
Combination of TA- and MD-algorithm

for Efficient Solving of Top-K Problem

according to User’s Preferences

Matúš Ondreička and Jaroslav Pokorný

Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic

matus.ondreicka@mff.cuni.cz,jaroslav.pokorny@mff.cuni.cz

Abstract. In this article we focus on efficient solving of searching the

best K objects in more attributes according to user’s preferences. Local

preferences are modelled with one of four types of fuzzy function. Global

preferences are modelled concurrently with an aggregation function. We

focused on searching the best K objects according to various user’s pref-

erences without accessing all objects. Therefore we deal with the use of

TA-algorithm and MD-algorithm. Because of local preferences we used

B+-trees during computing of Fagin’s TA-algorithm. For searching the

best K objects MD-algorithm uses multidimensional B-tree, which is also

composed of B+-trees. We developed an MXT-algorithm and a new data

structure, in which MXT-algorithm can effectively find the best K ob-

jects by user’s preferences without accessing all the objects. We show

that MXT-algorithm in some cases achieves better results in the number

of accessed objects than TA-algorithm and MD-algorithm.

1 Introduction and Motivation

Nowdays, huge amounts of data in various web systems grow exponentially.
Users try to find various objects in this data, such as laptops, cars, apartments,
holidays, etc. These objects have various attributes. According to the values of
attributes, users search for the best objects for them. However, each user prefers
objects with other values of attributes [7][6].

Most users look for only a few objects that are best suited to their preferences.
Therefore, it is advantageous according to the user’s preferences directly to find
the best K objects. Making it possible to find the best K objects from the set
of objects X, it must be possible to judge which objects are better or worse for
a user U . Every user prefers objects with own preferences, which are modelled
locally by means of a fuzzy function and globally by means of an aggregation
function [9]. In this paper we assume that the set of objects of the same type
is stored in one data structure. The problem of searching the best K objects
according to values of different attributes in the same time is indicated as a
top-K problem [4][7].

In the next, text we describle using B+-tree [2] for sorting objects acording
to fuzzy function for supporting the local preferences [1][3][10].

K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 142–153, ISBN 978-80-01-04323-3.

Combination of TA- and MD-algorithm ... 143

We deal also with methods and data structures for effective solution of top-
K problem [1]. We discuss the problem of finding the best K objects without
accessing all the objects via Fagin’s TA-algorithm [4] and MD-algorithm [1]. For
application of local preferences TA- and MD-algorithm are using data structures
based on B+-trees [1]. These structures are independent from user’s preferences.
Moreover, it is possible to update these structures easily and quickly.

We developed a MXT-algorithm and a new data structure based on B+-
trees, in which MXT-algorithm can effectively find the best K objects by user’s
preferences without accessing all the objects. We will show advantages of the
new MXT-algorithm and a comparison with the results of other algorithms. We
show that MXT-algorithm in some cases achieves better results in the number
of accessed objects than TA- and MD-algorithm.

A background concerning modelling user preferences is contained in Sec-
tion 2. Section 3 presents use of B+-tree for approaching the top-K problem.
Sections 4 and 5 are devoted to explaining principles of Fagin’s TA-algorithm
and MD-algorithm. In Section 6 we describe our new MXT-algorithm and new
data structure, which is used during computation of MXT-algorithm. Section
7 presents the results of the tests and compares MD-algorithm with Fagin’s
algorithms. Finally, Section 8 provides some suggestions for a future work.

2 User’s preferences

In this article, we suppose a set of objects X with m attributes A1, ..., Am.
Every object x ∈ X has m values ax

i
, ..., ax

m
of corresponding attributes. When

searching for the best K objects, a user U chooses user’s preferences, which
determine suitability of the object x ∈ X in dependence with its m values of
attributes ax

1 , ..., ax
m

for user U . In accordance to user U preferences, it is possible
to find the best K object for user U . We are using a model of user preferences,
which is based on concatenation of local preferences and global preferences. At
first, user U decides how he prefers objects according to each of attributes Ai,
i = 1, ...,m, and then chooses a relationship between these attributes.

Local preferences reflect how the object is preferred according to only one
attribute. In this work, we used a mapping fi: dom(Ai) → [0, 1]. In general, we
differentiate two possible attribute types.

Nominal attribute has a finite range of possible values, usually strings. For a
nominal attribute Ai user U has to rate each value of the attribute. For example,
it is mark of some products. Local preference of user U for the nominal attribute
Ai is represented as mapping fU

i
(x): ax

i
→ [0, 1], where i = 1, ...,m.

Ordinal attribute has some natural value ordering, other than lexical ordering.
Typical examples are integer numbers. Domain of ordinal attribute is subset of
continuous interval. The local preference of user U for the ordinal attribute Ai

is represented by fuzzy function [9]. We denoted it also as fU

i
(x) the user’s fuzzy

function for i-th attribute. In this case, fuzzy functions have a scheme fU

i
(x):

ax

i
→ [0, 1], where i = 1, ...,m.

144 Matúš Ondreička, Jaroslav Pokorný

For the worst object x ∈ X, fU
i (x) = 0 holds and for the best one, fU

i (x)
= 1. Comparing fU

i (x1) and fU
i (x2) of two objects x1 and x2, it is possible to

decide which of them is suitable for the user U according to the value of i-th
attribute. When fU

i (x1) > fU
i (x2), then x1 is more suitable. When fU

i (x1) =
fU

i (x2), then x1 and x2 are equally suitable.
Article [10] describes four types of user’s fuzzy functions, which are sufficient

for entering user’s preference of ordinal attributes. It is showed in Figure 1. There
are nondecreasing function, nonincreasing function, function in the form of hill,
and function in the form of valley. In next text we suppose only these four types
of user’s fuzzy functions.

Fig. 1. Four used types of fuzzy functions: nondecreasing, nonincreasing, hill, valley.

Global preferences express how the user U prefers objects from X according
to all attributes A1, ..., Am. On the set of objects X, we consider aggregation
function @ with m variables p1, ..., pm specified as @(p1, ..., pm) : [0, 1]m → [0, 1].
For the user U with his user fuzzy functions fU

1 , ..., fU
m, a user rating function

@U originates by means of substitution of pi = fU
i (x), i = 1, ...,m. Then, for

every x ∈ X @U (x) = @(fU
1 (x), ..., fU

m(x)). With @U (x) it is possible to evaluate
global rating of each object x ∈ X.

With aggregation function, a user U can define the mutual relations of the
attributes. For example, we can use arithmetic average. For implementation of
user’s influence to the aggregate function, it is possible to use weighted average,
where weights u1, ..., um of single attributes A1, ..., Am determine how the user
prefers single attributes, @(x) = u1·p1+...+um·pm

u1+...+um

. When the user does not care
about i-th attribute Ai when rating the objects, he can then put 0 into the
aggregate function, i.e. ui = 0.

In this work, every user U express his preference as functions fU
1 , ..., fU

m and
@U . Every object x ∈ X has its own special global rating @U (x), a measure of
pertinence for the user U . In this way, it is possible to find the best K objects
for the user U . When there are more objects with the same rating as rating of
the best K-th object, a random object is chosen.

3 Usage of B+-tree

For application of local user’s preferences we need a data structure, from which it
is possible to obtain objects according to user’s fuzzy function fU in descending
order according to fU . Let the objects of the set X be indexed in the B+-tree
[2] according to the values of attribute A [1][3][10].

Combination of TA- and MD-algorithm ... 145

Fig. 2. Ordering interpretation of four used types of fuzzy functions.

Every object x ∈ X is indexed by the key k ∈ dom(A), a value of which is
equal to a value of attribute ax of object x, i.e. k = ax. For a key k, in general,
more objects with the same A attribute value can exist in X. Therefore, we use
the object array, in which are stored objects with the same value of the key k.
For every key k there is a pointer to corresponding object array.

Since the leaf nodes of the B+-tree are linked in two directions [2], it is
possible to cross the B+-tree through the leaf level and to get all the keys.
According to course of user’s fuzzy function fU , which is one of four types [10],
we can obtain objects in the following different ways (Figure 2).

1. Nondecreasing function. In this case, we have to cross the leaf level of the B+-
tree from the right to the left. It is possible to get the pairs (x, fU (x)) in the
descending order according to the user’s preference fU , because ax ≤ ay ⇒

fU (x) ≤ fU (y) holds.
2. Nonincreasing function. In this case, we have to cross the leaf level of the B+-

tree from the left to the right. It is possible to get the pairs (x, fU (x)) in the
descending order according to the user’s preference fU , because ax ≥ ay ⇒

fU (x) ≤ fU (y) holds.
3. Function in the form of hill. In this case, we must find key k in leaf level

of B+-tree. Key k is the nearest point from maximum of fuzzy function fU .
From the key k we cross the leaf level in two ways concurrently from k to
both borders of the B+-tree as in previous two cases.

4. Function in the form of valley. In this case, we have to cross the leaf level
of the B+-tree in two ways concurrently from both borders to the key k in
to inside of leaf level. Key k is the nearest point from minimum of fU .

In general, fU cannot be monotone in its domain. In this case, the domain
can be divided into continuous intervals (also leaf level of B+-tree), where fU

is monotone on each of these intervals. From the intervals, objects are obtained
concurrently according to fU as well as for monotone fuzzy function [1].

4 Fagin’s TA-algorithm

Fagin et al. describe in [4] top-K algorithms, which solve top-K problem without
searching of all objects in set X. Algoritms assume that the objects from the set
X are, together with values of their m attributes A1, ..., Am, stored in m lists

146 Matúš Ondreička, Jaroslav Pokorný

L1, ..., Lm. Each i-th list Li contains pairs (x, ax

i
). Lists L1, ..., Lm are sorted

in descending order according to the values of attributes ax
1
, ..., ax

m
of objects

x ∈ X. The aggregate function @ must be monotone according to the ordering
in lists [4][1], e.g. weighted average. Then Fagin’s algorithms can find the best
K objects with regard to existing aggregate function @ without making |X| ·m
accesses into the lists L1, ..., Lm [4].

Fagin’s algorithm TA (threshold algorithm) needs to access the lists L1, ...,
Lm sequentially and also directly. With the sequential access, TA searches the
lists step by step from the top to the bottom and obtains pairs (x, ax

i
). For every

object x, which is detected for the first time in obtained pair (x, ax

i
), TA obtains

the missing attribute values of the object x by a direct access to the other lists.
TA uses the list TK , in which it keeps the best actual K objects ordered ac-

cording to their value of @(x). During the run of TA a threshold Th is counted,
which is calculated by means of inserting the last seen values of attributes
alast
1

, ..., alast
m

in the lists L1, ..., Lm, respectively, at the sequential access to the
aggregate function Th = @(alast

1
, ..., alast

m
). Rating of the K-th best object in TK

we denote MK . When Th ≤ MK , TA is able to stop and returns TK as the list
of the best K objects. TA can finish before it comes to the end of all the lists
[4]. TA-algorithm is described by the following pseudo-code.

Input: Lists L1, ..., Lm, Aggregation @, int K;

Output: List TK;

var List TK; {temporary list of objects}
begin

while(|TK| < K or Th > MK)do

(x, ax

i
) = getNextPair(L1, ..., Lm); {it obtains next pair from

alast

i
= ax

i
; one of the lists L1, ..., Lm} [1][5]

Th = @(alast
1

, ..., alast
m

);
if(x /∈ TK)then

get the missing attribute values of the object x;
if(|TK| < K)then

insert object x to the list TK on the right place according to @(x);
else

if(@(x) > MK)then

begin

delete K-th object from the list TK;

insert object x to the list TK on the right place by @(x);
end;

endwhile;

end.

4.1 Application of local preferences

Original Fagin’s algorithms offer the possibility of rating objects only globally
with an aggregate function @ and to find the best K object for the user U only
according to his global preference. For the support of the local preferences, it

Combination of TA- and MD-algorithm ... 147

is necessary that every i-th list Li contains pairs (x, fU

i
(x)) in descending order

according to user’s fuzzy function fU

i
(x).

For application of local user’s preferences, we use B+-tree (see Section 3).
We use as the lists L1, ..., Lm a list of m B+-trees B1, ..., Bm, where in B+-
tree Bi all objects are indexed by values of i-th attribute Ai. Moreover, this
structure is common for all users. A particular user U only specifies his local
preferences with fuzzy functions fU

1 , ..., fU
m

and global preferences with function
@U . Then the algorithm sequentially obtains pairs (x, fU

i
(x)) from B+-trees

B1, ..., Bm according to preferences of user U [1].
Algorithm TA also uses the direct access to the lists L1, ..., Lm, where for

object x it is needed to obtain its unknown value ax

i
from Li. B+-tree is not able

to make this operation, because it is not possible to obtain the value directly.
For a realization of direct access we can use, for example, an associative array.

5 Multidimensional B-tree and MD-algorithm

In [1] we describe a top-K algorithm, which solves top-K problem with using
the multidimensional B-tree [8] (MDB-tree) without searching all the objects.
MDB-tree with m levels allows to index set of objects X by attributes A1, ...,
Am. Each level of MDB-tree is composed from B+-trees containing key values
from domain of one attribute. It is showed in Figure 3. Ordering of attributes in
levels of MDB-tree is very important [1] (see Section 6).

We use the mark ρ(ki) for the pointer of the key k in B+-tree in i-th level of
MDB-tree. If i < m, then ρ(ki) refers to B+-tree in (i+1)-th level of MDB-tree.
If i = m, i.e. B+-tree is in the last level of MDB-tree, then ρ(ki) refers to object

array, where objects with the same values of all the m attributes are stored.
For explicit identification of B+-tree in MDB-tree, we use the sequence of

keys, which is called tree identifier [1]. An identifier of B+-tree in i-th level is
(k1, ..., ki−1). Tree identifier (∅) identifies B+-tree in the first level of MDB-tree.

Furthermore, in MDB-tree we use the best rating B(S) of B+-tree S [1]. By
the best rating B(S) of B+-tree S with identifier (k1, ..., ki−1) in the i-th level
of MDB-tree, we understand a rating of not yet known object x, calculated with
@(ax

1 , ..., ax
m

), where the first i − 1 attribute’s values of object x are k1, ..., ki−1

and values of other attributes are 1, i. e. B(S) = @(k1, ..., ki−1, 1, ..., 1).

Fig. 3. Set of eleven objects with values of three attributes stored in MDB-tree.

148 Matúš Ondreička, Jaroslav Pokorný

5.1 MD-algorithm

Obtaining all the objects from MDB-tree is possible with a recursive procedure,
which searches MDB-tree in depth-first search. The work [1] includes a sequence
of statements with proofs, which shows that it is possible to find best K objects
in MDB-tree with the recursive procedure findTopK according to a monotone
aggregate function @ and without getting all the objects.

Let the keys from the B+-tree S with the identifier (k1, ..., ki−1) be the keys
obtained one by one by a run of procedure findTopK. The pointer ρ(p) refers
to B+-tree P in the next level or to the object array P . Let MK be the rating
of the K-th best object in temporary list TK of best K objects. If B(P) ≤ MK

holds, then the procedure findTopK(MDB-tree, (k1, ..., ki−1)) can stop in S.

The following pseudo-code describes MD-algorithm.

Input: MDBtree MDB-tree, Aggregation @, int K;

Output: List TK;

var List TK; {temporary list of objects}
begin

findTopK(MDB-tree, (∅), @, K); return TK;

end.

procedure findTopK(MDBtree MDB-tree, Identifier (k1, ..., ki−1),
Aggregation @, int K);

while(there is next key in B+-tree)do {with identifier (k1, ..., ki−1)}
ki = getNextKey(MDB-tree, (k1, ..., ki−1));

{ρ(ki) refers to B+-tree P or it refers to the object array P}
if(|TK| = K and B(P) ≤ MK)then return;

if(P is B+-tree)then
findTopK(MDB-tree, (k1, ..., ki−1, ki), @, K);

if(P is object array)then
while(there is the next object x in P)do

if(|TK| < K)then

insert object x to TK to the right place according to @(x);
else

if(@(x) > MK)then begin

delete K-th object from the list TK;

insert object x to the list TK on the right place by @(x);
end;

endwhile;

endwhile;

end.

procedure getNextKey(MDBtree MDB-tree, Identifier (k1, ..., ki−1));
choose the next key ki with next highest value of Ai

in B+-tree of MDB-tree with identifier (k1, ..., ki−1);
return ki ;

end.

Combination of TA- and MD-algorithm ... 149

5.2 Application of local preferences

From B+-tree we can obtain keys in descending order according to user’s fuzzy
function fU

i
(x). Because MDB-tree is composed from B+-trees, it is possible to

use application of the local user preferences directly in MD-algorithm by finding
the K best objects in MDB-tree. The following procedure getNextKey changes
the original MD-algorithm.

procedure getNextKey(MDBtree MDB-tree, Identifier (k1, ..., ki−1),
FuzzyFunction fU

i
);

choose the next key ki with next highest value of i-th fuzzy function
in B+-tree of MDB-tree with identifier (k1, ..., ki−1);
return ki;

end.

6 Combination of TA and MD-algorithm

Here we describe a new top-K algorithm, which is based on combination of MD-
algorithm and Fagin’s TA-algorithm.

MD-algorithm has the best results, when the objects stored in MDB-tree are
distributed regularly (uniform distribution) [1]. When attributes of objects have
different size of their actual domains, order of attributes in levels of MDB-tree is
very important for efficiency of MD-algorithm. It is better for MD-algorithm to
build MDB-tree with smaller actual domains in its higher levels and attributes
with bigger actual domains in its lower levels. When most of the object’s at-
tributes have their actual domains of big sizes, the usage of MD-algorithm is not
suitable solution of top-K problem. In this case, the usage of TA-algorithm is
more suitable. In general, we can suppose according to size of attribute’s domains
of a known object set, which of the algorithms will achieve better results.

Example 1. We have set of 8 822 flats for rent in Prague. Flats have four
important attributes for users, District, Type, Area, and Price. These attributes
have sizes of domains, ‖dom(District)‖ = 10, ‖dom(Type)‖ = 10, ‖dom(Area)‖
= 229, ‖dom(Price)‖ = 411, respectively. When a user prefers attributes District

and Type, then it is better to store flats in MDB-tree and to use MD-algorithm.
On the other hand, when a user prefers attributes Area and Price, then it is
better to use TA-algorithm and to store flats in Fagin’s lists.

In general, the attribute with a small domain size is nominal attribute and
attribute with big domain size is ordinal attribute (see Section 2). It is valid also
in Example 1, attributes District and Type are nominal attributes, Area and
Price are ordinal attributes.

6.1 MXT-algorithm

Therefore we developed a new top-K algorithm, MXT-algorithm, which is based
on combination of MD-algorithm and Fagin’s TA-algorithm. MXT-algorithm

150 Matúš Ondreička, Jaroslav Pokorný

Fig. 4. Two nominal attributes are stored as MDB-tree and two ordinal attributes are

stored as Fagin’s lists. Under dotted line there is part of the data structure, in which

the MXT-algorithm does not access during its computation.

uses a new data structure, which is composed of MDB-tree and Fagin’s sorted
lists. This data structure is shown in Figure 4.

We suppose a set of objects X with m attributes A1, ..., Am. Attributes
A1, ..., An are nominal attributes and An+1, ..., Am are ordinal attributes. At-
tributes A1, ..., An are stored in MDB-tree with n levels. Instead of the following
m− n levels of MDB-tree, groups of m− n Fagin’s sorted lists are used. These
lists contain pairs (x, ax

i
) with values of attributes An+1, ..., Am.

MXT-algorithm is developed on the base of MD-algorithm. First n attributes
A1, ..., An are searched in the same way as during the computation of MD-
algorithm. In every B+-tree there are references into the groups of m−n Fagin’s
sorted lists. In each of these groups a new instance of TA-algorithm is run.

The efficiency of MXT-algorithm is based on idea that we do not need to
obtain the best K objects from each the group of m − n Fagin’s sorted lists.
We need to obtain only objects with better rating as MK (rating of the K-th
best object in global list TK). There, it is sufficient that local threshold T local

h

(in each the group of m − n Fagin’s sorted lists) with MK is compared. Local
TA-algorithm is able to stop earlier in group of Fagin’s sorted lists, T local

h
≤ MK

holds earlier than in original TA-algorithm. (see Figure 4, dotted line).

The following pseudo-code describes the MXT-algorithm, where procedure
getNextKey is the same as in the MD-algorithm (see Section 5).

Input: MDBtree MDB-tree, Aggregation @, int K;

Output: List TK;

var List TK; {temporary list of objects}
begin

findTopK(MDB-tree, (∅), @, K);

return TK;

end.

Combination of TA- and MD-algorithm ... 151

procedure findTopK(MDBtree MDB-tree, Identifier (k1, ..., ki−1),
Aggregation @, int K);

while(there is next key in B+-tree)do {with identifier (k1, ..., ki−1)}
ki = getNextKey(MDB-tree, (k1, ..., ki−1));

{ρ(ki) refers to B+-tree P or it to group of Fagin’s lists P}
if(|TK| = K and B(P) ≤MK)then return;

if(P is B+-tree)then
findTopK(MDB-tree, (k1, ..., ki−1, ki), @, K);

if(P is group of Fagin’s lists)then
while(|TK| < K or T local

h
> MK)do

(x, ax

i
) = getNextPair(L1, ..., Lm); {it obtains next pair from

alast

i
= ax

i
; one of the lists L1, ..., Lm}

T local

h
= @(alast

1 , ..., alast
m

);
if(x /∈ TK)then

get the missing attribute values of the object x;
if(|TK| < K)then

insert object x to the list TK on the right place by @(x);
else

if(@(x) > MK)then

begin

delete K-th object from the list TK;

insert object x to the list TK oaccording to @(x);
end;

endwhile;

endwhile;

end.

6.2 Application of local preferences

Analogously to MD-algorithm in attributes A1, ..., An it is possible to use ap-
plication of the local user preferences. Procedure getNextKey changes MXT-
algorithm in the same way as in the MD-algorithm (see Section 5.1).

In attributes An+1, ..., Am it is also possible to use application of the local user
preferences. Analogously to TA-algorithm, we use as the group of m−n Fagin’s
lists Ln+1, ..., Lm, a list of m− n B+-trees Bn+1, ..., Bm, and for a realization of
direct access we can use, for example, an associative array.

7 Implementation and Experiments

We implemented top-K TA-algorithm, MD-algorithm and MXT-algorithm using
lists based on B+-trees. The implementation has been developed in Java and it
uses data structures created in memory. Important for us was the number of
accesses into used data structures during calculation of top-K algorithms.

We tested TA-, MD- and MXT-algorithm. During the tests, we used uniform
preferences. We used user’s fuzzy functions with course ”f(x)=x” as user’s local
preferences, and we used the arithmetic average as user’s global preference.

152 Matúš Ondreička, Jaroslav Pokorný

Fig. 5. Normal and regular distribution of the attributes values.

At first, we tested two sets of 100 000 objects with 5 attributes with normal
and regular (uniform) distribution of attribute values. We used TA-algorithm,
MD-algorithm and three variants of MXT-algorithm, i.e. MXT 3, MXT 2, MXT
1, because attribute types were not important there. For example, variant MXT
3 uses first 3 attributes as nominal attributes, which are stored as MDB-tree
with 3 levels and other 2 attributes are stored as groups of 2 Fagin’s sorted lists.
Figure 5 shows results of this test.

The best results have been achieved with MXT 3 and MD-algorithm for the
set of objects with the regular distribution of the attributes values. Test for sets
of objects with normal distribution of attribute values has shown that the new
MXT-algorithm can in some cases also achieve worst results.

Afterwards, we tested the sets of 8 822 flats for rent in Prague (see Section 6,
Example 1). There were two nominal attributes with a small domain size and two
ordinal attributes with a big domain size. We used TA-algorithm, MD-algorithm
and the most suitable variant of MXT-algorithm (as MXT 2 in previous test).
Figure 6 shows results of this test for uniform preferences, and for real user’s
preferences, where user prefers flats of some types in specific districts, with
smaller prices and bigger areas. These two ordinal attributes were preferred
according to non-monotone fuzzy functions.

The best results has been achieved with MXT-algorithm for both of used
preferences. The test has shown that MXT-algorithm is most efficient solution of
top-K problem for some cases. Especially it is efficient for a set of objects, which
has nominal attributes with a small domain size and several ordinal attributes
with a big domain size.

Fig. 6. Number of accesses objects during finding the best flats in Prague.

Combination of TA- and MD-algorithm ... 153

8 Conclusion

We developed a new MXT-algorithm, which can effectively find the best K ob-
jects by user’s preferences without accessing all the objects. We implemented
top-K algorithms TA-, MD- and MXT-algorithm with support of user’s pref-
erences. Results of MXT-algorithm have shown to be comparable with those
obtained by others used top-K algorithms.

MXT-algorithm is based on combination TA- and MD-algorithm. According
to type of object attributes it is possible to store a set of objects in MDB-tree, in
Fagin’s lists or in data structure, which MXT-algorithm uses. Moreover, MXT-
algorithm can find the best K objects in each of these data structures. In this
meaning, TA- and MD-algorithm are extreme cases of MXT-algorithm.

Motivation of future research can be to find application of developed al-
gorithms in various data structures. The article [11] deals with solving of the
top-K problem in XML. Application of our algorithms in XML might be also
interesting.

References

1. Ondreička, M., Pokorný J.: Extending Fagin’s algorithm for more users based on
multidimensional B-tree. In: Proc. of ADBIS 2008, P. Atzeni, A. Caplinskas, and H.
Jaakkola (Eds.), LNCS 5207, Springer-Verlag Berlin Heidelberg, 2008, pp. 199214.

2. Bayer, R., McCreight, E.: Organization and Maintenance of Large Ordered Indices,
Acta Informatica, Vol. 1, Fasc. 3, 1972 pp. 173-189.

3. Eckhardt, A., Pokorný, J., Vojtáš, P.: A system recommending top-k objects for
multiple users preference. In Proc. of 2007 IEEE International Conference on Fuzzy
Systems, July 24-26, 2007, London, England, pp. 1101-1106.

4. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
Journal of Computer and System Sciences 66 (2003), pp. 614-656.

5. Gurský, P., Lencses, R., Vojtáš, P.: Algorithms for user dependent integration of
ranked distributed information. Proceedings of TED Conference on e-Government
(TCGOV 2005), Pages 123-130, 2005.

6. Bruno, N., L. Gravano, L., Marian, A.: Evaluating top-k queries over web-accessible
databases. in: Proc. of International Conference on Data Engineering (ICDE), 2002,
pp. 369 - 380.

7. Chaudhuri, S., Gravano, L., Marian, M.: Optimizing Top-k Selection Queries over
Multimedia Repositories. IEEE Trans. On Knowledge and Data Engineering, Au-
gust 2004 (Vol. 16, No. 8) pp. 992-1009.

8. Scheuerman, P., Ouksel, M.: Multidimensional B-trees for associative searching in
database systems. Information systems, Vol. 34, No. 2, 1982.

9. Vojtáš, P.: Fuzzy logic aggregation for semantic web search for the best (top-k)
answer, Capturing Intelligence, Volume 1, Chapter 17, 2006, Pages 341-359.

10. Gurský P., Vaneková V., Pribolová J.: Fuzzy User Preference Model for Top-
k Search. Proceedings of IEEE World Congress on Computational Intelligence
(WCCI), Hong Kong, FS0377, 2008.

11. Marian, A., Amer-Yahia, S., Koudas, N.: Adaptive Processing of Top-k Queries in
XML. Data Engineering, 2005. ICDE 2005. Proceedings. 21st International Confer-
ence on 05-08 April 2005 Page(s):162 - 173.

