
XML-λ Type System and Data Model Revealed

Pavel Loupal

Dept. of Computer Science and Engineering
Faculty of Electrical Engineering, Czech Technical University

Karlovo nám. 13, 121 35 Praha 2
Czech Republic

loupalp@fel.cvut.cz

Abstract. Within this paper we provide formal description of a func-
tional type system for modeling XML formatted data along with an
annotated example of an XML document modeled using such approach.
We discuss its advantages and drawbacks in comparison with existing so-
lutions. This submission is a part of our long-term endeavor to propose,
examine, and implement an environment for XML data management,
especially utilized for XPath/XQuery semantics description.

1 Introduction

The Extensible Markup Language (XML) 1.0 [1] specifies both physical and
logical structure of XML documents. For purpose of related specifications (e.g.,
XPath or DOM) and other XML applications is such low-level description too
punctual and hence a number of more abstract data models has been proposed.
The best known data models nowadays are the XML Information Set (XML
Infoset) [4] and the XQuery 1.0 and XPath 2.0 Data Model [7].

This paper describes an alternative data model for XML that forms a part
of the XML-λ Framework – a functional framework for modeling, querying and
updating XML. The main goal of this work is to provide the reader very inti-
mate knowledge of the Framework and cover all its key concepts and properties.
We suppose that the accompanying example presents these facts in reasonable
complexity.

Contributions. The main outcome of this paper for the reader should be deep
insight into the type system concept and familiarization with the XML-λ data
model. We have aimed our endeavor to provide following contributions:

– Formal description of the functional type system for XML.

– Annotated example of an XML document modeled using the XML-λ.

– Informal discussion of Framework’s properties and brief comparison with
existing data models.

– Outline of the proof-of-the-concept prototype implementation.

K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 130–141, ISBN 978-80-01-04323-3.

XML-λ Type System and Data Model Revealed 131

Structure. The paper is organized as follows: Section 2 contains formal descrip-
tion of the XML-λ Framework and shows a simple XML document modeled
using this approach. General properties, features, and drawbacks of the Frame-
work along with a brief comparison with other data models are discussed in
Section 3. Then, in Section 4, we outline our prototype implementation and fi-
nally conclude our contribution in Section 5 together with outlook for future
work.

Related Work. The main area of interest that is discussed within this paper is
the domain of data models for XML. There are two principal data models for
XML in use nowadays; the first is the XML Infoset [4] and the second is the
XQuery 1.0 and XPath 2.0 Data Model [7]. Both specifications are proposed by
the W3C [15] and are employed in interrelated XML standards. Roots of the
XML-λ Framework might be found in Pokorný’s work [12, 13].

2 The XML-λ Framework

Under the term “framework” we understand both the data model and the query
language based on this model. Here, we define the fundamental cornerstone of
the framework, the functional type system for XML that is suitable for modeling
XML — TE . Then, in Section 2.3, we show a detailed example of an XML
document instance realized using the XML-λ Framework.

2.1 Overview

Our research is significantly influenced by the idea of a functional approach for
XML published by Pokorný in [12] and [13]. We found his work very appealing
and useful in wide range of applications related to XML. Our main motivation
is the belief that it is possible use this framework for expressing semantics of
various XML query languages in formally clear and understandable way by using
a simply-typed lambda calculus and a general type system. Thus, we set out
a goal to express the semantics of XPath and XQuery languages using this
approach called XML-λ. We do not aim to propose a new query language for
XML but we rather offer an alternative solution for evaluation existing query
languages.

Informal Introduction. Figure 1 illustrates the relationship between W3C and
XML-λ models. We can observe that the document schema expressed by DTD
is in the Framework modeled with two sets; the first one is a set of element types

available in XML schema and the second one is a set of element objects that
stores information about document structure. Every document instance then
comprises of a set of abstract elements (each is of an element type) and a set of
element object instances. Note that these two sets are changing in time, so as
the document changes.

132 Pavel Loupal

Fig. 1. The relationship between W3C and XML-λ models

2.2 Type System Definition

The main purpose of a type system is to prevent the occurrence of execution
errors in a program1 [2]. In this work we understand this definition as checking for
correct nesting of XML document structure, using the type system for semantic
query validation, and its further evaluation (including optimization).

But there is a unifying cornerstone for all type systems — each type system
has a finite set of rules for type construction and set of respective types defined
within this system. Following sections describe step-by-step process of definition
of a functional type system for XML. We begin with a general functional type
system and extend it with support for regular types. Finally, we propose the
type system TE that forms the core formalism in the XML-λ Framework.

Functional Type System First, we define a general functional type system T .
This definition basically follows the common approach presented for example
in [16, p.143].

Definition 1 (Type system T). Let B is a set of (atomic) types S1 . . . Sn,
n ≥ 1. Type System T over B is obtained by the grammar

T := S primitive type
| (T1 → T2) functional type
| (T1, . . . , Tk) tuple type
| (T1 + . . . + Tk) union type

where S ∈ B.

Presuming the members of B being non-empty disjoint sets, then the type
(T1 → T2) means a set of all (both total and partial) functions from T1 into T2.

1 In the context of this work, we understand by the term “program” an XML query

we aim to evaluate.

XML-λ Type System and Data Model Revealed 133

(T1, . . . , Tn) denotes the Cartesian product (T1 × . . . × Tn) and (T1 + . . . + Tn)
denotes the union T1 ∪ . . . ∪ Tn. We denote o : T an object o of type T (also
called “T -object”).

Regular Type System Subsequently, we define a regular type system Treg

that extends the type system T with regular constructs. For this definition, we
employ the set Bool ≡ {TRUE, FALSE} with its common Boolean semantics.
Next, let us suppose a set Name that contains all possible element names allowed
by the XML grammar [1].

Definition 2 (Type System Treg). Let B = {String, Bool, Name},
tag ∈ Name. The type system Treg over B is defined as follows.

T := tag : String | tag : elementary regular expression
| T ∗ zero or more (Kleene closure)
| T+ one or more (positive closure)
| T ? zero or one

where T is an alternative or elementary regular expression.
| (T1 | T2) alternative

Upon this type system we can define a type system for XML denoted TE as
follows.

TE — The Type System for XML The last step for obtaining a type system
suitable for modeling XML data is a slight alternation of Treg aiming to support
data types available from DTD. For this purpose, we have to take a closer look
at DTD properties. Due to the fact that we consider only typed XML documents
(i.e. always with an attached DTD) we can distinguish the type of each particular
XML element in a document. It is also obvious that in a document there can
exist two different elements with the same tag and content, therefore we have
to be able to treat them as distinct instances. Therefore, terms abstract element
and element object (or T-object) were introduced.

Definition 3 (Abstract Element). For each XML element there exists ex-
actly one abstract element. The (infinite) set of abstract elements is denoted
as E.

Definition 4 (Element Object). An element object of type T , denoted as
T -object, is a partial function of type E → Trng where Trng is an element type
or String.

An arbitrary XML element is then modeled as a mapping from one particular
abstract element to its respective codomain (whose type is determined by cor-
responding element type). Hence, by application of an T -object to this abstract
element we may obtain either a character string (typed as PCDATA in DTD) or
a more complex structure regarding to the type system.

134 Pavel Loupal

Definition 5 (Type System TE). Let Treg over B be the type system from
Definition 2 and E be the set of abstract elements. Then the type system TE

induced by Treg is defined as follows.

E := TAG : T | TAG : elementary element types
where tag : T and tag : are elementary regular expressions over B.

| E∗ zero or more (Kleene closure)
| E+ one or more (positive closure)
| E? zero or one
| (E1 | E2) alternative
| TAG : (E1, . . . , Ek)

where tag ∈ Name complex element types

Elementary element types and complex element types are hereafter denoted
as element types. For example, with respect to the DTD shown in Figure 2, we
write respective element types as:

BIB : BOOK*

BOOK : (TITLE, (AUTHOR+ | EDITOR+), PUBLISHER, PRICE)

AUTHOR : (LAST, FIRST)

EDITOR : (LAST, FIRST, AFFILIATION)

TITLE : String

LAST : String

FIRST : String

AFFILIATION : String

PUBLISHER : String

PRICE : String

Due to constraints given by DTD, there exists exactly one content model
for each XML element (see the “local tree languages” in [11]). Therefore, we
can omit the part beyond the colon because it cannot lead to any misun-
derstanding; i.e., we may use a shorter notation and write AUTHOR instead of
AUTHOR : (LAST, FIRST).

For convenience, we also define a nullary function. It is a useful construct
that allows us to access abstract elements and filter them by corresponding ele-
ment type. Later on, we will utilize it in the query language.

Definition 6 (Nullary function). A T -nullary function returns the domain
of a T -object, where T denotes an element type.

Note that the set E of all abstract elements is thus split by these functions into
a number of disjoint subsets for all respective element types.

Attributes. Until now we have discussed only elements, their structural proper-
ties, and their content. Other important data in XML are elements’ attributes.
In the XML-λ Framework we use the same way for accessing them as for ele-
ments; we model attributes as functions too. For example, we model the year

XML-λ Type System and Data Model Revealed 135

attribute of the book element as a partial function Y EAR : E → String whereas
its domain is EBOOK ⊆ E such that BOOK-nullary function is there defined
(thus, this function is defined only for elements that have associated attributes
with this name).

2.3 Data Model Definition

A data model is an abstract model that describes how data is represented and
accessed. In our work we employ simple and functional types defined by the TE

type system (see Section 2.2). Apparently, in the XML-λ Framework the main
entity to be described is the XML document. We can see the instance of an
XML document (which is basically a valuation of a type from TE) as a structure
containing

– set of abstract elements, denoted Edoc (subset of the infinite set E),
– set of T -objects,
– set of all text content of document’s elements and attributes.

Note that for simplification we consider character strings typed as String for
all textual content instead of more accurate definitions of PCDATA and CDATA

proposed in [1].

A Data Model Example This section provides an example of a type system
definition and realization of an XML document instance in the XML-λ Frame-
work. Let us consider a sample DTD2 shown in Figure 2 and a respective XML
document in Figure 3.

<!ELEMENT bib (book*)>

<!ELEMENT book (title, (author+ | editor+), publisher, price)>

<!ATTLIST book year CDATA #REQUIRED >

<!ELEMENT author (last, first)>

<!ELEMENT editor (last, first, affiliation)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT last (#PCDATA)>

<!ELEMENT first (#PCDATA)>

<!ELEMENT affiliation (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

<!ELEMENT price (#PCDATA)>

Fig. 2. An example XML schema — biblio.dtd

2 This DTD is taken from the “XMP” Use Case published in the XML Query Use
Cases [3] specification

136 Pavel Loupal

<?xml version="1.0"?>

<!DOCTYPE bib SYSTEM "biblio.dtd">

<bib>

<book year="2008">

<title> XML technologie </title>

<author>

<last> Pokorny </last>

<first> Jaroslav </first>

</author>

<author>

<last> Richta </last>

<first> Karel </first>

</author>

<publisher> Grada </publisher>

<price> 286.00 </price>

</book>

</bib>

Fig. 3. A well-formed and valid XML document

For given schema we obtain (as illustrated in Section 5) following set of both
elementary and complex element types: {BIB, BOOK, AUTHOR, EDITOR,
TITLE, LAST , FIRST , AFFILIATION , PUBLISHER, PRICE}. The set
of abstract elements, Edoc, contains for the XML document in Figure 3 eleven
items: Edoc = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11}. The set of element objects
with corresponding mappings is illustrated in Table 1.

In this scenario, for instance, the title-element object (a function of type
E → String) is defined exactly for one abstract element (the one that serves
for modeling the title element) and for this abstract element it returns value
“XML technologie”.

In a more complex case, function book of type BOOK : E → E×2E ×E×E,
applied to an arbitrary abstract element from its domain, returns a quadruple
— subset of this Cartesian product. Within the tuple, we can then access its
particular components by performing name-based projections (more precisely,
“element type name”-based projections).

3 Framework Features Summary

The previous section describes formally the XML-λ Framework along with a
simple example. In this part of the contribution, we discuss various aspects of
the Framework, its attributes, features, weaknesses, and drawbacks. We have
selected nine topics that are, as for us, important for comprehension, usage, and
comparison of existing data models for XML. We present such brief comparison
with the XML Infoset [4] and the XQuery 1.0 and XPath 2.0 Data Model [7].

XML-λ Type System and Data Model Revealed 137

Function Function domain/range Mappings

bib BIB : E → 2E bib(e1) = {e2}

book BOOK : E → E × 2E × E × E book(e2) = (e3, {e4, e7}, e10, e11)

book year Y EAR : E → String book year(e2) = “2008”

title TITLE : E → String title(e3) = “XML technologie”

author AUTHOR : E → E × E author(e4) = (e5, e6),
author(e7) = (e8, e9)

editor EDITOR : E → E × E × E none

last LAST : E → String last(e5) = “Pokorny”,
last(e8) = “Richta”

first FIRST : E → String first(e6) = “Jaroslav”,
first(e9) = “Karel”

affiliation AFFILIATION : E → String none

publisher PUBLISHER : E → String publisher(e10) = “Grada”

price PRICE : E → String price(e11) = “286.00”
Table 1. Set of T -objects induced by the running example

Following paragraphs discuss each topic one-by-one and this text is later
summarized3 in Table 2.

1.Functional Approach. One of the main forces at the rise of XML-λ was the aim
to provide an alternative to existing W3C proposal. Therefore the Framework is
strictly tied to the concept of functions; it uses both a functional type system
and a query language based on simply typed lambda calculus.

2.Multiple Data Models. The XML-λ Framework is presented here as a tool
for modeling and querying (and updating) XML formatted data typed by the
DTD. Considering the properties of the relational model we can also provide a
relational type system within the Framework and work with relational data, or
even pursue heterogeneous data transformation and integration between XML
and relational data sources.

In addition, although the DTD is still a relatively sufficient solution for most
real XML applications we claim that we can provide a type system that is based
on W3C’s XML Schema [5]. This extension of the Framework will be available
in our consecutive work. Yet there are (at least for now) some formal difficulties
and therefore we expect that we will be able to support only a part of the
specification.

3.Full XML Coverage. Within the Framework we can access and modify only
elements and attributes. With regard to the XML Infoset Data Model [4] there
may occur other information items in an XML document — e.g., comments,
processing instructions, etc. At the present time we do not plan to extend this
model but it is certainly possible to enrich it with other sorts of such items.

3 Y/N/? stands for Yes/No/Unknown; feature is supported, is not supported, or is
not examined yet.

138 Pavel Loupal

4.Uniform Data Model Access. The XML-λ data model does not strongly distin-
guish between elements and attributes. We model them with the same approach
— by functions; and access their content by evaluating these functions indepen-
dently on their “origin”.

5.Element Ordering. Formal foundations of the Framework stand on the set the-
ory. For its utilization in the world of XML we have to employ a kind of ordering
among elements. The concept known as “document order” [6, Section 2.4] is
realized in the Framework as a partial function f : E → Integer that assigns to
each abstract element an unique number according to this specification.

6.Mixed Content Model. This is probably the weakest spot of the Framework.
With respect to proposed type system it cannot handle data with mixed content
model [1]. This is still an issue that must be resolved as soon as possible since
it disables the usage of the Framework for document-centric XML data.

7.Mandatory Typing. Another questionable feature is the necessity of an XML
schema existence for all XML data processed by the XML-λ Framework. It is a
natural requirement with respect to the fact that the type system is built upon
this schema. Moreover, for vast majority of XML data available on the web such
schema does exist and is used [10].

8.Support for Recursive Types. XML data may also contain some recursive con-
tent, even though in small amount only [10]. However, all three data models we
mention here can settle this situation.

9.Performance. This aspect is one of the most important data model charac-
teristics for its production deployment. We have carried out some preliminary
XPath 1.0 benchmarks with promising results in [14] but we consider this early
evaluation as superficial and do not publish and discuss details here. With no
doubt, it is one of important issues that have to be furthermore examined.

Feature XML-λ Infoset XDM

1. Functional Approach Y N N

2. Multiple Data Models Y N N

3. Full XML Coverage N Y Y

4. Uniform Data Model Access Y N N

5. Element Ordering Y N Y

6. Mixed Content Model N Y Y

7. Mandatory Typing Y N N

8. Support for Recursive Types Y Y Y

9. Performance ? ? ?

Table 2. The comparison of selected data models

XML-λ Type System and Data Model Revealed 139

4 Prototype Implementation Overview

We already have a Java prototype implementation available. The main part is a
core library that realizes the type system and data model. Existing applications,
an XPath 1.0 Processor and the ExDB [9] database management system, are
built upon this library. The internal structure of this component is illustrated in
the UML class diagram in Figure 4.

TObjectSet

put(to : TObject) : void

getSubelements(uid : int) : UIDTuple

setSubelements(uid : int,tuple : UIDTuple) : void

getParent(uid : int) : int

getByType(type : ElementType) : List

logger : Logger

types : Map

values : Map

parents : Map

UIDTuple

<<create>> UIDTuple()

<<create>> UIDTuple(intList : List)

contains(uid : int) : boolean

add(uid : int) : void

toList() : List

toString() : String

content : List

ElementType

<<create>> ElementType(_name : String)

getName() : String

toString() : String

equals(o : Object) : boolean

hashCode() : int

name : String

fullName : String

ElementTypeLibrary

<<create>> ElementTypeLibrary()

isAny(typeName : String) : boolean

getInstance() : ElementTypeLibrary

getTypeForName(elementName : String) : ElementType

toString() : String

types : HashMap

instance : ElementTypeLibrary

TObject

<<create>> TObject(elem : AbstractElement,uid : UIDTuple)

getType() : ElementType

getUID() : int

getContent() : UIDTuple

toString() : String

logger : Logger

element : AbstractElement

uidTuple : UIDTuple

AbstractElement

<<create>> AbstractElement(_elementId : int,_type : ElementType)

toString() : String

getElementId() : int

getType() : ElementType

compareTo(o : Object) : int

type : ElementType

elementId : int

swing::xla::data::Document

<<create>> Document(uri : String)

getSchema() : DocumentSchema

getAbstractElements() : AbstractElementSet

getTObjectSet() : TObjectSet

getPCData() : PCData

getCData() : CData

addElement(e : AbstractElement) : void

addCData(uid : int,attrs : Attributes) : void

addPcData(uid : int,s : String) : void

addTObject(to : TObject) : void

docId : String

schema : DocumentSchema

E : AbstractElementSet

pcData : PCData

cData : CData

tObjects : TObjectSet

type

1

1

element

1

1

AbstractElementSet

<<create>> AbstractElementSet()

add(e : AbstractElement) : void

add(set : AbstractElementSet) : void

clear() : void

getByType(type : ElementType) : AbstractElementSet

getByID(id : int) : AbstractElement

iterator() : Iterator

size() : int

E : SortedMap

10..*

0..* 1

1

1

Fig. 4. The main classes in the swing.xla.core package

The core package comprises of approximately 20 classes that provide basic
functionality as a SAX handler, XMLOutputFormatter and other classes that
cover the essential functionality.

Our preliminary benchmark of the XPath 1.0 processor based upon this li-
brary is ready to be published in [14]. This work contains a comparison with
state-of-the-art XPath processors inspired by the XPathMark test [8]. We con-
sider the results as promising but the test did detect a serious performance leak
in XML document parsing; in contrast to the others, the process of memory
allocation and internal data model structures building behaves exponentially in-
stead of linearly as expected. It is an implementation issue that must be fixed
in order to catch up with the rivals.

140 Pavel Loupal

5 Conclusion

We have published a detailed description of the XML-λ’s type system based on
the Document Type Definition along with a data model suitable for description
of XML formatted data. This model is subsequently demonstrated on a sim-
ple example where we describe the concept and utilization of the Framework.
Further, we have discussed various issues and features of our approach. We can
observe that some of the features are interesting for more detailed examination,
e.g. the elegance of the functional approach combined with a reasonable perfor-
mance of our prototype implementation. Despite of few remaining issues, we still
believe that the idea of a functional approach we have presented is interesting,
interim results are promising, and our work on this topic will bring meaningful
accomplishments.

Future Work. So far, we have proposed a theoretical base for modeling and
querying XML. As shown in this paper there are still issues to be solved, in
particular the ability to treat mixed element content and developments with the
prototype implementation. We find these topics apparently as the most impor-
tant for the moment.

Acknowledgments. This research has been partially supported by the grant of
The Czech Science Foundation (GAČR) No. GA201/09/0990.

References

1. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible markup language (XML) 1.0 (fourth edition), August 2006.
http://www.w3.org/TR/2006/REC-xml-20060816.

2. L. Cardelli. Handbook of Computer Science and Engineering, chapter 103: Type
Systems. Digital Equipment Corporation, 1997.

3. D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, and J. Robie. XML
Query Use Cases, March 2007. http://www.w3.org/TR/2007/NOTE-xquery-use-
cases-20070323/.

4. J. Cowan and R. Tobin. XML information set (second edition), April 2004.
http://www.w3.org/TR/2004/REC-xml-infoset-20040204/.

5. D. C. Fallside, P. Walmsley, H. S. Thompson, D. Beech, M. Maloney, N. Mendel-
sohn, P. V. Biron, and A. Malhotra. XML Schema 1.0, October 2004.
http://www.w3.org/XML/Schema.

6. M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0
and XPath 2.0 Data Model, September 2005. http://www.w3.org/TR/xpath-
datamodel/.

7. M. Fernández, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0 and
XPath 2.0 Data Model, January 2007. http://www.w3.org/TR/2007/REC-xpath-
datamodel-20070123/.

8. M. Franceschet. XPathMark: An XPath Benchmark for the XMark Generated
Data. In S. Bressan, S. Ceri, E. Hunt, Z. G. Ives, Z. Bellahsene, M. Rys, and
R. Unland, editors, XSym, volume 3671 of Lecture Notes in Computer Science,
pages 129–143. Springer, 2005.

XML-λ Type System and Data Model Revealed 141

9. P. Loupal. Experimental DataBase (ExDB) Project Homepage.
http://swing.felk.cvut.cz/~loupalp.

10. I. Mlýnková, K. Toman, and J. Pokorný. Statistical Analysis of Real XML Data
Collections. In COMAD ’06: Proceedings of the 13th International Conference

on Management of Data, pages 20 – 31. Tata McGraw-Hill Publishing Co. Ltd.,
December 2006.

11. M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema
languages using formal language theory. ACM Trans. Internet Techn., 5(4):660–
704, 2005.

12. J. Pokorný. XML functionally. In B. C. Desai, Y. Kioki, and M. Toyama, editors,
Proceedings of IDEAS2000, pages 266–274. IEEE Comp. Society, 2000.

13. J. Pokorný. XML-λ: an extendible framework for manipulating XML data. In
Proceedings of BIS 2002, pages 160–168, Poznan, 2002.

14. J. Stoklasa and P. Loupal. Benchmarking a lambda calculus based XPath proces-
sor. Yet unpublished.

15. The World Wide Web Consortium. W3C Homepage. http://www.w3.org.
16. J. Zlatuška. Lambda-kalkul. Masarykova univerzita, Brno, Česká republika, 1993.

