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Abstract. Multi-dimensional data structures have been widely applied

in many data management fields. Spatial data indexing is their natu-

ral application, however there are many applications in different domain

fields. When a compression of these data structures is considered, we

follow two objectives. The first objective is a smaller index file, the sec-

ond one is a reduction of the query processing time. In this paper, we

apply a compression scheme to fit these objectives. This compression

scheme handles compressed nodes in a secondary storage. If a page must

be retrieved then this page is decompressed into the tree cache. Since

this compression scheme is transparent from the tree operations point of

view, we can apply various compression algorithms to pages of a tree.

Obviously, there are compression algorithms suitable for various data

collections, therefore, this issue is very important. In our paper, we com-

pare the performance of Golomb, Elias-delta and Elias-gamma coding

with the previously introduced Fast Fibonacci algorithm.

Keywords: multi-dimensional data structures, R-tree, compression scheme,
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1 Introduction

Multidimensional data structures [21] have been widely applied in many data
management fields. Spatial data indexing is their natural application, however
there are many applications in different domain fields. In the case of spatial
data, structures often store two- and three-dimensional objects. In the case of
multimedia data, spaces with dimensionality up to 100,000 appear.

Many multidimensional data structures have been developed in the past, e.g.
the quadtree family [21], LSD-tree [11], R-tree [10], R+-tree [23], R∗-tree [4], and
Hilbert R-tree [13]. In the case of R-tree, tuples are clustered in a tree’s page
using MBBs (Minimal Bounding Boxes). If we consider a multidimensional tuple
collection, redundancy appears. Consequently, a compression may be used for
the nodes efficient storage and retrieval.
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Although some works applying a compression inside a DBMS have been
developed, a real-time compression of multidimensional data structures is not
often a research interest. Obviously, a smaller index file means lower DAC (Disk

Access Cost) when a query is processed [19]. Consequently, lower DAC may mean
the lower processing time.

There are a lot of works applying a compression inside a DBMS. In [24],
authors depict RLE for compression of sorted columns to have few distinct val-
ues. In [7], authors propose the SBC-tree (String B-tree for Compressed se-
quences) for indexing and searching RLE-compressed sequences of arbitrary
length. Work [1] demonstrates that the fast dictionary-based methods can be
applied to order-preserving compression. In [5], authors introduce the IQ-tree,
an index compression technique for high-dimensional data spaces. They present
a page scheduling strategy for nearest neighbor algorithms that, based in a cost
model, can avoid many random seeks. Work [6] introduces a tree-based structure
called PCR-tree to manage principle components. In [26], authors introduce the
xS-tree that uses lossy compression of bounding regions. Original works written
about compressions of multidimensional data structures describe the compres-
sion of quad-tree [8, 22]. Work [8] suggested an algorithm to save at least 66%
of the computer storage required by regular quadtrees. The first work [9], which
concerns compressing R-tree pages, uses the relative representation of MBB to
increase the fanout of the R-tree page. A bulk-loading algorithm, which is a
variation of STR [16], and a lossy compression based on the coordinate quanti-
zation are presented there. Other works in this field are focused on improving
the effectiveness of the main memory indexes. Those cache-conscious indexes
suppose that they can store most of the index in the main memory. Such a work
is CR-tree [14], which uses a type of MBB representation similar to [9]. Let the
irrelevant page be the page whose MBB does not intersect a query box. These
works apply the lossy compression, therefore an improved compression ratio is
achieved when a filtration of irrelevant pages must be processed during a query
processing.

In this paper, we utilize a compression scheme for R-tree introduced in [2].
Pages of a tree are stored in a secondary storage and decompressed in a tree’s
cache. We achieved a lower DAC and the pages are not always decompressed
when an operation is required. In this paper, we compare the Fast Fibonacci
coding [3, 2] with three other coding algorithms: Golomb, Elias-Gamma, and
Elias-Delta codings [20, 17].

In Section 2, we briefly describe the R-tree and its variants. In Section 3,
the above depicted compression scheme is presented. In Section 4, we describe
various coding techniques: Fast Fibonacci, Golomb, Elias-gamma, and Elias-
delta. Experimental results are shown in Section 5. Finally, we conclude with a
summary of results and discussion about future work.
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2 R-tree

R-trees [10] support point and range queries, and some forms of spatial joins.
Another interesting query, supported to some extent by R-trees, is the k nearest
neighbors (k-NN query. R-tree can be thought of as an extension of B-trees in a
multi-dimensional space. It corresponds to a hierarchy of nested n-dimensional
MBBs (see [10] for detail). R-tree performance is usually measured with respect
to the retrieval cost (in terms of DAC) of queries.

Variants of R-trees differ in the way they perform the split algorithm. The
well-known R-tree variants include R∗-trees and R+-trees. In [18], we can find a
more detailed description as well as depiction of other R-tree variants.

It is not usually efficient to insert a large amount of data into an R-tree
using the standard insert operation [10, 4]. The split algorithm is rather an ex-
pensive operation, therefore, the insertion of many items may take quite a long
time. Moreover, this algorithm is executed many times during the insertion. The
query performance is greatly influenced by utilization of the R-tree. A common
utilization rate of an R-tree created with a standard insert algorithm is around
55%. On the other hand, the utilization rate of the R-tree created with the
bulk-loading method, rises up to 95% [4].

Several bulk-loading methods [12, 15, 16] have been developed. All bulk-loading
methods first order input items. Method [16] utilizes one-dimensional space-
filling curve criterion for such ordering. This method is very simple and allows
to order input items very fast. The result R-tree preserves suitable features for
the most common data.

3 A Compression Scheme for Tree-like Data Structures

In this section, we describe a basic compression scheme which can be utilized
for most paged tree data structures [2]. Pages are stored in a secondary storage
and retrieved when the tree requires a page. This basic strategy is widely used
by many indexing data structures such as B-trees, R-trees, and many others.
They utilize cache for fast access to pages as well, since the access to the sec-
ondary storage can be more than 20 times slower compared to access to the main
memory. We try to decrease the amount of DAC to a secondary storage while
significantly decreasing the size of a tree file in the secondary storage.

In Figure 1, we can observe the basic idea of compression scheme used in this
paper. If a tree data structure wants to retrieve a page, the compressed page is
transfered from the secondary storage to the tree’s cache and it is decompressed
there. An important issue of our compression scheme is that the pages are only
compressed in the secondary storage.

When the compression scheme is taken into consideration, the tree insert al-
gorithm only needs to be slightly modified. Query algorithms are not affected at
all because page decompression is processed only between cache and secondary
storage and the tree can utilize decompressed pages for searching without know-
ing that they have been previously compressed.
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Fig. 1. Transfer of compressed pages between the secondary storage and tree’s cache.

The goal of R-tree and its variants is to cluster the most similar tuples into
a single page. The term ‘similar tuples’ means that the tuples are close to each
other in a multi-dimensional space according to L2 metric. This feature can be
utilized to compress R-tree pages by a fitting compression algorithm. An impor-
tant issue of this scheme is that we can apply various compression algorithms to
a single R-tree. In Section 4, we show an algorithm for the R-tree compression,
other compression algorithms can be found in [27].

Using this compression scheme we reduce the R-tree index size as well as
DAC during a query processing. We require a decompression algorithm to be as
fast as possible, otherwise the decompression time would not exceed the time
saved for a lower DAC.

4 Compression Algorithm

Since tuples of a tree’s page are closely located to one another in a multidimen-
sional space, we can suppose that coordinates of these tuples are ’similar’. This
means that the coordinates in each dimension are the same or their differences
are rather of small values. Consequently, this feature provides increased potential
for a compression.

We implemented different bit-length number coding techniques: Golomb,
Elias-gamma and Elias-delta. These coding algorithms are compared with the
previously published Fast Fibonacci coding [3, 2]. We utilize these coding tech-
niques in a compression algorithm based on coding of differences between similar
tuple coordinates.

4.1 Golomb, Elias-gamma and Elias-delta and Fast Fibonacci

Coding

Small values are possible to code with various coding techniques. We have im-
plemented three simple techniques for the coding of values. These techniques are
as follows: Golomb, Elias-gamma, and Elias-delta [20, 17]. The algorithms used
for coding are shown in Algorithms 1, 2, and 3. All codes for numbers 1-12 are
depicted in Table 1.
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In Algorithms 1, 2, and 3 the compressed values are read bit by bit. Retrieving
the bit from the compressed memory is a time consuming operation. In [3], Fast
Fibonacci decompression was introduced. This algorithm processed data without
retrieving every single bit from a compressed memory. The proposed Fibonacci
decompression method is based on a precomputed mapping table. This table
enables converting of compressed memory segments directly into decompressed
values.

Table 1. Numbers for various coding techniques

Number Golomb Elias Fibonacci

M=4 M=8 M=16 gamma delta

1 000 0000 00000 1 1 11

2 001 0001 00001 010 0100 011

3 010 0010 00010 011 0101 0011

4 011 0011 00011 00100 01100 1011

5 1000 0100 00100 00101 01101 00011

6 1001 0101 00101 00110 01110 10011

7 1010 0110 00110 00111 01111 01011

8 1011 0111 00111 0001000 00100000 000011

9 11000 10000 01000 0001001 00100001 100011

10 11001 10001 01001 0001010 00100010 010011

11 11010 10010 01010 0001011 00100011 001011

12 11011 10011 01011 0001100 00100100 101011

4.2 Difference-based Compressions

Difference-based compression algorithm for the R-tree was introduced in [2],
however difference-based compression algorithms are well known [27, 20]. This
algorithm is shown in Algorithm 4. This algorithm simply computes XOR dif-
ferences between coordinates of the first tuple and values of other tuples. After
that we add all difference numbers into the mCodingBuffer buffer, all numbers
are coded by the Encode function. In this paper, we compare Fast Fibonacci,
Golomb, Elias-Gamma, and Elias-Delta for coding of numbers. In Figure 2, we
can see some encoded values for these coding techniques. Differences for the page
P are output in the page PXOR. The difference numbers in the page PXOR are
then coded by the Encode function.

5 Experimental Results

In our test1, we have used the compression scheme depicted in Section 3 and
coding algorithms described in Section 4. In this section, we compare the query

1 The experiments were executed on a PC with 1.8 Ghz AMD Opteron 865, 2 MB L2

cache; 2 GB of DDR333; Windows 2008 Server.
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input : Golomb code bit stream and Golomb code parameter parameterM

output: Decoded number n

Bits ←Log(parameterM)/ Log(2);1

TreshNumber ←Pow(2,Bits +1)–parameterM ;2

PowerTwo ←Floor(Bits)==Bits;3

qpart ← 0;4

rpart ← 0;5

bit ←stream.GetNextBit();6

while bit do7

qpart ++;8

bit ←stream.GetNextBit();9

end10

if PowerTwo then11

for x← 0 to Bits do12

bit ←stream.GetNextBit();13

rpart ←rpart <<1|bit ;14

end15

else16

for x← 0 to Bits do17

bit ←stream.GetNextBit();18

rpart ←rpart <<1|bit ;19

end20

if rpart >=TreshNumber then21

bit ←stream.GetNextBit();22

rpart ←rpart <<1|bit ;23

rpart ←rpart-TreshNumber ;24

end25

end26

n ← qpart ∗parameterM +rpart ;27

Algorithm 1: Golomb decoding algorithm

P =











4 0 6624 6625 1526
42 0 6624 6725 1535
9 0 6624 6626 6631

11 0 6624 6632 6633
29 0 6624 6650 6675











PXOR =











4 0 6624 6625 1526
46 0 0 932 9
13 0 0 3 7185
15 0 0 9 7199
25 0 0 27 8165











Fig. 2. The example of the page (P ) and computed page difference (PXOR)

performance of a compressed as well as uncompressed data structures. We test

both real and synthetic data sets. In all experiments, we turn off the OS’s disk

read cache to prevent the OS from file caching and the cache of data structures

was 1,000 inner and leaf nodes. The page size of all data structures is 2,048B.

To compare the performance of the compressed and uncompressed R-tree we

observe the following features:
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input : Elias-gamma code bit stream

output: Decoded number n

Bits ←1;1

n ←0;2

bit ←stream.GetNextBit();3

while not bit do4

Bits ++;5

bit ←stream.GetNextBit();6

end7

repeat8

Bits −−;9

n ←n |bit <<Bits ;10

if Bits >0 then11

bit ←stream.GetNextBit();12

end13

until Bits ==0 ;14

Algorithm 2: Elias-gamma decoding algorithm

– the query processing time and DAC, see Section 5.1
– R-tree index size, see Section 5.2
– an influence of various space dimensionalities, see Section 5.3
– an influence of various query selectivities, see Section 5.4

We perform experiments on synthetic as well as real data sets. In the case of
synthetic data sets, we generate collections of 500,000 points for dimensionalities:
2, 4, and 6 in an integer domain of the 〈0, 2 × 106〉 range with the uniform
distribution of values. In the case of real data sets, we test TIGER 2D spatial
data collections of 500,000 (TIG05) and 2 million (TIG20) points [25]. These
data collections only include unique tuples. In this way, the compression scheme
performance is not influenced by identical tuples. We process series of query
experiments where one experiment consists of 50 randomly generated queries.
Consequently, each presented result is the summary result of all these queries.
Query boxes covering 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% of the data space were
randomly generated. In other words, the query selectivity is changed in this way.

5.1 Processing Query Time and DAC

In Tables 2 and 3, query processing performance is presented for both real and
random data collections. In this experiment, selectivity is 0.2%. In the case of
random data, the best query time was achieved by the Fast Fibonacci algorithm.
In the case of other coding algorithms, the query time is little worse than in the
case of the uncompressed R-tree. The Elias-delta decoding algorithm is 30%
slower than Fast Fibonacci. The Golomb and Elias-gamma algorithms are 60%
slower than Fast Fibonacci. In the case of real collections, Elias-delta coding
outperforms the Fast Fibonacci coding. In the case of TIG05, Elias-delta saves
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input : Elias-delta code bit stream

output: Decoded number n

Bits ← 1;1

n ← 0;2

x ← 0;3

bit ←stream.GetNextBit();4

while not bit do5

Bits ++;6

bit ←stream.GetNextBit();7

end8

Bits −−;9

x ←x |1 <<Bits ;10

while Bits > 0 do11

Bits −−;12

bit ←stream.GetNextBit();13

x ←x |bit <<Bits ;14

end15

x −−;16

n ←n |1 <<x ;17

while x > 0 do18

x −−;19

bit ←stream.GetNextBit();20

n ←n |bit <<x ;21

end22

Algorithm 3: Elias-delta decoding algorithm

6% of the query processing time in a comparison to the Fast Fibonacci algorithm
and 19% of the query processing time in a comparison to the uncompressed R-
tree.

In Table 4, we propose the query processing time in more detail for both
Elias-delta and Fast Fibonacci. These results are related to the TIG20 collec-
tion. Obviously, time spent on reading of pages in the secondary storage is
lower in the case of Elias-delta, however the decompression time is lower for
the Fast Fibonacci algorithm. Overall query processing time is better for Fast
Fibonacci. Elias-delta reads values in the bit-by-bit way, on the other hand Fast
Fibonacci works with bytes. In the future, we can focus on a development of
similar byte-based reading for other coding algorithms, especially for the Elias-
delta algorithm. Elias-delta achieves the lowest DAC for both real and random
data collections.

5.2 Index Sizes

An important issue of the compression is a reduction of the R-tree index size. In
Figure 3(f), we can see the index sizes for the real collection. The best compres-
sion ratio was achieved by the Elias-delta encoding. In this case, we save more
than 60% of the index size.
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Input : stream, an instance of cStream
output: Compressed R-tree node

mCodingBuffer.Clear ();1

stream.Write (mCount);2

for i← 0 to mDimension do3

value ← mTuples [i].GetInt (0);4

stream.Write (value);5

for j ← 1 to mCount do6

int tmpValue ← mTuples [j].GetInt (i);7

int diff ← value XOR tmpValue ;8

mCodingBuffer.Add (diff);9

end10

Encode (mCodingBuffer);11

stream.Write (mCodingBuffer);12

end13

Algorithm 4: Difference-based compression of an R-tree leaf page

Normal Golomb Golomb Golomb Elias Elias Fast
M=4 M=8 M=16 gamma delta Fibonacci

Processing Time [s] 60.9 87.3 87.2 89.9 86.6 68.9 52.1
DAC All Nodes [MB] 21,131 8,477 8,634 8,797 7,806 7,176 7,175
DAC Leaf Nodes [MB] 10,691 4,333 4,413 4,491 3,988 3,674 3,673

Table 2. Results for the random data collection, 500K tuples, dimension: 6

Normal Golomb Golomb Golomb Elias Elias Fast
M=4 M=8 M=16 gamma delta Fibonacci

Processing Time [s] 3.9 3.96 3.77 4.1 3.95 3.17 3.41
DAC All Nodes [MB] 4,497 2,148 2,073 2,039 2,391 1,831 1,899
DAC Leaf Nodes [MB] 2,185 1,016 979 959 1,137 854 893

Table 3. Results for the bulk-loaded real data collection, 500K tuples, dimension: 2

Time [s] Regular R-tree Elias-delta Fast Fibonacci
Read 13.47 5.86 6.17
Decompression - 10 5.87
Overall 22.99 21.55 18.94

DAC [MB] 103,251 38,338 40,805

Table 4. Analysis of the query processing time

5.3 Influence of the Space Dimension

We compare DAC for randomly generated data collections with dimensionalities
2, 4, and 6 (see Figure 3e). We save more than 60% of DAC in the case of Elias-
delta and dimension 2. The compression ratio weakens with increasing space
dimension. The space is bigger with increasing dimension, tuples are further
from one another, therefore, less redundancy appears in tuples. The dimension
modification has no impact on the performance of various coding techniques.
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Fig. 3. DAC for various selectivities and bulk-loaded (a) random and (b) real data
collections
Query processing time for bulk-loaded (c) random and (d) real data collections
(e) Selectivity influence comparison (f) Index size comparison

5.4 Influence of the Query Selectivity

In this experiment, we choose the following selectivities: 0.1%, 0.2%, 0.3%, 0.4%,
and 0.5%. DAC and query processing times are put forward in Figures 3(a)-(d).
The results are presented for both random and real data collections. Obviously,
Elias-delta outperform other coding algorithms. The other codings produce ap-
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proximately the same DAC. The selectivity modification has no impact on the

performance of various coding techniques.

6 Conclusion

In this paper, we test a lossless compression scheme for the R∗-tree data struc-

ture. We compare the following coding techniques: Golomb, Elias-Gamma, and

Elias-Delta, with the previously published Fast Fibonacci coding. All coding al-

gorithms improve DAC compare to the regular R-tree. In the case of real data

collections, Elias-delta and Fast Fibonacci techniques achieve the best results.

The Elias-delta algorithm saves 5% DAC of Fast Fibonacci. All other algorithms

are less efficient that the Fast Fibonacci algorithm. When real data sets are con-

cerned, the compression methods save at least 60% of the index size required by

a regular R-tree.

The best compression ratio was achieved by the Elias-delta codding. On the

other hand, decompression time for Fast Fibonacci is lower than in the case of

Elias-delta. Elias-delta reads values in the bit-by-bit way, however Fast Fibonacci

works with bytes. In our future work, we want to focus on a development of

similar byte-based reading for other coding algorithms, especially for the Elias-

delta algorithm.
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