The BPM to UML activity diagram
transformation using XSLT*

Ondiej Macek! and Karel Richtal:?

! Department of Computer Science and Engineering, Faculty of Electrical
Engineering, Czech Technical University,
Karlovo namésti 13, 121 35, Praha 2, Czech Republic
{macekol, richta}@fel.cvut.cz
2 Department of Software Engineering, Faculty of Mathematics and Physics,Charles
University,
Malostranské namésti 25, 118 00, Praha 1, Czech Republic
karel.richta@mff.cuni.cz

Abstract. The Business Process Model represented as a diagram in
Business Process Modeling Notation (BPMN) is a commonly used way
how to describe business processes of an organization. Problems con-
nected with a complexity of notation and missing support in tools for
the software development can be solved by a transformation to a Unified
Modeling Language activity diagram. Another reason for creating such
a kind of transformation is that it can solve problems of time, cost and
quality associated with software creation in the scope of Model Driven
Development.

This article describes common problems with the transformation of a
BPMN diagram to a Unified Modeling Language activity diagram. One
of the key features of the described transformation is that it is tool
independent. This feature was achieved by using an XML metadata in-
terchange representation of both models as an input and output and by
using XSLT transformation for the model transformation itself.

Keywords: BPM, BPMN, UML, model transformation, XSLT

1 Introduction

The Business Process Model (BPM) is a model which describes business pro-
cesses of an organization. It is an important tool for understanding the activities
and information which are typically used to achieve business goals. So far it is a
popular way of describing and improving business processes. The BPM can be
described in various notations: in Business Process Modeling Notation (BPMN)
[1], in Eriksson-Penker’s notation [2], or sometimes as the Unified Modeling Lan-
guage (UML) activity diagram (UML-AD) [3].

* This paper was partially supported by the MSMT grant No. MSM 6840770014. This
research has also been partially supported by the grant GACR No. GA201/09,/0990

K. Richta, J. Pokorny, V. Snégel (Eds.): Dateso 2009, pp. 119-129, ISBN 978-80-01-04323-3.

120 Ondfej Macek, Karel Richta

The business process modeling is a recommendation for software develop-
ment according to the Unified Process [4]. The business process model is one
of utilizable analytical models. The aim of the business process modeling in the
phase of analysis is to understand processes in a domain.

2 The Need of the Transformation

The BPMN is commonly used by business process managers; therefore this part
of software analysis is often done before the process of software development even
starts. The BPM created by a business process manager is often represented as a
diagram in Business Process Modeling Notation because BPMN has a variety of
symbols allowing the description of the process effectively and in detail. Although
this representation is correct, it can have several disadvantages - the BPMN is
not fully supported by modeling tools used in the software development and in
the scope of support of Model Driven Software Development (MDD) there exist
only a few methods how to transform BPMN to other models.

Another problem connected with the BPMN is its complexity. The BPMN is
designed as a tool for efficient modeling of a business process; therefore it contains
symbols which represent non-atomic action and thus speeding the process of
modeling. This is an advantage for a creator of a model, but not for a reader
unfamiliar with the notation. And in phase of software analysis the analysts
(a creator of the model) often consult its models with such a kind of reader.
Therefore it will be useful to have the possibility to present the BPMN diagram
also in different notation. Different notation can carry new point of view at the
BPM or it can be easier to read and to understand by a customer (a reader of
the model).

There were published articles [5], [6] handling with the transformation be-
tween the business process model and the UML models, especially the trans-
formation into the use case model (diagram) and to the class diagram. If we
look closer at these transformations, we will see that these transformations are
information-loss, because both final diagrams contain only information about
the names of actors and actions and about the connection between them, but
information about the action flow is lost. With regard to this fact it will be
very useful, if a transformation is created between the BPMN and some of UML
behavioral diagrams (activity or sequence), because this transformation will pre-
serve both information - about the action flow, actors and action names.

From this point of view, the representation of the BPM according to the
notation of UML-AD can be more useful. At present, the support and the usage
of UML standard is matter of fact. There will be no problem in supporting UML-
AD in modeling tools. UML-AD can also help with the problem associated to
the complexity of BPMN. If we compare both notations, we realize that a lot
of symbols of BPMN cannot be easily represented as the only one symbol in
UML-AD. Often one symbol of the BPMN is represented as a complex structure
of elements in UML-AD. Therefore UML-AD can be considered as more naive

The BPM to UML activity diagram transformation using XSLT 121

and easier to understand, because the reader has to understand the meaning of
fewer symbols.

Despite of these reasons, it seems that the transformation between BPMN
and UML activity diagram is needed, although it will be a transformation be-
tween two models which are used to describe business processes. The transfor-
mation will allow us to use already created BPMN diagrams in the software
development, and the transformation can also assist in the communication with
a customer

3 Transformation Method

The transformation between models can be realized in various ways. It should
serve as a bridge among two different models and between tools which support
BPMN and tools supporting UML-AD. It will be useful if it is created in such a
way that it will be easy to implement as a plug-in to existing tools and can be
also used independently of any actual tool.

The first idea how to create the transformation was to create it by an Object
Management Group (OMG) standard for model transformations - Query View
Transformation language (QVT) [7], but there are not many modeling tools with
a QVT processor and the support for both BPMN and UML-AD.

The problem with a missing language processor in modeling tools is the prob-
lem associated with the most of all existing modeling and transforming languages
or with a language that we can create. Another problem connected with the usage
of the modeling language will be how to guarantee the interoperability between
the modeling tools, because each tool uses a different internal representation of
a model. Therefore, an alternative way of transformation is needed.

We decided to use model representation based on extensible markup language
(XML) [8]. This XML representation is standardized as the XML Metadata
Interchange (XMI) standard [9] by the OMG as an instrument for the transport
from one modeling tool to another. Thus, the XMI standard is based on the
XML and common tools working with XML can also be used to work with XMI.
The most interesting one is XSLT [10], because it allows transformation from
one XML document to another one and enables any change in its structure. The
combination of XMI and XSLT satisfies conditions on the tool independence and
solves the problem of a model representation. Similar approach was used at the
transformation between UML models in [11].

4 The Input and Output

As was written earlier, the input and output of the transformation will be the
XMI representation of appropriate models. The input will be an XMI represen-
tation of a diagram in BPMN - see chapter 4.1 - and the output will be an XMI
representation of a UML-AD - see chapter 4.2. The XMI standard describes the
nodes in the diagram and the way how the nodes are connected by edges. Unfor-
tunately, the description of the graphical representation of a model is not defined

122 Ondfej Macek, Karel Richta

in the XMI standard. The description of the graphical part is typically hidden
in an XMI element extension which is defined as a container for the tool-specific
data. Therefore, the graphical layout is not universally transportable and in the
transformation we will handle the diagram transfer only.

4.1 Description of the BPMN in XMI

The BPMN has no standardized XMI representation. Therefore, we decide to
use the representation which is used in Altova UModel [12], so BPMN diagrams
will be easy to visualize and XMI easy to generate. The BPMN representation
is based on similarities between BPMN and UML-AD. The BPMN model is
described by extending UML-AD XMI representation. This extension is made
by adding new elements and attributes to the UML-AD representation. In this
way a new profile is defined, which is a part of the BPMN XMI document and
serves as a declarative reference.

Every symbol in the BPMN has a corresponding element in XMI which de-
fines its type and attributes. Attribute xmi:type refers to the UML-AD symbol
which is extended and xmi:extension element and its subelements are used to
define the features typical for the BPMN by referring to the profile stored in the
document. Following XML snippet represents basic start event node:

<node xmi:type="uml:AcceptEventAction"
xmi:id="Uacfd64a5-9c7e-4eaf-995d-ab3849b7£8c9" name="start node">
<xmi:Extension extender="UModel">
<appliedStereotype xmi:type="uml:StereotypeApplication"
xmi:id="Ufbe96d2e-05fd-4c35-a6e9-49ab669549e2"
classifier="U00200106-7510-11d9-86£2-000476a22f44">
<slot xmi:type="uml:Slot" xmi:id="U1e97ab77-7cb5-47c9-bb56-28b4eb3a77£fd"
definingFeature="U00080106-7510-11d9-86£2-000476a22f44">
<value xmi:type="uml:InstanceValue"
xmi:id="Ucec9e7bc-8716-4662-a2a5-de44a55930b7"
instance="U00100106-7510-11d9-86£2-000476a22f44" />
</slot>
<slot xmi:type="uml:Slot" xmi:id="Ub80e3e24-3d83-437d-bf2f-46a84c93a341"
definingFeature="U00220106-7510-11d9-86£2-000476a22f44">
<value xmi:type="uml:InstanceValue"
xmi:id="Uc01150e2-3256-4052-9506-450485581e7c"
instance="U00140106-7510-11d9-86£2-000476a22f44" />
</slot>
</appliedStereotype>
</xmi:Extension>
<clientDependency xmi:idref="U54b4a7eb-4e3f-4964-9323-268e4ffb5164"/>
</node>.

This representation has the advantage that the connection between the sym-
bols is mostly obvious. This fact helps to create transformation rules. On the
other hand, the BPMN XMI file is illegible for humans and, moreover, the slot
elements sometimes contain redundant information (the information was defined

The BPM to UML activity diagram transformation using XSLT 123

earlier or it is not necessary to define). Therefore, it is good reason why to im-
prove this XMI notation in the future.

4.2 UML-AD Description in XMI

The XMI representation of the UML-AD is defined by the OMG as a part of the
UML standard (current definition can be found in [13]), therefore the XMI file
dedicated to transport the UML diagram uses the namespace:

http://schema.omg.org/spec/UML/version,

where the version represents the number of a current UML version (e.g. 2.1.2
for used UML version)used to describe symbols contained in the diagram. The
XMI file of a UML activity diagram contains only the description of the nodes
in the diagram and the way they are connected. This is based on their definition
in the namespace. No extra profile is required. Since the description is based on
the usage of the UML namespace, the model description is very straightforward
and easy to read. This is the example of the XMI representation of an UML-AD
initial node (describes the same as the example of start event node in chapter
4.1):

<node xmi:type="uml:InitialNode" xmi:id="UO002" name="start node">
<outgoing xmi:idref="U004"/>
</node>.

If both ways of the diagram representation are compared, it is obvious that
creating an XMI profile for the BPMN similar as the XMI profile for the UML-
AD, will be very useful.

5 Transformation problems

Although both models are very similar, the transformation from the BPMN to
the UML-AD is not as straightforward as it seems. Although both models de-
scribe the same thing and use similar symbols, the models differ fundamentally.
It is caused by the complexity of the BPMN symbols. In the UML activity di-
agram, every symbol represents one concrete and atomic information. On the
other hand, the symbols in the BPMN compress the information. For example
the symbol for the loop (see Fig. 1) in the BPM has no appropriate equivalent
in the group of UML-AD symbols, because the loop symbol contains non-atomic
information (information about the action and information about the loop con-
dition). The compression of the information is very useful for business process
managers, because it makes the diagram more synoptical, and therefore easy to
create and read. On the other hand,this complexity complicates the transforma-
tion from the BPMN to the UML-AD.

If we compare the BPMN and UML-AD, we will see that some symbols
can be transformed directly by using one-to-one transformation (e.g. the task
node in the BPMN is transformed to the UML activity node behavioral action),
but in most cases the compression of the information in BPMN symbols causes

124 Ondfej Macek, Karel Richta

Loop Task
)

Fig. 1. The BPMN symbol for loop.

the transformation is not one-to-one (one BPMN symbol to one UML activity
symbol) but typically one-to-many.

To demonstrate this fact there can be used the example of the BPMN loop
symbol (see Fig. 1), whose complexity was mentioned in the previous text. This
single symbol in the BPMN could not be transformed to one symbol of the
UML activity diagram. The loop symbol has an appropriate representation in a
construction consisting of four UML activity symbols - TASK, DECISION and
two edges, where one edge leads from the TASK to DECISION and the other
one leads backwards. The TASK represents the action and the decision node
is used to resolve the loop condition. Based on the result of the condition the
activity flow leads to the TASK or continues to the symbol following after the
loop. The construction of the loop in the UML activity can have two different
orders of the nodes. It depends on the fact if the loop condition is tested before
or after the action (see Fig. 2).

Further complication lies in the fact that some loops are limited by the num-
ber of loops and not by the condition - in the BPMN this information is hidden
in loop symbol attributes, but it does not hold for UML-AD. In this case, the
UML-AD construction matching a BPMN loop symbol should contain an action
initializing the counter of loops. The type of a loop determines the existence of
two possible constructions. The loops differ in time of checking a loop condition
- before and after the task. We assume that the counter is incremented in the
loop action. The loop with the counter can have also two possible matches in
UML-AD according the time when the condition is being checked. The incoming
edges, which were connected to the original loop node, is also necessary to redi-
rect according to the order of the task and decision symbols. Thus, one symbol
in the BPMN is replaced by four nodes in the UML activity which can be in two
different orders.

Besides the symbols which can be transformed as one-to-one or one-to-many,
there exist also symbols which can be sometimes transformed using one-to-one

The BPM to UML activity diagram transformation using XSLT 125

Decide the loop condition
Loop ends.

Loop continues

Loop continues

Decide the loop condition ‘

Loop ends

Fig. 2. Two possible representation of the loop in the UML activity diagram - a) shows
loop where the condition is checked before the action is taken and b) shows the loop
where the loop condition is checked after taking action.

and sometimes using one-to-many. Typical example is the symbol representing
the start event which is transformed according to its trigger in both ways. If
the type of a start event trigger is NONE, MESSAGE or TIMER, the node
could be transformed as one-to-one, since there are appropriate symbols in the
UML activity diagram. Other trigger types (RULE, LINK, and MULTIPLE),
however, have not appropriate representation in the UML activity. That is why
the start event must be, in this case, transformed to more nodes of the UML
activity diagram.

Start event symbol can be transformed in two ways. First, as a construction
consisting of INITIAL NODE and DECISION (to resolve the event type) and
EDGE connecting the INITIAL NODE and the DECISION. In this case the
trigger became a part of the process itself, therefore the UML-AD will have a
little bit different meaning than the input BPMN diagram. Second, these nodes
can be transformed by creating an INITIAL NODE with a note, where the
trigger will be described. In this case, the trigger is not the part of the process.

Another problem is that some symbols in the BPMN can have two different
meanings according to the position in the diagram, concretely in dependency on
the number of edges leading to the node. Typical examples are decisions nodes.
The decision nodes can be used in two different ways. The decision nodes enable
either the branching or merging of the activity flow. As an example we can use
a parallel decision node - see Fig. 3.

This problem can be solved either by a naive method or by a method of
finding the pair. The naive method assumes that the decision node with two
or more entering edges is a MERGE node. The method of finding the pairs
will search the diagram through and it will find the decision nodes pairs. If the
method finds a pair of decision nodes, the first of them (in the action flow) will

126 Ondfej Macek, Karel Richta

Parallel task 1
Parallel task 2

Parallel task 3

E Parallel merge

Parallel switch

Fig. 3. The BPMN symbol for parallel gateway (rhombus with a cross inside) can be
used for branching or merging the activity flow.

be transformed as a decision node and the other one as a merge node. In case
that no pair is found the naive method can be used or all decision nodes in the
BPMN are replaced by the decision nodes in UML-AD. In our transformation
we use the naive method, so all decision nodes with two or more incoming edges
will be transformed as merge nodes.

From the previous text it is obvious that the transformation of the BPMN to
the UML activity is possible, because the BPMN and the UML-AD has a very
similar representation of nodes. The structure of diagrams will differ strongly,
because the BPMN symbols cannot be transformed to the UML-AD matching
symbols one-to-one.

6 The Transformation

There was created an XSLT stylesheet to solve a proper transformation in be-
tween two discussed models. The transformation was tested on several BPMN
diagrams. See Fig. 4 where is a model describing a process of receiving the order
in a company. This diagram was exported to the XMI file and then the trans-
formation stylesheet was applied. The result was imported to the modeling tool
as is shown in Fig. 5. Both diagrams describe the same process. The only disad-
vantage was that the graphical layout of the activity diagram had to be created
manually.

The realized transformation satisfies all conditions which were set in analytic
parts of this paper and can be used in practice. Another positive feature is that
the transformation is fully automatic and no user intervention is needed.

The BPM to UML activity diagram transformation using XSLT 127

Patient

Send Doctor Receive Appt. Send Medicine Recieve
Request Request Medicine
lines occurs &
b

I'want to ses doctor) Go see the doctor Need my medicine Here is your medicine
r
Recieve Recieve -
Send Appt. Send Medicine
Doctor Medicine
Request Request

Receptionist

Fig. 4. The diagram in BPMN. Figure from [1]

The disadvantage of the transformation using XMI and XSLT is that it can-
not be used so easily for keeping consistency between two models. To solve the
problem, it is necessary to carry out a backward transformation (from UML-AD
to the BPMN) so that the changes in a UML-AD diagram could be reflected
back to a corresponding BPMN diagram.

7 The Backward Transformation

In the previous paragraphs it was stated that the backward transformation from
the UML-AD to BPMN is needed. Basically, such a transformation can be real-
ized by rewriting the UML-AD by BPMN symbols. This way of transformation
will use the fact that UML-AD symbols match the BPMN symbols. If we like
to have the output model more sophisticated, we can design the transformation
by reversal rewriting the rules from the original transformation. In this case, we
get a business process model that will contain also complex BPMN symbols, but
not all BPMN symbols can be reached by an automatic transformation, since
there is not enough information in the UML-AD. This lack of information can be
solved by adding this information manually. The aim was to create an automatic
transformation, and therefore we cannot use this solution.

Although the backward transformation is needed, it will be difficult to create
it to keep comnsistency of both models. The backward transformation can create
the BPMN diagram with the same information, which has the input UML-AD.
Thus, we are able to transform one model to another and vice versa. In case of

128 Ondfej Macek, Karel Richta

Rejected

— | w

$end Invoice

Recieve Order

[defaull] Accepted

Fill Order

company

Accept Payment

Make Payment ||

customer

Fig. 5. The diagram in UML activity diagram which was created by using described
transformation from the diagram in Fig. 4. The graphical layout was modified manually.

keeping the consistency, there appears a problem how to match the UML-AD
symbols and construction with the BPMN symbols and how to solve the lack
of information in UML-AD (some information which was part of the BPMN
symbols can be not reachable in the UML-AD).

The problem connected with the symbol matching can be solved easily by
using an unique identifier for matching symbols. Similar solution can be used
for matching the UML-AD constructions and BPMN symbols. The UML-AD
construction should have an identifier which will carry information that the
symbols are parts of one construction and together are matched to concrete
BPMN symbol.

The problem of missing information can be solved by adding parameters
manually.

8 Conclusions

The transformation between diagrams in the BPMN and the UML activity dia-
grams is needed, because it will help to improve the development of software. The
UML-AD has better support in modeling tools and is easier for the customer (a
reader of the diagram unfamiliar with the BPMN). The transformation among
these two notations can serve as a bridge between the tools supporting the busi-
ness process management and the tools for the software development.

The BPM to UML activity diagram transformation using XSLT 129

The transformation is realized by using representation of both models in
XMTI as the input and output. Transformation rules described in the form of XSL
transformation satisfy the requirements on the tool independence and integration
possibility. Disadvantage of this process is that the information about graphical
layout of the model is lost.

The designed transformation should be completed by creating the backward
transformation (from the UML-AD to the BPMN). Then the transformations
can be used to keep consistency between diagrams in these notations. The task
of backward transformation is complicated by the fact, that UML-AD does not
contain all needed information. This information can be added manually, but in
that case the backward transformation will not be automatic.

References

1. Object Management Group. Business Process Modeling Notation (BPMN). http:
//wwu.omg.org/technology/documents/br_pm_spec_catalog.htm, version 1.2, 3
January 2009 .

2. Eriksson, H., Penker, M.. Business Modeling with UML: Business Patterns at
Work. John Wiley & Sons. ISBN 978-0-471-29551-8, 2000.

3. Object Management Group: Unified Modeling Language (UML). http://www.
omg.org/technology/documents/modeling_spec_catalog.htm, version 2.1.2, 4
November 2007.

4. Jacobson, 1., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesley Professional. ISBN 020-1-571-692, 1999

5. Rodriguez, A., Fernandez-Medina, E., Piattini, M.: Analysis-Level Classes from
Secure Business Processes Through Model Transformations. In Trust, Privacy and
Security in Digital Business 2007. Springer Berlin / Heidelberg. pp. 104-114. ISBN
978-3-540-744, 2007

6. Rodriguez, A., Fernandez-Medina, E., Piattini, M.: CIM to PIM Transformation:
A Reality. In Research and Practical Issues of Enterprise Information Systems II.
Springer Boston. pp. 1239-1249. ISBN 978-0-387-763, 2008

7. Object Management Group: MOF Query / Views / Transformations. version
1.0, April 2008 . http://www.omg.org/technology/documents/modeling_spec_
catalog.htm,

8. World Wide Web Consortium: FEztensible Markup Language (XML). version
1.0(fifth edition), 26 November 2008. http://www.w3.org/XML/

9. Object Management Group: XML Metadata Interchange (XMI). version 2.1.1,
1 December 2007. http://www.omg.org/technology/documents/modeling_spec_
catalog.htm#XMI,

10. World Wide Web Consortium: XSL Transformations (XSLT). version 1.0, 16
November 1999. http://www.w3.org/TR/xslt

11. Kovse, J., Héarder, T.: Generic XMI-Based UML Model Transformations. In
Object-Oriented Information Systems 2002. Springer Berlin / Heidelberg. pp. 183-
190. ISBN 978-3-540-44087-1, 2002

12. Altova: UModel 2009. cite 10.1.2009. https://shop.altova.com/category.asp?
catalog_name=V2008R2C3_shop&category_name=UModel&Page=1,

13. Object Management Group: Documents associated with UML Version 2.1.2, 2006
. http://www.omg.org/spec/UML/20061001/Superstructure.cmof .

