
Efficiency Improvement of Narrow Range Query

Processing in R-tree⋆

Peter Chovanec and Michal Krátký

Department of Computer Science
Technical University of Ostrava, Czech Republic

{peter.chovanec,michal.kratky}@vsb.cz

Abstract. Indexing methods for efficient processing of multidimensional

data are very requested in many fields, like geographical information

systems, drawing documentations etc. Well-known R-tree is one of the

multidimensional data structures. The R-tree is based on bounding of

spatial near points by multidimensional rectangles. This data structure

supports various types of queries, e.g. point and range queries. The range

query retrieves all tuples of a multidimensional space in the defined query

box. Narrow range query is an important type of the range query includ-

ing at least one narrow dimension. Despite many variants of R-trees,

narrow range query processing is inefficient. In this paper, we depict a

modification of Signature R-tree: data structure for the narrow range

query processing. This data structure applies signatures for a descrip-

tion of tuples stored in a tree’s page. We present an improvement of this

technique.

Key words: multidimensional data structure, narrow range query, R-

tree, signature

1 Introduction

Multimedia databases have become increasingly important in many application
areas such as medicine, CAD, geography, and molecular biology. Processing of
multi-dimensional data is requested in almost all fields. There are a lot of ap-
plications of multi-dimensional data structures [15], e.g., data mining [10], term
indexing [5, 12], XML documents [8, 11], text documents and images [4]. Query
processing in high-dimensional spaces has therefore been a very prominent re-
search area over the last few years. A number of new index structures and algo-
rithms have been proposed.

There are two major approaches to multi-dimensional indexing [16]: data
structures for indexing metric spaces and data structures for indexing vector
spaces. The first approach includes, for example, n-dimensional B-tree [7], R-
tree [9], R*-tree [2], Signature R-tree [13], X-tree [3], UB-tree [1] and BUB-
tree [6]. The second one includes M-tree [4], for example.

⋆ Work is partially supported by Grant of GACR No. 201/09/0990

K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 154–165, ISBN 978-80-01-04323-3.

Efficiency Improvement of Narrow Range Query Processing in R-tree 155

A multi-dimensional data structure often supports the range query. This
query may be written as the following pseudo SQL statement:
SELECT * FROM T WHERE ql1 ≤ t1 ≤ qh1 AND . . . AND qln ≤ tn ≤ qhn.

The narrow range query is special type of the range query, where at least
one dimension is narrow. In Figure 1, we see examples of query boxes for the
narrow range queries in spaces with the dimensions n = 2 and n = 3, respectively.
Another example of this query is the following SQL statement: SELECT * FROM

<table name> WHERE 1 < a0 < 10000 AND a1 = 2 AND a2 = 3

���������	�

�
�	�������

Fig. 1. Examples of the narrow range queries in spaces with the dimensions n = 2 and

n = 3, respectively.

In paper [13], we depicted that the narrow range query processing is rather in-
efficient in current multidimensional data structures. Signature R-tree, handling
point data, is introduced in this work. In our paper, we describe an improve-
ment of the Signature R-tree called ESR-tree. In Section 2, we review existing
approaches for the narrow range query processing. Section 3 presents our im-
provement of the Signature R-tree. Section 4 reviews possibilities of signature
building for this data structure. In Section 4.3, we outline some implementation
details of the improved data structure. In Section 5, we put forward experimen-
tal results. Finally, we conclude with a summary of contributions and discussion
about future work.

2 Existing Approaches

In this section, we describe two data structures which have been often applied for
the narrow range query processing. These data structures, B-tree and Signature
R-tree, are compared with the novel ESR-tree in Section 5.

2.1 B-trees

The B-tree is an m-ary balanced tree introduced by Bayer in 1972. This struc-
ture guarantees the logarithmic complexity for the item searching. Due to the
ordering, B-tree enables searching only by one attribute. In many cases, it is

156 Peter Chovanec, Michal Krátký

necessary to search by more than one attribute. Therefore, there are some im-
provements of B-tree for searching of multidimensional data, e.g. B-tree with
compound keys. In this case, we create one compound index with keys related
to each narrow dimension. Obviously, this technique is not as general as mul-
tidimensional data structures. For example, we create the compound index for
dimensions 1, 3, and 10 for a 10-dimensional tuple collection. It means, narrow
range query with these narrow dimensions is as efficient as possible. Moreover,
no intermediate results are created. If want to process a query with the narrow
dimensions: 1, 3, 10, and 5, we retrieve an intermediate result again. If we want
to solve a general query without the intermediate result, we should create n!
compound indices. Therefore, we do not suppose this technique in our article.

If the range query is concerned in B-tree, we must index each attribute (or
dimension) in a separate B-tree. The range query is processed by a sequence of
searching in B-trees, and individual intermediate results are joined. Obviously,
there are two issues. If the size of an intermediate result >> the overall result,
this processing is rather inefficient. The second issue is the size of the index file.
In Section 5, we use this implementation for a comparison with our method. We
propose that the index file built in this way is 3× larger in average than the
index file of a multidimensional data storage.

2.2 Signature R-trees

Since 1984 when Guttman proposed his method [9], R-trees have become the
most cited and most used as reference data structure in this field. The R-trees
can be thought of as an extension of B-trees in a multi-dimensional space. It
corresponds to a hierarchy of nested n-dimensional minimum bounding boxes

(MBB). There are many approaches based on an improvement of original R-
trees. In [13], Signature R-tree was introduced for more efficient processing of
narrow range queries.

�

�
�
��

�
����

��������
��	
��

����������������
������������
������������
�
����������

�
�
��

�
�������

�
�
��

�
���� �

�
��

�
������� �

�
��

�
���� �

�
��

�
�������

���� � �������

���

� ���� � ����������

��� ���

������������
�
���������������	
������

���������

��	��������� ������������
��������������
��	
�����������	���������

�������
�����

���	
���������������

���

Fig. 2. Structure of the Signature R-Tree

Efficiency Improvement of Narrow Range Query Processing in R-tree 157

Signature R-tree is a variant of the R-tree including multidimensional signa-
tures for a more efficient filtration of irrelevant tree nodes. In this case, irrele-
vant node does not contain any tuple of the query box. The multidimensional
signature contains a signature of tuples in the node for each dimension (see Sec-
tion 4.1). A general structure of the Signature R-tree is presented in Figure 2.
Leaf nodes include tuples clustered into MBBs (MBB is defined by two multi-
dimensional points). These MBBs are clustered into super-MBBs as well. This
hierarchy is finished by MBBs in the root node. Consequently, MBBs are stored
in inner nodes. In the case of Signature R-tree, the multidimensional signature
is assigned to each MBB. It means that each inner node item includes the MBB
definition together with multidimensional signature, where this signature is su-
perimposed with signatures of the node’s children. Consequently, such a tree
contains two hierarchies, the hierarchy of MBBs and hierarchy of signatures.

In [13], we show that many irrelevant nodes are skipped during the narrow
range query processing if we compare Signature R-tree and R-tree. However, we
distinguish some negative consequences of this data structure. If signatures are
long, the inner node capacity is low. This issue results in a degeneration of the
tree: inner node can contain only a trivial number of items and, therefore, the
height of the tree is very high. Similar issue appears if we use more hash functions
for each signature. Therefore, in this paper, we introduce an improvement of
Signature R-tree supporting these refinements.

3 ESR-Tree – An Improvement of Signature R-tree

3.1 Introduction

Signature R-tree significantly decreases the number of processed irrelevant nodes,
however the number > 0 (see Section 6). In [13], we introduced the following
quality measurement of the range query processing (so called relevance): cQ =
Nr/Np, where Nr is the number of relevant nodes, Np is the number of all
processed node. Obviously, if only relevant nodes are processed during a range
query then cQ = 1.

If we want to reach the most efficient cQ value, we must use longer signatures,
a higher number of hash functions (it means more signatures is related to one
dimension), signatures with different lengths for different levels of a tree, and
various hashing functions building the signatures. However, in the case of Sig-
nature R-tree, each this idea extends the size of inner node item and decreases
the inner node capacity. Therefore, our improvement of Signature R-tree, called
ESR-tree, removes signatures from inner nodes: the signatures are stored in a
persistent array. A structure of the novel ESR-tree is presented in Figure 3.

The isolation of signatures from R-tree enables to enlarge signatures although
the node capacity is not decreased. Moreover, we can use signatures with different
lengths for different levels of the tree. In our paper, we use the inverted level
number for the signature labeling. Consequently, we use S0 as the label of an
MBB’s signature, S1 as the label of a super-MBB signature, and so on.

158 Peter Chovanec, Michal Krátký

�

�
�
��

�

��������
��	
��

����������������

��������

�
�
��

����

�
�
��

�
�
�
��

���� �
�
��

�
�
�
��

����

���� � �������

���

� ���� � ����������

��� ���

��	���������

������������
�����������

�������
�����

���	
���������������

���

���	
����

���

���

���	
����

Fig. 3. A structure of the ESR-tree

3.2 ESR-tree Operations

Operations Insert, Delete and Find (or point query) are handled by algo-
rithms of the selected R-tree variant. In the case of the Insert operation (see
Algorithm 1), we must update the signature of the MBB which was changed. In
this way, we must update signatures for each level of the tree from the current
node to the root node. In this algorithm, we use the following variables: tuple is
an inserted tuple, Z represents a stack containing the current path of the tree,
and N is the current node.

Signature index may be created after all tuples are inserted into the tree.
This bulkload algorithm must preordered process all tree nodes and create the
signature for each MBB. Obviously, signatures may be created for an arbitrary
level of the tree.

A common issue of ESR-tree is that the query processing efficiency of a
common range query is not influenced by signatures. Signature R-tree includes
signatures in tree’s nodes, therefore, signatures are read from the secondary
storage although these signatures are not used for the node filtering. On the
other hand, in the case of the narrow range query, we apply signatures for the
more efficient filtration of irrelevant tree nodes.

Let us suppose the range query algorithm. Intersection operation computes
whether an MBB is intersected by the query box in the linear time, on the other
hand, AND operation is used as a test of the signature matching. If both operations
are matched, the child node is processed.

Delete operation is based on the algorithm of the R-tree variant used. It is
necessary to mention that after the item is deleted, unperfect signature may be
related to the leaf node containing the deleted item. It means that the signature
may contain bits describing a tuple that is not included in the R-tree anymore.
Signatures for higher levels of the tree may be unperfect as well. Consequently, we
may correct the signatures related the changed node. The complete description
of this operation is out of scope of this paper.

Efficiency Improvement of Narrow Range Query Processing in R-tree 159

Algorithm 1: Insert algorithm

N = root ;1

Z.Push (N);2

splitted ← true ;3

while ¬Z.IsEmpty() do4

if splitted then5

N .InsertItem();6

if N .IsOverfull() then7

N .GenerateSignature();8

NewNode.GenerateSignature();9

end10

else11

N .AddSignature(tuple.GetSignature());12

splitted ← true ;13

end14

if N .IsLeaf() then15

N = Z.Pop();16

end17

if ¬N .IsLeaf() then18

if Z.LastMBB() then19

Z.Push(N);20

end21

else22

N = Z.Pop();23

end24

end25

end26

end27

4 Signature Generating

4.1 Signature Methods

The signature is a bit string formed from the terms which are used to index
records in a data file [14]. Each term is converted to a bit string by the hashing
function. The number of 1’s in the signature S is called weight γ(S). In the case
of a query, we build the query signature in the same way as record signatures
have been created. If the query signature has 1’s in the same positions as the
record signature, the record can be considered as a potential match. There can
be a case where a record signature matches a query signature, however the record
itself does not satisfy the query. This is called the false drop.

4.2 Signature Generating for the Irrelevant Node Filtering

The Hamming distance is applied for measuring of the signatures similarity.
Signature data structures like S-tree [14] are based on clustering of signatures

160 Peter Chovanec, Michal Krátký

with the minimal Hamming distance. However, R-tree clusters tuples into MBBs.
Nodes do not contain tuples with the minimal Hamming distance. If signatures
of tuples in an MBB include many true bits, then the MBB’s signature contains
almost only true bits. In this case, irrelevant node filtering is not successful.
Consequently, one true bit is set for one tuple coordinate and the query signature
includes only one true bit for each dimension. In other word, weight of the query
signature is rather low.

Our improvement is based on the following assumptions. Query signature
weight should be closed to 0.5 as it is known in signature methods [14]. However,
signature weight for all tuples of an MBB should be closed to 0.5 as well. These
two assumptions are in a contradiction. In this paper, we set more bits as well as
we use more hashing functions for one tuple coordinate. In Section 5, we show
the efficiency improvement of these novel features.

4.3 Implementation

In the case of ESR-tree, signatures are stored out of the R-tree. In this way,
tree height is not influenced by the signature length. The relation between an
MBB and its signatures is provided by a conversion table. The conversion table
contains couples 〈node index in the R-tree, signature index in the persistent data
structure〉.

5 Experimental Results

In our tests1, we compare ESR-tree with Signature R∗-tree, R∗-tree, and the
proposed B-tree-based implementation. We have implemented B+-tree, R∗-tree,
and ESR-tree in C++. Three collections have been chosen for these tests. We
created two random collections with million tuples of dimensions 2 and 10. The
third collection represents a set of paths in an XML document [11]. These paths
are modeled as 10-dimensional tuples. All collections have been inserted into the
multidimensional data structure (see Table 1 for index characteristics). In our
experiments, we do not use the Signature R-tree, we use signatures with one
true bit generated for one tuple coordinate as the Signature R-tree uses this. We
call this signature as the simple signature. This fact has a significant impact on
DAC as well as query processing time. However, result relevances are credible
for a comparison of Signature R-tree and ESR-tree.

Efficiency of the narrow range query processing was measured by DAC, cQ,
and query processing time. Tested range queries have various number of narrow
dimensions |Nrq|. The 2 kB page size and random accesses are applied in the
case of all data structure, therefore, we can measure DAC by the number of
MBs read in the secondary storage.

1 The experiments were executed on an AMD Opteron 865 1.8Ghz, 2.0 MB L2 cache;

2GB of DDR333; Windows 2008 Server.

Efficiency Improvement of Narrow Range Query Processing in R-tree 161

Table 1. Characteristics of the R-tree indices

1st Random 2nd Random Real

Collection Collection Collection

Dimension 2 10 10

Coordinate value range < 0, 109 > < 0, 5 · 104 > < 0, 109 >

Result size < 31, 40 > < 1, 1 > < 0, 12000 >

#Nodes 120 499 852

Inner item capacity 102 48 48

#Items 8,513 15,793 21,612

Node utilization 69.6% 65.9% 52.8%

#Leaf nodes 8,394 15,295 20,761

Leaf item capacity 170 92 92

#Leaf items 999,904 1,000,000 1,031,080

Leaf node utilization 70.1% 71.1% 54.0%

#Leaf signatures – S0 8,394 15,295 20,761

#Overleaf signatures – S1 117 483 821

5.1 1st Random Collection

In Table 2, DAC results are presented for the random collection of dimension 2.
We use 2 hashing functions and 3 true bits in the signatures. Results are average
values of 10 various queries. We measure DAC for R-tree (RT) and signature
data structure (SA).

Table 2. 1st Random Collection: DAC

Signature DAC [MB]
Length Simple ESR-tree – S0 ESR-tree – S1 ESR-tree – S0 AND S1

S0/S1 RT SA RT + SA RT SA RT + SA RT SA RT + SA RT SA RT + SA
128/1,024 0.55 0.01 0.56 0.57 0.02 0.59 0.83 0.01 0.84 0.57 0.04 0.61
256/3,072 0.36 0.02 0.38 0.23 0.05 0.28 0.80 0.03 0.83 0.22 0.08 0.30
384/7,168 0.28 0.04 0.32 0.14 0.07 0.21 0.65 0.07 0.72 0.12 0.13 0.25
512/10,240 0.25 0.05 0.30 0.11 0.10 0.21 0.59 0.10 0.69 0.09 0.17 0.26
640/12,288 0.20 0.06 0.26 0.10 0.12 0.22 0.57 0.12 0.69 0.09 0.21 0.30
768/14,336 0.20 0.07 0.27 0.10 0.15 0.25 0.54 0.14 0.69 0.08 0.24 0.32

R-tree without signature filtering: 0.83

Obviously, DAC is 4× lower if we compare the R-tree and ESR-tree with the
leaf signature of the length 512. DAC of signature reading is an essential part of
overall DAC, therefore, we can not use longer signatures. Table 3 including the
query processing time supports this conclusion. This time is 5.25× lower than
in the case of R∗-tree. Obviously, we see that ESR-tree saves 20% of the query
processing time of the simple signature.

Another view of the trend is the higher values of relevance. We use the vari-
ous count of hashing functions, more true bits of the signature as well as various
signature lengths. In Table 3, relevances for leaf and overleaf nodes are presented.

162 Peter Chovanec, Michal Krátký

Relevance rapidly increases with the increasing signature length. Summary Ta-

ble 4 presents results for the relevance > 0.9. We suppose that the signature

weight should be closed to 0.5. In the case of this experiment, we get the signa-

ture weight in the range 0.38 – 0.51.

Table 3. 1st Random Collection: results for 2 hashing functions, 3 true bits

Signature Time [s] cQ of S
0

cQ of S
1

Length Simple S
0

S
1

S
0 AND S

1 Simple S
0

S
1

S
0 AND S

1

128/1024 0.045 0.064 0.069 0.042 0.19 0.18 0.14 0.18 0.67
256/3072 0.037 0.020 0.061 0.020 0.26 0.36 0.14 0.37 0.70
384/7168 0.022 0.020 0.050 0.020 0.31 0.61 0.16 0.66 0.87
512/10240 0.022 0.016 0.044 0.011 0.34 0.85 0.16 0.89 0.94
640/12288 0.020 0.016 0.045 0.014 0.41 0.93 0.17 0.95 0.94
768/14336 0.020 0.019 0.044 0.016 0.44 0.96 0.17 0.98 0.98

R-tree: 0.084 R-tree: 0.14 R-tree: 0.67

Table 4. 1st Random Collection: summary table

Signature Results for cQ > 0.9
Type Signatures Length DAC – RT [MB] DAC – SA [MB] Time [s]

2 hash/ 3 bits 640/12288 0.087 (0.054+ 0.033) 0.207 0.0140
2 hash/ 1 bit - - - -
3 hash/ 1 bit 512/4096 0.093 (0.057 + 0.036) 0.178 0.0140
2 hash/ 6 bits 768/10240 0.088 (0.052+ 0.036) 0.217 0.0078

5.2 2nd Random Collection

The second collection includes 10-dimensional randomly generated tuples. 3 nar-

row dimensions of range queries are used. In this case, we can use shorter signa-

tures than in the case of the first test. It seems that this 10-dimensional space is

sparser than the 2-dimensional space, therefore, shorter signatures can describe

the tuple distribution as well. In Table 5, we can see that DAC of ESR-tree is

much more lower than DAC of R∗-tree. The query processing time is improved

9×. Obviously, we can see the importance of overleaf signatures in this case.

Summary Table 6 presents results for the relevances > 0.9.

5.3 Real Collection

Third collection contains a set of paths in an XML document. We test 15 range

queries Q1–Q15 with various narrow dimensions. We use the same signature

Efficiency Improvement of Narrow Range Query Processing in R-tree 163

Table 5. 2nd Random Collection: DAC

Signature DAC [MB]
Length Simple ESR-tree – S0 ESR-tree – S1 ESR-tree – S0 AND S1

S0/S1 RT SA RT + SA RT SA RT + SA RT SA RT + SA RT SA RT + SA
96/1024 4.62 0.69 5.31 4.35 1.39 5.74 23.25 0.95 24.20 3.99 2.23 6.22
128/1536 3.20 0.93 4.13 2.21 1.85 4.06 16.84 1.43 18.27 1.44 2.67 4.11
160/2048 2.58 1.16 3.74 1.71 2.31 4.02 10.92 1.91 12.83 0.71 2.91 3.62
192/2560 2.20 1.39 3.59 1.62 2.78 4.40 5.69 2.38 8.07 0.36 3.01 3.37
224/3072 1.99 1.62 3.61 1.60 3.24 4.84 2.79 2.86 5.65 0.20 3.22 3.42
256/3584 1.89 1.85 3.74 1.59 3.70 5.29 1.58 3.34 4.92 0.14 3.56 3.70

R-tree without signature filtering: 25.28

Table 6. 2nd Random Collection: summary table

Signature Results for cQ > 0.9
Type Signatures length Relevance DAC – RT [MB] DAC – SA [MB] Time [s]

2 hash/ 3 bits 256/3584 0.95 0.140 (0.004 + 0.136) 3.564 0.0780
2 hash/ 1 bit 352/2048 0.95 0.214 (0.004 + 0.210) 2.499 0.0936
3 hash/ 1 bit 160/1376 0.90 0.261 (0.004 + 0.257) 2.444 0.1092
2 hash/ 6 bits 352/4096 1.00 0.342 (0.004 + 0.338) 4.924 0.1420

lengths as in the case of the second collection. In Table 7, DAC and cQ are
put forward. We use signature lengths 256/3584 with 2 hashing functions and 3
true bits. We see that the cQ of Signature R∗-tree significantly increases in the
comparison with the common R∗-tree. Obviously, this relevance is not sufficient
in many cases. ESR-tree overcomes the Signature R∗-tree and R∗-tree.

5.4 The Comparison with B-tree

In this test, we compare the efficiency of ESR-tree and B-tree (one B-tree was
created for each dimension). We use the queries from the previous test. The join
operation takes the most processing time (see Table 8). Obviously, B-tree is much
more efficient in the case of small intermediate results. With the increasing size of
intermediate results, join processing time increases. Table 8 includes information
about all queries. We measure DAC for B-trees (BT) and tuple array (TA)
including whole tuples. Obviously, ESR-tree clearly overcomes this B-tree based
implementation, DAC is 7.5× lower in the case of ESR-tree. Another important
issue is the index size. In Table 9, we see that the index size of the ESR-tree is 3×
lower in all tested cases. The experiments show an significant improvement, e.g.
applications of two hashing functions causes double increasing of the relevance.

6 Conclusion

In this article, we present an improvement of Signature R-tree, data structure for
the efficient processing of narrow range queries. Moreover, we introduce an en-
hanced signature creation that provides more efficient filtration characteristics.
Since signatures are relevant only in higher levels of a tree, it is not appropri-
ate to handle them to each MBB of an inner node. We show some advantages

164 Peter Chovanec, Michal Krátký

Table 7. Real Collection Test: comparison of R∗-tree, Signature R∗-tree, and ESR-tree

Query Result R∗-tree Simple ESR-tree – S
0 AND S

1

Sizes cQ DAC [MB] cQ DAC [MB] cQ DAC [MB]

Q1 2000 0.76 1.04 1.00 0.82+0.07 1.00 0.78+0.34

Q2 1201 0.26 13.77 0.80 4.88+1.03 0.98 3.91+2.71

Q3 12000 0.64 15.82 1.00 10.43+1.19 1.00 10.22+2.98

Q4 3 0.27 0.09 1.00 0.06+0.003 1.00 0.04+0.08

Q5 10 0.36 0.09 1.00 0.07+0.003 1.00 0.05+0.08

Q6 6 0.03 0.91 0.13 0.29+0.06 1.00 0.06+0.24

Q7 10 0.13 0.30 0.88 0.13+0.02 1.00 0.07+0.17

Q8 18 0.48 0.18 0.63 0.16+0.01 1.00 0.09+0.13

Q9 1 0.0006 6.02 0.003 1.43+0.45 0.08 0.13+0.74

Q10 27 0.03 3.99 0.23 0.68+0.29 0.79 0.23+0.70

Q11 43 0.03 5.19 0.21 1.13+0.38 0.87 0.35+1.11

Q12 13 0.18 0.36 0.58 0.19+0.02 1.00 0.11+0.24

Q13 1 0.06 0.13 1.00 0.07+0.005 1.00 0.03+0.11

Q14 24 0.50 0.14 1.00 0.11+0.004 1.00 0.07+0.14

Q15 3 0.14 0.15 1.00 0.07+0.01 1.00 0.05+0.11

Average 0.26 3.21 0.69 1.87 + 0.24 0.91 1.08 + 0.66

of longer signatures, however longer signatures mean the lower node’s capacity.

Consequently, we put signatures of each MBB in a special data structure: a per-

sistent array. In our experiment, we test range queries and compare the efficiency

of our approach with R-tree, Signature R-tree, and B-tree based implementation.

From DAC point of view, ESR-tree is up to 3× more efficient than R-tree and

6× than B-tree. Obviously, DAC of the signature retrieval is often rather high.

Therefore, we want to develop a more efficient data structure for the storage of

signatures.

References

1. R. Bayer. The Universal B-Tree for multidimensional indexing: General Concepts.

In Proceedings of WWCA’97, Tsukuba, Japan, 1997.

2. N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R∗-tree: An efficient

and robust access method for points and rectangles. In Proceedings of the 1990

ACM SIGMOD, pages 322–331.

3. S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-tree: An index structure for

high-dimensional data. In Proceedings of the 22nd International Conference on

VLDB, pages 28–39, San Francisco, U.S.A., 1996. Morgan Kaufmann Publishers.

4. P. Ciaccia, M. Pattela, and P. Zezula. M-tree: An Efficient Access Method for

Similarity Search in Metric Spaces. In Proceedings of 23rd International Conference

on VLDB, pages 426–435, 1997.

5. V. Dohnal, C. Gennaro, and P. Zezula. A Metric Index for Approximate Text

Management. In Proceedings of IASTED International Conference Information

Systems and Database – ISDB 2002, 2002.

Efficiency Improvement of Narrow Range Query Processing in R-tree 165

Table 8. Real Collection Test: results of the B-tree-based implementation

Query |Nrq| Intermediate Result DAC (BT + TA) Time Time
Result Sizes Size [MB] join [s] [s]

Q1 2 2000; 1031080; 2000 19.80 (15.90 + 3.90) 9.91 14.22
Q2 2 12000; 2539; 1201 2.58 (0.24 + 2.35) 0.13 0.27
Q3 1 12000; 12000 23.63 (0.19 + 23.44) 0 1.91
Q4 4 1031080; 105161; 10; 3; 3 17.51 (17.50 + 0.01) 4.06 4.07
Q5 3 1031080; 105161; 10; 10 17.51 (17.49 + 0.02) 4.06 4.07
Q6 2 7512; 126; 6 0.14 (0.13 + 0.01) 0.031 0.032
Q7 4 1031080; 279205; 13; 10; 10 20.19 (20.17 + 0.02) 4.73 4.73
Q8 3 1031080; 279205; 18; 18 20.20 (20.17 + 0.04) 4.79 4.79
Q9 2 25500; 1; 1 0.41 (0.41 + 0.002) 0.093 0.094
Q10 2 37843; 104; 27 0.65 (0.60 + 0.05) 0.14 0.14
Q11 2 12715; 43; 43 0.30 (0.21 + 0.08) 0.046 0.047
Q12 4 1031080; 251465; 69340; 13; 13 20.84 (20.81 + 0.03) 4.86 4.86
Q13 4 1031080; 105161; 9; 1; 1 17.502 (17.50 + 0.002) 4.06 4.06
Q14 4 1031080; 4324; 25; 24; 24 16.00 (15.95 + 0.05) 3.77 3.77
Q15 4 1031080; 105161; 10; 3; 3 17.51 (17.50 + 0.01) 4.06 4.06

Average 1024 12.98 (10.98 + 1.99) 2.98 3.41

Table 9. Sizes of indexes

Dimension Data Collection R-tree + SA [MB] B-trees + Tuples Array [MB]

2 1st Random 16.89 (16.6 + 0.29) 40.95 (2 × 16.6 + 7.63)
10 2st Random 65.1 (61.6 + 3.49) 204.2 (10 × 16.6 + 38.2)
10 Real 89.38 (84.4 + 4.98) 204.4 (10 × 16.6 + 38.4)

6. R. Fenk. The BUB-Tree. In Proceedings of 28rd VLDB International Conference

on VLDB, Hongkong, China, 2002.
7. M. Freeston. A General Solution of the n-dimensional B-tree Problem. In Proceed-

ings of SIGMOD International Conference, San Jose, USA, 1995.
8. T. Grust. Accelerating XPath Location Steps. In Proceedings of ACM SIGMOD

2002, Madison, USA, June 4-6, 2002.
9. A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In

Proceedings of ACM SIGMOD 1984, Annual Meeting, Boston, USA, pages 47–57.
ACM Press, June 1984.

10. N. Karayannidis, A. Tsois, T. Sellis, R. Pieringer, V. Markl, F. Ramsak, R. Fenk,
K. Elhardt, and R. Bayer. Processing Star Queries on Hierarchically-Clustered
Fact Tables. In Proceedings of VLDB Conf. 2002, Hongkong, China, 2002.

11. M. Krátký, J. Pokorný, and V. Snášel. Implementation of XPath Axes in the Multi-
dimensional Approach to Indexing XML Data. In Current Trends in Database

Technology, Int’l Conference on EDBT 2004, volume 3268. Springer–Verlag, 2004.
12. M. Krátký, T. Skopal, and V. Snášel. Multidimensional Term Indexing for Efficient

Processing of Complex Queries. Kybernetika, Journal, 40(3):381–396, 2004.
13. M. Krátký, V. Snášel, P. Zezula, and J. Pokorný. Efficient Processing of Narrow

Range Queries in the R-Tree. In Proceedings of IDEAS 2006. IEEE CS Press, 2006.
14. Y. Manolopoulos, A. Nanopoulos, and E. Tousidou. Advanced Signature Indexing

for Multimedia and Web Applications. Kluwer, 2003.
15. Y. Manolopoulos, Y. Theodoridis, and V. Tsotras. Advanced Database Indexing.

Kluwer Academic Publisher, 2001.
16. C. Yu. High-Dimensional Indexing. Springer–Verlag, LNCS 2341, 2002.

