
Service Composition at the Presentation Layer

using Web Service Annotations

Tobias Nestler1, Marius Feldmann2, Andre Preuÿner1, and Alexander Schill2

1 SAP Research CEC Dresden, 01187 Dresden, Germany
{tobias.nestler, andre.preussner}@sap.com

2 Technische Universität Dresden, Department of Computer Science, Institute for
Systems Architecture, Computer Networks Group

{marius.feldmann, alexander.schill}@tu-dresden.de

Abstract. In the �eld of Service-Oriented Architectures the implemen-
tation of business logic and business processes is well-understood and
covered by existing development approaches, but concepts for a light-
weight service consumption in order to build interactive service-based ap-
plications are still in a preliminary phase. This lack of service-consumer-
orientation prevents users with limited IT skills to get easy access to ser-
vices and their o�ered functionalities. The paper presents an approach
that follows the idea of integration at the presentation layer enhanced
by user interface (UI) related service annotations. It describes the rela-
tionship of these ideas to already existing mashup approaches and gives
an insight into how services can be composed to complex interactive
applications in a visual manner without the need to write any code.

1 Motivation and Background

Service-Oriented Architectures (SOA) promise to break former monolithic ap-
plications into loosely coupled services that can be distributed across several
systems. These services are composed to implement business applications and
processes. Even though service composition is well-understood and covered by
existing approaches for technical developers using languages such as BPEL, tools
and methodologies for enabling end-user service composition have been largely
ignored [1]. A promising approach for bridging this gap are mashups that focus
on a user-centric and lightweight UI integration [2] by combining the philoso-
phy of SOA and approaches of End-User Development [3]. The need for such
situational applications to address individual and heterogeneous needs as well as
the shift to more �exible and dynamic business environments encourage the idea
of integrating mashup concepts into the enterprise. Our approach shows a way
of overcoming limitations of existing mashup approaches [4] in order to build
complex interactive service-based applications. Following our preliminary inves-
tigations and description of related work [5], this paper discusses the following
contributions:

� We propose the usage of UI related service annotations to ease service in-
tegration and composition. This limits the e�ort for the development of

ComposableWeb'09

63



service-based applications to a purely model-driven, visual composition of
annotated services that can even be done by end-users. Although existing
approaches, such as Dynvoker [6], already cover the generation of user inter-
faces for single web services dynamically, no solution is available for service
composition.

� We adopt the idea of integration at the presentation layer [7] to compose
services by combining their presentation front-ends, rather then their ap-
plication logic or data [2]. Typically, web services are integrated into the
application layer of a composite application via their well-de�ned service in-
terfaces. The service annotations add the missing information about the UI
of a single service to lift the integration to the presentation layer.

� We propose a tool environment that allows the creation of interactive service-
based applications to nonprogrammers. Most of the existing lightweight
composition approaches (overview provided by [8]) support the user only
in building complex data representations in form of widgets or feeds, but
lack sophisticated concepts following the idea of process mashups [9].

� We propose a automatic Model-driven generation approach for the designed
interactive service-based applications. The models used within the approach
can be applied for representing applications for various target platforms and
di�erent sorts of application partitioning.

2 Towards Visual Service Composition

This section presents our idea of composing services in a visual manner to ease
and speed up the development of interactive applications that goes beyond exist-
ing visual mashup solutions. These applications combine concepts like multi-page
support, dynamic UI behavior (e.g. input suggestion functionality, client-side in-
put validation). Therefore, we introduce the concept of UI related service annota-
tions. These are reusable information fragments attached to the service descrip-
tion, which are typically not available for the application developer. They cover
static UI aspects, the behavior of UI elements, and relations between services.
Annotations facilitate e.g. the grouping and ordering of UI elements, completion
of forms, continuous �eld updates, or data conversion (more examples in [5]).

UI development is usually a very time consuming task and cannot be done by
the targeted end-user group. A trained application developer has to build the UI
and integrate the services manually. The developer has to understand the o�ered
interface to integrate the service in an application. This is not necessary anymore,
since the integration at the presentation layer is done on a much higher level of
abstraction. The user (in the role of the service composer) only works with the
presentation front-end of a service instead of an abstract representation in form of
a prede�ned service widget. Therefore, UI fragments are automatically generated
for the interaction with the services and represent the interfaces for service input
and expected output. The fragments can be inferred from technical details such
as the data types of parameters, and be further improved by leveraging the
annotations attached to the service. UI fragments consist of freely arrangeable

ComposableWeb'09

64



UI elements like input �elds or buttons. A manual implementation of a service
wrapper, as usually required in existing visual mashup environments, is not
needed anymore.

Our approach facilitates the development of interactive single- and multi-
page applications. A page acts as a container for UI elements and represents a
screen in the �nal application. The integration of services (as described above)
and the actual service composition can be done for each page separately. The
service composer can de�ne data �ows between the integrated service operations
on a single page (intra-page �ow) and between pages (inter-page �ow). These
data �ows can be partially derived from service dependencies de�ned in the
annotations or modeled manually by the service composer in a visual way. Dif-
ferent approaches to support this speci�c task are currently under investigation.
One solution could be the selection of a speci�c output �eld of service opera-
tion A and drawing a line to the input �eld of the service operation B. Another
way could be that each generated UI fragment o�ers all of its outputs and the
user can select the associated service operation via a context menu or wizard.
To transport the idea of multi-page applications to nonprogrammers we use a
metaphor which most of the people are familiar with - Microsoft PowerPoint.
Each page (or screen) in the �nal application will be presented like a slide in
PowerPoint. Furthermore, it is possible to de�ne a master layout that all pages
will use. To build multi-page applications, the pages can be linked to each other
by specifying a navigation path.

3 End-User Centric Tool Support

Our visual composition editor which implements the concepts introduced in Sec.
2 is currently under development in the frame of the EU funded project ServFace
[10]. The main focus of the composition editor is the empowerment of end-users
to develop interactive applications. Multiple design decisions were made based
on this requirement. The tool is designed as a rich internet application (RIA)
which runs in the web browser of the user and makes an installation dispens-
able. The annotations facilitate the understanding and simplify the composition
of web services. Finally, the visual composition concepts guide the user through
the development process by providing intuitive metaphors and hide the complex-
ity of the actual programming task. Our user-centric implementation approach
involves iterative evaluations with end-users.

The composition editor is integrated into a three step methodology for the
development of interactive applications as explained in [11]. The annotations are
created by an IT expert and stored in an annotation model based on a formally
de�ned Meta-model. The visual service composition tool imports in a �rst step
the functional interface descriptions of the web services and their attached an-
notation models. The result is a platform-speci�c object model structure kept
in the tool representing the complete designed application.

Figure 1 shows a mockup of the envisioned composition editor. The user can
import annotated services that shall be used in the application. These services

ComposableWeb'09

65



are displayed with their operations in the Service Operations palette. The
user can drag service operations from the palette to the composition area. The
editor displays the UI fragment inferred from the operation interface and the
service annotations. The user can re�ne the layout, delete unwanted UI widgets
or add additional ones from the Widgets palette, and de�ne intra-page data
�ows. Besides this basic mashup editor functionality our composition editor pro-

Fig. 1. Mockup of the Visual Composition Editor

vides innovative features especially designed towards the development of process
mashups. The user can de�ne inter-page data �ows by dragging parameters or
return values to the Data Storage and use them to �ll UI elements at other
pages. The editor supports the de�nition of the navigation �ow of multi-page
applications. This can be done either implicitly by separating the input and
output of an operation to di�erent pages, or explicitly by creating a new page
and adding navigation buttons for the page transition. Concepts for an end-user
friendly design of features like the inclusion of additional operations for data �l-
tering or conversion, and the merging of UI elements to call multiple operations
with one user interaction are under investigation.

After �nishing the application development, the mentioned object structure
is serialized to a model coined Composite Application Model (CAM). Its under-
lying Meta-model is reused for representing applications for various platforms. A
serialized CAM is used as storage format for the composition tool and as input
for generating executable application as described in the next section.

4 Generating Applications

In regards of bringing the composed interactive application to execution, the
decision has been made to use a code generation mechanism. In comparison

ComposableWeb'09

66



to deploying the design-time outcome on a speci�c interpreter, code generation
promises a higher e�ciency. The chosen approach is realized in a model-driven
manner. In order to bring the instance of the CAMMeta-model closer to the exe-
cutable application and to resolve the annotations that are explicitly represented
within the CAM to runtime information, a Model-to-Model transformation is ap-
plied in a �rst step. As it is the case for the CAM, the target Meta-model (named
PROSAIC) can be reused for representing applications for a variety of platforms.
A major challenge in realizing this approach has been to de�ne a reference ar-

chitecture for service-based interactive applications re�ected in this Meta-model
that can be used as an abstraction from concrete platforms and frameworks.
Figure 2 shows an example of the control and data �ow within the reference ar-

Fig. 2. UI- to Service-interaction within the reference architecture

chitecture developed for our approach. To support single page applications (e.g.
RIAs) as well as multi-page applications, a di�erentiation between a page �ow
controller and a behavior controller has been introduced. Both controllers are lo-
cated within the Model-Control-Adapter (MCA). Its major task is to coordinate
the interaction between the user interface and the service infrastructure. The
page �ow controller contains a set of states and transitions between states. On
state activation the state registers a set of commands within the behavior con-
troller. These commands are mapped to a set of activities where an activity can
contain actions such as the invocation of a service or assigning values to global
variables. The commands are used for realizing the behavior of the user interface
of the page associated with the state. For example if a widget displaying stock
information should be updated in regular intervals, it triggers a command in a
loop and sends it to the MCA (e.g. via Ajax functionalities). The MCA calls the
service that returns the stock data and sends a reply to the UI that includes the
new stock values into the widget.

This proposed reference architecture is re�ected within the PROSAIC Meta-
model. During several tests it has been evaluated that instances of this Meta-
model can be transformed via Model-to-Model and Model-to-Code transforma-
tion to several platform and framework speci�c source code. Besides transform-
ing it to Web applications (Dojo toolkit and the Spring framework) it has been
proven that it can be applied for generating fat clients e.g. for mobile devices
(Google Android applications).

ComposableWeb'09

67



The generation of the resulting application is done completely automatically

by using an automatic build script for Ant that is triggered by the composition
editor and that starts the M2M transformation implemented in ATL and the
M2C transformation implemented by using openArchitectureWare. Furthermore
this script enables the packaging and deployment of web applications.

Yet an open issue is the formal de�nition of the relations between the service
annotations kept explicitly within the CAM and the PROSAIC Meta-model. This
formal de�nition promises a starting point for a simpli�cation of the template
creation for the M2M transformation.

5 Conclusion and Future Work

The concept of presentation integration can be seen as the next major step in
the integration area [7]. Our paper presented an approach to lift the service
composition to the level of presentation integration via UI related service anno-
tations. The presented visual composition concepts as well as the associated tool
will empower nonprogrammers to create composite applications, which suit their
requirements and individual needs. The active involvement of the actual service
consumer in the integration and composition process can result in a more su�-
cient usage of knowledge, speci�c for their domain, and raise their productivity.

References

1. Ro, A., Xia, L.S.Y., Paik, H.Y., Chon, C.H.: Bill Organiser Portal: A Case Study
on End-User Composition. In WISE (2008)

2. Daniel, F., Yu, J., Benatallah, B., Casati, F., Matera, M., Saint-Paul, R.: Under-
standing UI Integration: A survey of problems, technologies, and opportunities.
IEEE Internet Computing (May/June 2007)

3. Hoyer, V., Stanoevska-Slabeva, K.: The Changing Role of IT Departments in
Enterprise Mashup Environments. In 2nd International Workshop on "Web APIs
and Services Mashups" (Mashups08) (2008)

4. Nestler, T.: Towards a Mashup-driven End-User Programming of SOA-based Ap-
plications. In 10th International Conference on Information Integration and Web-
based Applications & Services (iiWAS) (2008)

5. Nestler, T., Feldmann, M., Schill, A.: Design-Time support to create user Interfaces
for service-based applications. In International Conference WWW/Internet (2008)

6. Spillner, J., Feldmann, M., Braun, I., Springer, T., Schill, A.: Ad-hoc Usage of
Web Services with Dynvoker. Towards a Service-Based Internet, First European
Conference, ServiceWave 2008, Madrid, Spain (2008)

7. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.: A Frame-
work for Rapid Integration of Presentation Components. In WWW'07 (2007)

8. Hoyer, V., Fischer, M.: Market Overview of Enterprise Mashup Tools. In ICSOC
(2008)

9. Young, O.: The Mashup Opportunity. In Forrester Research Report (May 2008)
10. ServFace Consortium: ServFace Research Project (2008) http://www.servface.eu/.
11. Feldmann, M., Janeiro, J., Nestler, T., Hübsch, G., Jugel, U., Preussner, A., Schill,

A.: An Integrated Approach for Creating Service-Based Interactive Applications.
In INTERACT 2009 (to appear)

ComposableWeb'09

68


