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Abstract. The searching for the shortest path in public transport net-
works can take more time than is acceptable for given situation. We have
therefore searched for methods that speed up the given calculation. The
approach, when the calculation is not performed on the original network
but on the simplified one, seems to be very promising. The path found
in the simplified network can be easily mapped to a corresponding path
in the original network. In the case of the Prague public transport the
simplified network has several times less nodes and the computation is
speeded up correspondingly.
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1 Introduction

Searching for the optimal connection between two various places is a frequent
task solved in public transport networks. The path duration is an important
criterion of the searched connection. From the view of graph theory the problem
can be seen as a shortest path search. It is possible to keep in mind other criteria
derived from user preferences or restrictions when choosing the connection. Tra-
ditional approaches to the shortest path search (recent optimizations compared
in [1] expect searching in a static network). Most of these approaches are not
applicable on dynamic network without additional modifications1. The method
introduced in [2] is performing data reduction to simplify train network. Such
reduction is generally an NP-hard problem. Fortunately on real data the prob-
lem is usually solvable within acceptable time [3]. Our paper introduces similar
approach to the graph reduction aimed at the urban public transport and at the
practical use of this reduced data in mobile devices application.

⋆ This paper was partially supported by the Program ”Information Society” under
project 1ET100300517 and by the Czech Science Foundation by the grant number
201/09/0983.

1 For example a bi-directional search would be difficult to introduce in public transport
networks, if we do not know the arrival time.
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1.1 Basic Solution Approaches

Two basic approaches can be considered when solving the problem. The first
approach is to find the path between all vertices and then only return results on
query. The situation is complicated in mass transport networks by the fact, that
the edge value is determined according to the actual time. The precomputation of
the results would mean to find the shortest paths between all vertices for certain
time interval. This approach is suitable when the number of queries is relatively
high and there is sufficient memory and computation power for reaction to data
changes in appropriate time. The hardware requirements may be impossible to
satisfy for the large networks as described in [4].

The second approach is to find the shortest path directly according to the
given parameters. This approach is suitable, if the number of queries is relatively
low and if it is possible to find the answer in acceptable time. The advantage
against the previous case is that the variable value of the edges does not mean
serious complication in our case.

Algorithms used for direct computing of the shortest path derived from the
algorithm published by Dijkstra in [5]. Their complexity is typically superlinear
with respect to the number of vertices and edges. If we succeed in reducing the
size of input graph, the computation speed will be increased significantly.

1.2 Scheduled and Real Traffic

Timetables determine prescript departure times of individual connections which
may vary from actual times of departure. There typically occur two types of
irregularities. The first ones may occur relatively frequently and may be rela-
tively small. They may be caused by the current density of traffic, weather, road
conditions or other relatively predictable effects. One of the user’s preferences
could be a requirement for reliability of the connection.

The second irregularity type is caused by extraordinary events of a larger
impact. They cannot be predicted, and cause relatively large irregularities from
the timetables. Typically can cause temporary interference of the carrier into
the timetables. These temporary changes in the timetables would be difficult to
handle in the case of precomputed results.

To choose the connection so it meets all user preferences is the case of the
search algorithm. This paper is focused on the reduction of input data. For the
selection of a connection we will consider only one criterion – the path length
(duration).

2 Mass Transport Network Representation

Mass transport system can be seen as an oriented multigraph with valued edges.

Pseudoline is a representation of the certain line of the mass transport system
or a walk. Every line of the mass transport has its own timetable and route.
In order to separate various line directions, it is suitable to represent them
as separate pseudolines.
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Fig. 1. Graph example

Vertex represents the street refuge of the stop or a platform of the station.

Every stop can have several various refuges. In order to count time between

refuges in a walk, it is appropriate to represent them as separate vertices.

Edge represents direct connection between two stops, or more precisely refuges.

The connection is realized by one of the pseudolines, this information is

marked inside the edge structure. If several direct connections are available

between two vertices, then every single one of them is represented by the

separate edge.

Edge value is expected travel time of the pseudoline between the stops con-

nected by the edge. Travel time may vary according to the time of a day2.

Waiting time is expected time spent on waiting for the service arrival. This

value is added to the edge value in case of transfer between services. It is

determined on the basis of actual time and valid timetable of the given line.

There could be various exceptions in the timetables – for example the service

has a variable route or is avoiding some stops in certain moments. This situation

can be handled by creation of new pseudolines for each type of the exception.

The exceptions can be excluded from the original pseudoline and delegated into

the new pseudoline. Several new pseudolines can be created on the basis of one

line. New pseudoline will be marked in the same way as the original pseudoline

for the user.

When searching for the shortest path in mass transport network, it is neces-

sary to count the edge value and also the waiting time in the path length. The

waiting time is counted only in the case of transferring between the services or

getting in a service. In order to detect the transfers it is necessary to remember

the pseudoline, which has been used to get to the vertex. If a new edge is added

to the current path and this edge is realized by other pseudoline than the one

2 For example a “shorted” travel time – B and a normal travel time – A is set for

the trams in weekdays according to the departure time from the stop: 0:00-6:59 - B,

7:00-18:59 - A, 19:00-23:59 - B.
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used to get to the last vertex in the current path, then the waiting time is to be

added to the value of new edge.

The value of the edge realized by the walk should be derived from walk time.

Value of the walk edge can markedly vary according to the user preferences.

Recognition of the resulting path Classical algorithms for searching for the

shortest path between two vertices in the graph terminates the search at the

moment the target is processed. In each vertex there is stored a pointer to the

predecessor, from which the vertex was reached. In the case of a multigraph this

information is insufficient to recognize the resulting path and it is necessary to

remember also the edge leading from the predecessor to the vertex.

Correctness The resulting path found in the reduced graphs must be equal

to the path found in the original graph for the equal search parameters. Intro-

ducing pseudolines does not change the results presented to the user. Each of

the pseudolines holds the identification of the real line, which is presented to

the user. The pseudoline is equal to the subset of services of the original line.

Transfers between pseudolines are equal to the transfers between original lines.

However, the transfers between pseudolines identified by the same line could

be redundant3. The redundant transfer can occur in the real situation as well,

without influence to the resulting path length.

3 Graph Reduction

To reduce the size of input data, we will try to reduce certain edges and vertices

in the input graph using appropriate adjustments. Reduction of edges is achieved

by a replacement of several original edges with a single new one. The new edge

will fully represent all of the original edges when searching for the shortest

path. The reduction of vertices occurs so that after reduction of edges some

isolated vertices remain in the graph, which are not reasonable to hold for the

shortest path search. When the shortest path is found in the reduced graph, it

is important to be able to reconstruct the appropriate path in the original graph

easily. If the mapping of the path to the original network is too complicated,

the advantage of searching in reduced graph could be eliminated. Moreover, the

edge values must be maintained, otherwise the condition of the shortest path

could be violated.

The following adjustments are intended to be used in the way described. The

separate usage of adjustments is possible, but with weaker effect. The result of

their use in an opposite order is unsure. The results compared with the previous

adjustment are listed in the table below each of them.

3.1 Edge Aggregation

The first adjustment is based on the following heuristics: To get from one stop

to the next one in the shortest possible time, it is necessary to get on the service,

3 An additional transfer may occur if the pseudoline represents the shortened route of

the certain line. This can be easily solved by postprocessing of the path found.
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which will arrive there first. If several services take the same time to run between

those stops, the service with the shortest waiting time should be taken. To find

out how long to wait for each connection, we are forced to view timetables of all

these connections.

The above situation is in the graph indicated by the two vertices which

are connected by several edges with the same value. These edges differ only

by pseudoline. We will create a new pseudoline which is a combination of all

pseudolines of the edges mentioned above. These edges can be all replaced by

a single new edge. The new edge connects the same two vertices as the original

edges does and has the same value as the original edges, but it is labeled by a

new pseudoline:

Merge-line is a new pseudoline, which is created as a combination of several

original pseudolines. The merge-line has its own timetable, which is a com-

bination of the timetables of original pseudolines. The merge-line leaves the

stop every time, when one of the original pseudolines leaves the stop. In or-

der to map the path found in new graph to the original graph, it is necessary

to remember from which pseudolines the merge-line was created.
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Fig. 2. Aggregation of the edges with the same travel time

Mapping the Path to the Original Network The vertices of the new graph

directly correspond to the vertices of the original graph. The problem occurs in

the case of edges, where the information about the original pseudoline used to

travel between stops is lost due to creation of merge-line. To be able to determine

the edge in the original graph, it is necessary to remember the identity of the

original pseudoline that is used to travel through the aggregated edge4. When

searching the new graph, the transfer detection should be changed as followed:

4 There can be more such pseudolines; we will therefore remember a list of applicable

pseudolines.
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Getting in While getting in a pseudoline, it is necessary to detect which of the

original pseudolines from the merge-line is just used. First, the departure

time of the next service is found – in the aggregated timetable. This is the

departure time of merge-line. Now the original pseudoline needs to be found.

At this point it is necessary to view the original timetables to determine

which original pseudolines are leaving at the found time5.

Transfer between aggregated pseudolines If the identification of the merge-

line on the arrival edge and on the leaving edge is equal, then this is not a

transfer. In this case, the waiting time is not counted in.

Real transfer If the identification of the merge-line on the arrival edge and on

the leaving edge are not equal, then this could be a transfer. This is not

a real transfer if the pseudoline of arrival edge is contained in the list of

original pseudolines of the merge-line on the leaving edge. In other case, this

is a real transfer and the waiting time must be counted in.

Correctness The vertices in the new graph are equal to the vertices in the

original one. Every aggregated edge represents the edge in the original graph with

equal value. The changed transfer mechanism above ensures, that the transfers

between merge-lines are equal to the transfers between original pseudolines. The

pseudolines in the original graph can be labeled by the identification of merge-

line into which it is aggregated. The path found in the reduced graph will be

created by merge-lines corresponding the labels on pseudolines, which creates

the path in the original graph.

# of nodes # of edges memory usage search time

before 1096 8473 429 721B 4s

after 1096 2927 1 182 226B 1.70s

decrement 0% 65% -175% 58%

Table 1. Comparison of computation over original data on Prague Public Transport

Network and after simple network compaction

3.2 Path Aggregation

The latter adjustment builds on the results of the first one. Based on a direct

connection between the two stops longer stretch of several consecutive stops.

The condition is that only one certain line runs in this sequence of stops, and no

other line is connecting or leaving this sequence. Such a sequence of stops can

be aggregated into a sort of “pipelines”.

5 This situation is simpler then in the original graph. The departure time needs to

be found only once – in the aggregated timetable. Then this time is searched in the

original timetables for the match.
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Pipeline is an aggregation of a number of services that ensures the same travel

time between all the stops in the sequence. In order to guarantee this prop-

erty, the order of services entering the pipeline must be the same like the

order of the services leaving the pipeline. For trams or trolley-buses this

property is guaranteed. The problem might occur on buses.

Node is a stop, where the passenger can take a relevant transfer to another

service. The transfer is considered to be relevant, if the service can get the

passenger to other stop that he was not before. The example of not relevant

transfer is a transfer to the same line, but opposite direction. This typically

gets the passenger to the stop where he was6. By excluding these loops the

resulting path will always get shorter.

Starting with a graph where the first adjustment has been already made

simplifies the initial situation. In the following, we assume the first adjustment

is made. The second adjustment may be done in two phases.

The first phase Pipeline is the edge of the new graph. Vertices, which are

outside the pipeline, will form the vertices of the new graph – nodes. Vertices,

which are intside the pipeline must hold the following two conditions:

1. The vertex may not have more than two different adjacent vertices7.

2. Edges that go into the vertex must also go outside. Corresponding input and

output edges must bear the same identification of merge-line.

The second phase The nodes are connected by edges representing the pipelines:

An edge representing a pipeline between two nodes corresponds to a sequence

of vertices in the original graph. This sequence must be of the same merge-line

and can not be interrupted by any other node what ensures that there will be no

transfer inside the sequence. This sequence is replaced by the new single graph

edge. The value of new edge is set to the sum of the values of edges in the original

sequence. Merge-line of the new edge is the merge-line of the original edges.

Connection of the path search There will be a reduction of vertices in the

new graph. This means that if the shortest path search starts in a vertex, which

is not a node in the new graph, it is necessary to find the path to the nearest

nodes. This path can be found in the original graph quite easily because of the

properties of vertices within pipeline which means that the path can lead up to a

maximum of two directions. After a very short search two peripheral nodes will

be encountered. Both peripheral nodes will be taken as starting points for search

in the new graph. For starting points the initial value of path length estimation

will be set to the length of the path from the original vertex to the nearest node

– to the starting point. Similarly, if the target is not node.

6 The opposite direction of the link can get the passenger to the stop, where he was

not yet; therefore the nodes should be chosen carefully.
7 The vertices available in the opposite direction of the oriented edge are also consid-

ered to be adjacent here.
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line A

(s5)

(s
2)

(2+3,A+B,→)
(s4)

(2
,A

,→
)

(1,B
,→

)

(3,A
,→

)

(4
,B

,→
)

line A+Bline B

(s
1)

(s1)

(2,A,→)
connection realized by

„line A“ in direction „→“ 

with travel time 2 minutes

stop „s1“...

...

Fig. 3. Creation of pipeline between the nodes.

Mapping the path to the original network Since the latter adjustment is

based on the first one, we need the same procedure used for detection of transfers

as the first adjustment. The path found in this new graph is made up of nodes

and pipelines.

To overcome the reduction of vertices to nodes we can return back to the

vertices. To get detailed path in the 2nd level graph it is sufficient to search for

path between vertices corresponidng to the nodes being neighbours in the 3rd

level graph.

Finally, we need to add the initial segments into the resulting path which we

used to get from initial vertex to the initial nodes.

Correctness The sequences of vertices and edges in the graph after first reduc-

tion were replaced by the single edge. The value of this edge is equal to the sum

of values of the original edges. The mechanism of choice of the vertices inside

the pipeline ensures, that the transfer in the vertex inside the pipeline is not

relevant for searching the shortest path. Therefore the value of pipeline is equal

to the value of the part of any shortest path leading through the sequence of ver-

tices and edges creating the pipeline. The mechanism for detection of transfers

is equal to the mechanism in previous reduction step.

# of nodes # of edges memory usage search time

before 1096 2927 1 182 226B 1.70 s

after 549 1987 1 225 810B 1.03 s

decrement 50% 32% -4% 39%

Table 2. Comparison of computation over modified data on Prague Public Transport

Network and after advanced network compaction
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4 Prague Public Transport

As we have only data set the Prague public transport, the example is based on
part of this data. The time necessary for the graph search on a sample mobile
device (hardware details are mentioned below) is included in the tables in the
text. For benchmarking purposes the terminating condition was excluded from
the search algorithm. So the values in Tab. 2 are maximal – represent searching
entire graph.

Fig. 4. Sample cutout of Prague public transport (taken from [6])
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Fig. 5. Sample of Prague public transport after first adjustment.

In our sample case the number of vertices decreased more then two times
and number of edges almost seven times. The density of individual lines crossing
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Fig. 6. Sample cutout of Prague public transport after both adjustments.

and irregular placement of street refuges prevent from such significant reduction
in full-scale.

# of nodes # of edges memory usage search time

original graph 1096 8473 429 721B 4s

first adjustment 1096 2927 1 182 226B 1.70s

second adjustment 549 1987 1 225 810B 1.03s

decrement 50% 77% -185% 74%

Table 3. Comparison of computation over original data on Prague Public Transport

Network and after simple network compaction

5 More Opportunities for Graph Reduction

The advantage of the adjustments referred to in this paper is that they do not
alter the substance of problem but they only reduce the size of input data. It
does not prevent the application of other techniques for reducing the search
complexity.

5.1 Highway Hierarchy

One of interesting processes, which could build on referred adjustments is “high-
way hierarchy”[7]. This method could be used in two ways. We could further
reduce the public transport network from the second adjustment to achieve a
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further acceleration. To bring a noticeable improvement, we must be able to

find areas in the graph, with relatively dense traffic inside. These areas should

be connected together in a relatively small number of vertices. This approach

brings a problem, how to find areas compliant to the “highway hierarchy”. In the

case of urban public transport we consider finding of compliant areas to bring

the significant improvement very difficult. The other approach is to link urban

public transport and national or interstate transport networks together using

“highway hierarchy”.

6 Results

6.1 Memory Consumption

There are three levels of the graph – the original graph, graph after the first and

after both adjustments. For the search itself we need to hold the two highest

levels in memory. The initial segments are searched in the second level graph

when the initial or target vertex is not a node. Otherwise we start directly in

the third level. The path between nodes is searched in the third level graph. It is

not necessary to hold the original graph in main memory. The size of the graph

levels is decreasing. So the memory consumed by the graphs themselves would

not exceed the double of original value.

The data of the original timetables are needed for the changed transfer detec-

tion in the modified graph. The aggregated timetables are needed to determine

the waiting time. The resulting memory consumption depends on the represen-

tation of timetables. If the time tables are maintained only for the initial stop

of the pseudoline, the number of merged time tables will depend on the number

of pipeline. Each pipeline has its own merge-line and its own timetable.

In the current implementation all three levels of the graph are kept in the

main memory. This reflects to the referred memory consumption. Our aim in

future is to choose an appropriate representation of time tables and to minimize

the memory needed to store the additional structures.

6.2 The Hardware

Our reference hardware is HTC X7500 having Intel XScale 624MHz processor

and 128 megabytes RAM, 65 megabytes of free. Portable devices, on which the

current implementation is mostly targeted, used to be equipped by secondary

Flash-type memory. The writing to this kind of memory is usually several times

slower then the reading. The advantage of the mentioned adjustments is that

they do not require frequent writing into the secondary memory. Another specific

feature is that the access to various locations in the memory is not as complicated

as for example for hard drives. For this reason it is possible to hold the original

graph in the secondary memory without slowdown noticeable to the user.
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7 Conclusions

The methods introduced here speed up searching for optimal path between two

given points in public transport network. They are intended to be used on mobile

hardware where the original computation took several seconds what is for many

users not acceptable. Currently the computation takes in the worst case only

one second what is acceptable for most users. We are currently considering other

options of improvement of the search algorithm.
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