor [9] is also limited
to the combination of existing Web services or Web feeds.

For the integration of parts from Web applications without Web service APIs,
the partial Web page clipping method is widely used. The users clip a selected
part of Web page, and paste it into a personal Web page. Internet Scrapbook
[10] is a tool that allows users to interactively extract components of multiple
Web pages by clipping and assembles them into a single personal Web page.
However, the extracted information is a part of static HTML document and
the users can not change the layout of the extracted parts. C3W [11] provides
an interface for automating data flows. With C3W, the users can clip elements
from Web pages to wrap an application and connect wrapped applications using
spreadsheet-like formulas, and clone the interface elements so that several sets
of parameters and results may be handled in parallel. However, it does not
appear to be easy to realize the interaction between different Web applications
and needs a special Web browser. Extracting data from multiple Web pages
by end-user programming [12] is more suitable to generate mashup applications
at client side. Marmite [13], implemented as a Firefox plug-in using JavaScript
and XUL, uses a basic screen-scraping operator to extract the content from
Web pages and integrate it with other data sources. The operator uses a simple
XPath pattern matcher and the data is processed in a manner similar to Unix
pipes. However, these methods can only extract Web contents from static HTML

ComposableWeb'09

70



pages as Mashroom [14] and Dapper [15]. MashMaker [16] is a tool for editing,
querying, manipulating and visualizing continuously updated semi-structured
data. It allows users to create their own mashups based on data and queries
produced by other users and by remote sites. However, they do not appear to
support the integration of dynamically generated Web pages like the result pages
from form-based query.

These current methods are based on the existing Web service APIs or Web
feeds, or need the end-user programming, or have other limitations. They have
realized the integration of Web applications to some extent, but still can not ex-
tract and integrate the Web contents dynamically generated by client-side scripts
that become more and more in Web applications with the development of Web
2.0. To address these problems, we propose a novel approach to integrate any
parts from any Web applications by the description and extraction of the target
Web application contents. Compared with the developed work, our approach has
the following features.

– We extend the range of Web contents from Web services to the general Web
applications. Any parts from any Web applications are available.

– We propose WACDL to describe the target parts of Web applications. The
WACDL file is generated easily and does not need the programming.

– We integrate any parts from not only the ordinary static HTML pages but
also the dynamic HTML pages containing Web contents dynamically gener-
ated by client-side scripts.

We explain our approach by constructing an example of mashup Web appli-
cation, and give an evaluation in the following sections.

3 Web Application Contents Description and Integration

Our integration is based on the description and combination of target parts of
Web applications. In our approach, the target parts of Web applications are the
visible contents in the Web pages such as the text, link, graph, video, flash and
etc. As shown in Figure 1, the whole process includes the following steps.

1. We describe the target parts of Web applications in a WACDL file.
2. We get the request from client side and send it to the target Web applications.

We search for the target parts from the response Web pages according to
the description in WACDL.

3. We extract the contents and control the visibility of them.
4. We integrate the extracted contents and arrange their layouts to generate a

resulting page of mashup Web application.

We generated an example of mashup Web application. It integrates the parts
from the following five Web applications and realizes the search function of
country information. As shown in Figure 2, after the users input the country
name and send the request, the mashup Web application sends the request to

ComposableWeb'09

71



Fig. 1. The outline of our integration approach

each target Web application and receives the response Web pages. It searches for
the target parts from the Web pages and shows them in an integrated resulting
Web page.

– Part A: Country name and country flag from Country Fast Facts of CBS
News [17].

– Part B: Weather information from Weatherbonk [18], which is a mashup
application integrated by weather service and Google Maps service. The part
of weather information is created by client-side scripts, which can respond
to click and span events.

– Part C: The country’s location, basic information and leader’s photo from
BBC Country Profiles [4].

– Part D: The latest corresponding news articles from BBC News [19].
– Part E: Pictures from Trippermap [20] shown with the map, which can re-

spond to click event and show the relevant pictures.

We explain our integration approach based on the actual generation process
of this example.

3.1 Web Application Contents Description Language

We need a model to describe Web application contents if we want to use their
functionalities and contents like a Web service. Compared with the Web services,
it is not easy to use Web applications by the end-user programming. Without
the interface like SOAP or REST, we have to use the extraction and emulation
technologies to interact with Web applications. The extraction is used to find
and extract the target contents from Web pages, and the emulation is used to
realize the process of sending request and receiving response.

We propose Web application contents description language (WACDL). It is
XML-based as shown in Figure 3, and used to describe the necessary information

ComposableWeb'09

72



Fig. 2. The example of mashup application

for the extraction and emulation. A WACDL file represents a configuration of
mashup Web application and includes the following items for each target Web
application.

– StartPage: StartPage is a Web page of target Web application. From this
StartPage, the request of end-user is submitted. The value of StartPage is
the URL of Web page.

– InputArea: InputArea is the position information of request-input element
in the StartPage. If there are other elements with the same InputType in a
StartPage, we have to define the InputArea. For example, we need to select
one InputBox as the request-input element if there are more than one In-
putBoxes in StartPage. The value of InputArea is the XPath-like expression
of request-input element. Otherwise, the InputArea value is set as null.

– InputType: InputType is the type of request-input element in the StartPage.
Usually, the value is InputBox (text input field), or OptionList (drop-down
option list in selectbox), or LinkList (anchor list).

– ContentArea: ContentArea is the position information of target contents in
the response Web page and used by the extraction. The value of ContentArea
is the XPath-like expression of target parts.

– ContentType: ContentType is the type of target contents. There are two
types of contents in a Web page: static Web contents and dynamic Web
contents. The static Web contents are the unchangeable parts shown on the
Web pages after the pages are fully loaded and during the viewing process.
They include two kinds of information: property and structure. Property
is text, image, link or object. Text is the character string in Web pages
such as an article. Image is one instance of the graph. Link is a reference
in a hypertext document to another document or other resource. Object
is one instance of the video or other multimedia file. Structure is single

ComposableWeb'09

73



occurrence or continuous occurrence. A single occurrence is a part without
similar ones such as the title of an article. A continuous occurrence is a
list of parts with similar ContentArea values such as result list in a search
result page. The dynamic Web contents are the parts dynamically generated
or changed by client-side scripts in dynamic HTML pages according to the
users’ operations.

– ContentStyle: ContentStyle is the layout of target contents in the integrated
resulting Web page. It is limited to the static Web contents usually. For
the static Web contents, the extraction results are in XML format and the
ContentStyle refers to XSLT [21] files defined by end-user. For the dynamic
Web contents, the extracted parts are shown in their original styles and the
ContentStyle value is null.

<?xml version="1.0" encoding="ISO-8859-1"?>
<channel>

<target>
<StartPage>

URL of Web page where request is submitted
</StartPage>
<InputArea>

Path of request-input element in HTML document of StartPage
</InputArea>
<InputType>

Type of request-input element in StartPage
</InputType>
<ContentArea>

<content>
Path of target part in HTML document of response Web page

</content>
...
<content> ... </content>

</ContentArea>
<ContentType>

<type>
Type of target contents

</type>
...
<type> ... </type>

</ContentType>
<ContentStyle>

<type>
Layout of target contents in resulting Web page

</type>
...
<type> ... </type>

</ContentStyle>
</target>
<target>
...
</target>

</channel>

Fig. 3. Format of WACDL file

ComposableWeb'09

74



These six items describe how to get and integrate the target Web contents.
Like a batch file, each WACDL represents a series of Web contents from different
sources. Table 1 gives the description of our example mashup Web application
shown in Figure 2. We developed Path Reader [22], a tool to read the path of
target part by GUI, which is modified from Mouseover DOM Inspector [23]. The
users can get the paths easily by mouse clicking the target parts, and do not
need to read the HTML source codes manually.

3.2 Target Parts Searching

According to the description in WACDL file, we search for the target Web con-
tents from the Web applications. There are two steps during this process. First,
we get the response Web pages as the target Web pages. Then, we search for the
target parts in the response Web pages.

Web applications provide the request-submit functions for the users. For
example, search engine applications provide the text input field in the Web page
for keywords inputting by the users. The users give the query keywords and
submit the requests to server sides. There are three basic types of methods to
send requests and get the response Web pages. The first type is to click an
option in drop-down list of selectbox in a Web page by mouse to view a new
Web page. The second type is to enter the query keywords into a form-input field
by keyboard and click the submit button by mouse to send the query. The third
type is to click a link of link list in a Web page by mouse to go to the target Web
page. For the request submitting, there are POST and GET method, and some
Web sites use the encrypted codes or randomly generated codes. In order to get
the response Web pages from all kinds of Web applications, we use HtmlUnit
[24] to emulate the submitting operation instead of URL templating mechanism.
The emulation is based on the event trigger of the element of InputType within
the InputArea of StartPage as follows.

– In the case of InputBox, the text input field is found according to the In-
putArea and the query keywords are inputted. Then the click event of the
submit button is triggered to send the request and get the response Web
page.

– In the case of LinkList, the text contained inside each link tag within In-
putArea is compared with keyword until the matched one is found. Then the
click event of link is triggered to get the target Web page.

– In the case of OptionList, the text of each option within InputArea is com-
pared with keyword until the matched one is found. Then the select event
of option is triggered to get the target Web page.

ContentArea is used to find the target parts from the Web page. In the tree
structure of HTML document, each path represents a root node of subtree and
each subtree represents a part of Web page. Usually, the response Web pages have
the same or similar layouts if the requests are sent to the same request-submit
function. During the node searching, if a node can not be found by a path, the

ComposableWeb'09

75



Table 1. Description of our mashup application example

Target Item Value

A StartPage {[http://www.cbsnews.com/stories/2007/08/30/country facts/
main3221371.shtml]}

InputArea {[null]}
InputType {[LinkList]}
ContentArea {[BODY:0:www-cbsnews-com/DIV:0:frame/TABLE:3:content/

TR:0:null/D:1:centerColumn/TDIV:0:centerColumnContent/
DIV:1:null/DIV:4:null/]}

ContentType {[dynamic]}
ContentStyle {[null]}

B StartPage {[http://www.weatherbonk.com]}
InputArea {[BODY:0:page/DIV:3:bonkLeftNavColumn/DIV:1:null/DIV:0:null/

FORM:0:searchForm/]}
InputType {[InputBox]}
ContentArea {[BODY:0:page/DIV:17:bonkForecastColumn/DIV:2:grid/],

[BODY:0:page/DIV:18:bonkMapColumn/]}
ContentType {[dynamic],[dynamic]}
ContentStyle {[null]}

C StartPage {[http://news.bbc.co.uk/1/hi/country profiles/default.stm]}
InputArea {[null]}
InputType {[OptionList]}
ContentArea {[BODY:0:body/DIV:0:null/DIV:5:null/TABLE:0:null/TR:0:null/

TD:1:null/TABLE:2:null/TR:1:null/TD:0:null/TABLE:1:null/
TR:0:null/TD:0:null/DIV:0:null/IMG:0:null/],
[BODY:0:body/DIV:0:null/DIV:5:null/TABLE:0:null/TR:0:null/
TD:1:null/TABLE:2:null/TR:1:null/TD:0:null/DIV:20:quickguide/
DIV:0:null/DIV:1:content/UL:0:null/],
[BODY:0:body/DIV:0:null/DIV:5:null/TABLE:0:null/TR:0:null/
TD:1:null/TABLE:2:null/TR:1:null/TD:0:null/P:28:null/
TABLE:0:null/TR:0:null/TD:0:null/DIV:0:null/IMG:0:null/]}

ContentType {[image],[text list],[image]}
ContentStyle {[bbc-country-layout.xslt]}

D StartPage {[http://search.bbc.co.uk/search?tab=ns&amp;scope=all]}
InputArea {[BODY:0:null/DIV:1:blq-container/DIV:1:blq-mast/FORM:1:null/]}
InputType {[InputBox]}
ContentArea {[BODY:0:null/DIV:1:blq-container/DIV:2:blq-main/

DIV:0:blq-content/DIV:2:primary/DIV:0:null/UL:2:null/]}
ContentType {[text list]}
ContentStyle {[search-result-layout.xslt]}

E StartPage {[http://www.trippermap.com]}
InputArea {[null]}
InputType {[null]}
ContentArea {[BODY:0:null/DIV:0:wrapper/DIV:6:maptabs/]}
ContentType {[dynamic]}
ContentStyle {[null]}

ComposableWeb'09

76



similar paths would be used to try searching for the node. The definition and
usage of similar path are described in [25] in detail.

3.3 Contents Extraction and Visibility Control

The target Web contents are mixed with other unnecessary elements such as the
advertisements in a Web page, and shown in different fonts, sizes or colors if they
come from different Web applications. In order to get a well designed resulting
page, the users may define a customizable layout for the Web contents. After the
target parts are found, the Web contents are extracted from the nodes in text
format excluding the tags of HTML document according to the corresponding
ContentType for the static Web contents. The detailed extraction algorithm can
be found in [25]. The extracted static contents are in XML format, and would
be transformed into HTML document by ContentStyle.

For the dynamic Web contents, we use a novel hide-and-display method to
control their visibility instead of the static contents extraction method because
we need to keep the functionalities of client-side scripts. The scripts use DOM
operation to control the dynamic parts of Web pages usually, and sometimes
access the elements outside the target parts such as the hidden values. If we
remove the other parts from the target parts, the original execution environment
of scripts would be broken and the scripts could not run normally. Here, we keep
all the parts of each Web page and change the visibility according to the following
steps in order to show the target parts and hide the other parts of Web page.

1. We create a node list L, and push the nodes found in Section 3.2 into L.

2. We create a node list L′, and push the ancestor nodes and descendant nodes
of each node in L into L′.

3. We push all the nodes in L′ into L.

4. We hide all the parts of target Web page by setting the property ”display”
of attribute ”style” of all the nodes to ”none” (style.display=”none”) except
the nodes in L.

5. We modify the HTML source to accelerate the Web page loading procedure.
It is not necessary to load the external files such as the image files or video
files if they are not within the target Web contents. These files are not shown
in resulting Web page and would cost the loading time. For example, we set
the attribute ”src” of <img> to null and the image files would not be loaded.

6. We add the <base> between the <head> and </head> tag. The value of
attribute ”href” is the URL of the target Web page. By adding the <base>
tag, all files invoked by relative paths can be found correctly including the
external image files, flash files, script files and etc.

By the Web contents extraction method and the hide-and-display method,
we can get any parts from any Web applications, and maintain the functionalities
of dynamic Web contents.

ComposableWeb'09

77



3.4 Integration and Layout Arrangement

Finally, we integrate the parts from different Web applications in a resulting
page. We use iframe [26] as the Web content container of each part.

IFrame (inline frame) is an HTML element which makes it possible to embed
an HTML document into another HTML document. While regular frames are
typically used to logically subdivide the Web contents of one Web page, iframes
are more commonly used to insert Web contents from another Web site into the
current Web page. Moreover, iframe is supported by all popular browsers.

According to the WACDL file, we create as many iframes as the number of
<target> tags when the resulting page is loading. We show the Web contents
from each Web application in an iframe. Each iframe runs in an independent
manner, and does not exchange the data or events between each other. When
the users click a link in a iframe, a new window pops up to show the target
contents if the target of this link is another Web page or document. Our iframe
supports the layout arrangement of users. In the resulting Web page, end-users
can move iframes by dragging and dropping operations to adjust the locations as
shown in Figure 4, which is more compact than the default layout arrangement
of iframes in Figure 2.

Fig. 4. The resulting page of mashup application

4 Evaluation

Our mashup Web application is constructed by the integration of our Web con-
tents extraction method and hide-and-display method. It is developed by Java

ComposableWeb'09

78



and JavaScript, and works well on the Internet Explorer 7 and JDK 1.6 under
Windows XP SP3 and Windows Vista SP1.

We integrated various parts from different kinds of Web applications, and
prove our approach is applicable to the general Web applications [22] including
the CNN News [3], Wikipedia [27] and Yahoo Finance [28]. However, the emu-
lation of HtmlUnit is slow for some Web sites and costs more time than URL
templating mechanism.

Our extraction method is based on the fact that the response Web pages
from the same Web application use the same or similar layouts. If the response
Web pages use the different layouts, the extraction precision would become low
because the paths of the target parts vary with the layouts of Web pages. More-
over, if the layout of the Web page is updated, the users have to change the
value of ContentArea in WACDL file. Our WACDL file is still manually gener-
ated now. The users have to analyze the structure of target Web applications
and fill the corresponding information for each item though they do not need to
read the source codes of HTML documents.

Although we add the <base> to deal with the relative paths, unfortunately,
the client-side scripts of some Web applications use the relative path as the
parameter of function as follows, and the external file can not be loaded correctly.

var flashfile = new ObjectLoad("flash.swf", "300", "400");

Our integration approach makes it possible for end-users with no or little
programming experience to implement the integration of Web contents from
various Web applications without Web service APIs. The range of Web contents
are extended from Web services to the general Web applications. Any parts from
any Web applications are available, not only the ordinary static HTML pages but
also the dynamic HTML pages containing Web contents dynamically generated
by client-side scripts, even the parts from mashup Web application. Compared
with the programming, the WACDL is easy to read, write and update.

5 Conclusion

In this paper, we have presented a novel approach to integrate any parts from
any Web applications for personal use. Our approach uses the WACDL to de-
scribe the Web application contents and functionalities, and realizes the inte-
gration by Web contents extraction method and hide-and-display method. By
our extraction and integration system, the users can construct the mashup Web
applications without the programming.

As future work, we will modify our approach to propose a friendly GUI for
users to generate the WACDL file more easily. Moreover, we would like to explore
more flexible ways of integration of Web applications, Web services and other
Web contents. Additionally, besides the current developed Java-based emulation
and extraction system, we will develop a JavaScript-based system in future.

ComposableWeb'09

79



References

1. Google Maps API: http://code.google.com/apis/maps/.
2. YouTube Data API: http://code.google.com/apis/youtube/.
3. CNN: http://www.cnn.com.
4. BBC Country Profiles: http://news.bbc.co.uk/2/hi/country profiles/.
5. Yahoo Pipes: http://pipes.yahoo.com/pipes/.
6. Microsoft Popfly: http://www.popfly.com.
7. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A frame-

work for rapid integration of presentation components. In: The Proceedings of the
16th International Conference on World Wide Web. (2007)

8. Tatemura, J., Sawires, A., Po, O., Chen, S., Candan, K.S., Agrawal, D., Goveas,
M.: Mashup feeds: Continuous queries over Web services. In: The Proceedings of
the 2007 ACM SIGMOD International Conference on Management of Data. (2007)

9. Google Mashup Editor: http://editor.googlemashups.com.
10. Koseki, Y., Sugiura, A.: Internet scrapbook: Automating Web browsing tasks by

demonstration. In: ACM Symposium on User Interface Software and Technology.
(1998) 9–18

11. Fujima, J., Lunzer, A., Hornbaek, K., Tanaka, Y.: C3W: clipping, connecting and
cloning for the Web. In: The Proceedings of the 13th International World Wide
Web conference. (2004)

12. Han, H., Tokuda, T.: A method for integration of Web applications based on
information extraction. In: The Proceedings of the 8th International Conference
on Web Engineering. (2008)

13. Wong, J., Hong, J.I.: Making mashups with marmite: Towards end-user program-
ming for the Web. In: The Proceedings of the SIGCHI Conference on Human
factors in computing systems. (2007)

14. Wang, G., Yang, S., Han, Y.: Mashroom: end-user mashup programming using
nested tables. In: The Proceedings of the 18th International Conference on World
Wide Web. (2009) 861–870

15. Dapper: http://www.dapper.net.
16. Ennals, R., Garofalakis, M.: MashMaker: Mashups for the masses. In: The Pro-

ceedings of the 2007 ACM SIGMOD International Conference on Management of
Data. (2007)

17. CBS News: http://www.cbsnews.com/stories/2007/08/30/country facts/
main3221371.shtml.

18. WeatherBonk: http://www.weatherbonk.com.
19. BBC News: http://www.bbc.co.uk.
20. Trippermap: http://www.trippermap.com.
21. XSL Transformations: http://www.w3.org/TR/xslt20/.
22. Guo, J., Han, H., Tokuda, T.: A new partial information extraction method for per-

sonal mashup construction. In: The Proceedings of the 19th European - Japanese
Conference on Information Modelling and Knowledge Bases. (2009)

23. Mouseover DOM Inspector: http://slayeroffice.com/content/tools/modi.html.
24. HtmlUnit: http://htmlunit.sourceforge.net/.
25. Han, H., Tokuda, T.: WIKE: A Web information/knowledge extraction system for

Web service generation. In: The Proceedings of the 8th International Conference
on Web Engineering. (2008)

26. iframe: http://en.wikipedia.org/wiki/iframe.
27. Wikipedia: http://www.wikipedia.com.
28. Yahoo Finance: http://finance.yahoo.com.

ComposableWeb'09

80


	papers.pdf
	paper1.pdf
	paper2.pdf
	paper3.pdf
	paper4.pdf
	paper5.pdf
	paper6.pdf
	paper7.pdf
	paper8.pdf



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


