
Translation of Ontology Retrieval Problem

into Relational Queries

Jaroslav Pokorný1, Jana Pribolová2, and Peter Vojtáš1

1 Department of Software Engineering,
Charles University, Prague, Czech Republic

{Pokorny, Vojtas}@ksi.mff.cuni.cz
2 Institute of Computer Science,

Faculty of Science, University of P. J. Šafárik,
{Jana.Pribolova}@upjs.sk

Abstract. Ontology as a knowledge base can provide different reasoning

tasks, e.g. to check consistency of the ontology or to check whether a

resource is instance of a concept or not. In this paper we want to focus

on retrieval problem. There already exist systems resolving this problem,

but they are not effective within large datasets. Our idea is to transform

ontology into a relational database. We present particular algorithms of

this transformation both on the scheme level and SQL level with special

handling of functional roles and definitions. This enables to query such

database by usual tools of SQL, i.e. to solve the retrieval problem.

Keywords: ontology, translation, relational database, SQL

1 Introduction

OWL enables the creation of ontologies and provides extensive semantics for
Web data. This language is heavily influenced by description logics (DL, see
[1]). Research on DL reasoners consists of the solving reasoner problems such
as satisfiability, consistency or retrieving instances of the concept. Relational
database is an excellent system for storing and querying data, but their infer-
encing capabilities are limited just to querying. In this paper we describe the
method to extend relational database to store ontology.

In present some research groups are interesting in topic of ontology storing
and maintenance. Some of them are trying to limit expressive power of language
to speed up reasoner tasks. But some of them are trying to fuse two or more
kind of systems.

One of the prominent directions in this area is blending ontologies and logic
databases [5, 3]. They create so called description logic programs which are de-
scription logic expressions and logic programs mixed together.

Another direction of the research area is combining ontologies and rela-
tional databases. First experiments focus on XML document translation into
corresponding relational tables [9]. Inspired by the XML storing in relational

K. Richta, J. Pokorný, V. Snášel (Eds.): Dateso 2009, pp. 44–55, ISBN 978-80-01-04323-3.

Translation of Ontology Retrieval Problem into Relational Queries 45

databases there are some research projects concerned with ontology storing in
the relational databases. One of the first projects is published in [4]. However,
many others occurred, e.g., the system HAWK [10] and its ancestor the system
DLDB [7], as well as the projects described in [2, 6].

In Section 2 we write about a knowledge base represented through DL and
relational data model. Further, in subsection 2.1 we deal with potential and
valid domains as well as with ranges. The valid domains are important input
parameters of the algorithm to construct relational scheme which we present in
Section 2.2. Subsection 2.3 explains creating the relational database. Section 3
concentrates on ontology implementation in an SQL environment. This enables
to query such database by usual tools of SQL, i.e. to solve the retrieval problem.
In fact, it means creating tables and views (Subsection 3.1) in the SQL language.
Then we explain how to insert data in the tables (Subsection 3.2). Section 4
concludes the paper.

2 Knowledge Base in Relational Data Model

Basics of DL, ontologies and all used symbols are described in [8], here we refer
to unexplained notions. Our language consists of names for atomic concepts
A,B ∈ NC, names for roles R ∈ NR. Roles are either functional (NFR) or
non-functional (NNR). Concept constructions we usually denote by C,D and
we understand them as nonterminal symbols.

The main idea of the knowledge base representation with relational data
model is shown in Figure 1. For every concept or role we create unary or binary
relation, respectively, except for functional roles. For every functional role we
create only one attribute in a relation or one attribute in more than one relation
depending on so called valid domains (see Section 2.1). The ABox assertions are
translated by inserting some tuples into relations. TBox assertions of the type
⊑ are translated into integrity constrains and equalities into special relations
called T view

C
. In practice, such a relation is represented by view in SQL.

Fig. 1. Translation mapping the ontology elements to database structures.

46 Jaroslav Pokorný, Jana Pribolová, Peter Vojtáš

Note that ontology as a relational database offers the users some kind of
inferencing. The main feature is to retrieve all instances of the concept. Moreover
such a database supports query construction. In DL, an equivalent of the query
is a concept defined as equality. However, in practice ontology-based systems are
applied for more complicated queries than concepts can be. The W3C standard
for such a set of queries is the query language called SPARQL [13]. A lot of such
queries are supported by our system.

Section 2.2 presents the solution to find out all instances of the concept, not
only instances that are explicitly known, i.e. those expressed by C(a).

2.1 Domains and Ranges of Roles

In DL the knowledge base comprises TBox and ABox. We understand both of
them, ABox A about and TBox T , as sets of assertions (about individuals or con-
cepts, respectively). Each set of assertions can be divided into two categories.
One, denoted by subscript E , includes extensional assertions, the second one
comprehends as set of additionally deduced assertions and it is denoted by sub-
script D. The set TE consists of acyclic definitions A := C and axioms C ≡ D and
C ⊑ D. The set TD is derived with respect to (symmetric, transitive) properties
of the assertions ≡ and ⊑. For all TBox sets the following holds:

– T = TE ∪ TD,

– TE ∩ TD = ∅.

ABox AE consists of statements of the form B(a) and R(a, b). Let us also
mention that A = AE ∪ AT

D
. The set AT

D
depends on the TBox T , because we

derive assertions on basis of AE and TBox assertions. If it is evident which T
inducted AT

D
, we omit superscript T .

Example 1. Let us have a knowledge base O with concepts shown in Figure 2.
The concept Student is defined as follows:

Student := Person ⊓ ∃takesCourse.Course

The set of assertions T includes previous definition of concept Student and also
subsumption assertions shown in Figure 2 with solid line. Also there are some
roles in O, i.e. NFR = {hasName, hasAddress} and NNR = {takesCourse}.

Note that the name of the concept GraduateCourse is abridged to GCourse.
The deduced assertions are shown in Figure 2 with dotted arrows.

Also ABox consists of the extensional assertions:
AE = { Person(S2), GCourse(C2), hasName(P1, Nameb),

Student(S1), takesCourse(S1, C1), hasName(C1, Namec),
Publication(P1), takesCourse(S2, C1), hasName(C2, Named),
Article(P1), hasName(S1, Namea) hasAddress(S1, Addressa),
Course(C1), }

Translation of Ontology Retrieval Problem into Relational Queries 47

Fig. 2. IS-A hierarchy of the knowledge base O.

and also of the deduced ones:

AT
D = {Person(S1), Course(C2), Student(S2)}

As we can see the assertion Publication(P1) belongs to the set of extensional
assertions. Though it can be deduced also, because the assertion Article ⊑
Publication is in the TBox T and Article(P1) is an extensional assertion.

In DL there are two kinds of the equality meanings. The equality whose
left-hand side is atomic concept means the definition. In this paper we denote
definition equality as the symbol := instead of ≡ to distinguish definition equal-
ities from the rest. We assume, there are no cycles in definitions.

In OWL language there is a chance to define domain and range of a role but
it is not a necessary condition. Emphasize that our approach tries to reduce the
number of join operations within the query construction. The main idea is to
encode each functional property as an attribute of the relation, that represents
domain of the role, not as standalone relation. In case without defined domain
(range) of the functional roles we need to find concepts of instances that are
related to another through the role. Sometimes domain or range are defined as
union of concepts. This case is similar to the previous one. Therefore we define
so called potential and valid domains as follows.

Definition 1. A concept B ∈ NC is said to be a potential domain for role

R ∈ NR with respect to the set assertions A if there is R(a, b) ∈ A such that

B(a) ∈ A. The set of potential domains for role R with respect to A is denoted

PD
A

R .

Example 2. Let us illustrate the Definition 1 on Example 1. The role hasName

has the following potential domains with respect to AE :

PD
AE

hasName
= {Publication,Article, Course,GCourse, Student}

The role hasAddress has the following potential domain with respect to AE :

PD
AE

hasAddress
= {Student}

48 Jaroslav Pokorný, Jana Pribolová, Peter Vojtáš

In OOP (Object-Oriented Programming) if the ancestor class has defined a
function, the descendant class can use it. We map the concept into meaning of
OOP class and functional role into OOP function. That means that we do not
need translate the same functional role for ancestor concept and for descendant
concept separately. Therefore let us define valid domains – concepts for which
we consider the functional role to translate into relational scheme.

Definition 2. A valid domain for role R ∈ NFR with respect to A is a potential
domain A ∈ PD

A

R with property that does not exists B, B ∈ PD
A

R so that
A ⊑ B ∈ T and A ≡ B 6∈ T , as well as B ⊑ A 6∈ T . The set of valid domains
for role R is denoted as VD

A,T
R . If we are interested in valid domains with respect

to whole TBox assertions, e.g. T , we can omit the superscript T .

Note that if ABox is changed it is necessary to revise the potential and valid
domains again. This process prevents ontology deformation of the original mod-
eling intent.

Example 3. With assistance of the previous examples we can present the valid
domains of the role hasName with respect to AE :

VD
AE

hasName = {Publication,Course, Student}.

The concept GCourse does not belong to the set VD
AE

R because there exists

Course ∈ VD
AE

R so that GCourse ⊑ Course and neither Course ⊑ GCourse

nor Course ≡ GCourse is in T .

It is useful to define ”inverse” function that can find for any concept A all
roles for which the concept is valid domain.

Definition 3. The role R ∈ NFR is said to be a role defined on the concept
B with respect to the set of assertions A if B ∈ VD

A,T
R . We denote the set of

all roles defined on the concept B as isInVD
A,T
B . Similarly as in Definition 2

if we use all assertions of T , we can omit the superscript and denote the set of
all roles defined on the concept B as isInVD

A

B .

Example 4. In the running example of this paper an interesting point is to com-
pute isInVD

AE

Student:

isInVD
AE

Student = {hasName, hasAddress}

Our solution requires valid domains to encode functional properties. To keep
some integrity constraints it is useful to define also range of the roles.

Definition 4. A potential range for role R ∈ NR (with respect to A) is concept
B for which there exists R(a, b) ∈ A and B(b) ∈ A. We denote the set of potential
ranges of role R as PRR.

Example 5. We compute potential ranges for all roles as follows:

PR
A

hasName = {String},

PR
A

takesCourse = {Course}.

Computation of valid ranges is unnecessary because we use ranges only to
keep integrity.

Translation of Ontology Retrieval Problem into Relational Queries 49

2.2 Construction of a Relational Scheme

The first part of ontology translation into relational database consists of creating
a relational scheme.

Algorithm 1 Let O be a knowledge base with TBox T and ABox A. T ,
A, concept’s names, and role’s name are translated into relational database
D = (R, I). Here R denotes a relational database scheme consisting of basic
relational schemes and view definitions using relational algebra expressions (RA
expressions). Second, I denotes a set of integrity constraints. The translation is
done by induction as described below.

First part of translation depends only on the language, the second part de-
pends also on ABox and the last depends on the TBox too.

Note that names of attributes are motivated by RDF (subject, predicate,
object) and resource terminology.

The construction is based on the following steps:

First translation steps are based solely on the description logic language

1. For all A ∈ NC we add to R new relation TA with scheme TA(resource).

2. For all R ∈ NNR we add to R a relation scheme TR(subject, object).

Following translation steps depend on the ABox (and deduced valid domains)

3. For all A ∈ NC for which isInVDAE

A
= {R1, R2, . . . , Rn} ⊆ NFR, n ≥ 1

we modify TA(resource) ∈ R to relation Tmod
A

∈ R with scheme
Tmod

A
(resource,R1.object, . . . , Rn.object)

If R ∈ NFR and VDAE

R
= ∅, then we add to R a new relational scheme

TR(subject, object).

The following translations depend on the TBox. First we deal with defi-
nitions:

4. For all A ∈ NC such that there is a concept construction C with A := C ∈ T
we add to R a new relation T view

A
with scheme T view

A
(resource) and view

definitions so that (SD and SE are defined in step 5):

– If C := D ⊓ E then
T view

A
= TA ∪ (SD ∩ SE)

– If C := ∃R.D and R ∈ NNR or VDAE

R
= ∅ then

T view
A

= TA ∪ (TR(subject, object)
[TR.object = SD.resource]

SD(resource))[TR.subject].

– If C = ∃R.D and R ∈ NFR and VDAE

R
6= ∅, n > 0 then

T view
A

= TA ∪ (Srec
R

(subject, object)
[Srec

R
.object = SD.resource]

SD(resource))[Srec
R

.subject]

50 Jaroslav Pokorný, Jana Pribolová, Peter Vojtáš

where Srec
R

is the RA expression for reconstruction of the role R from
appropriate columns of Tmod

B
tables

Srec

R (subject, object) =
⋃

B∈VD
AE
R

(

Tmod

B [resource,R.object]
)

Here we assume that this is a lossless encoding of all ABox information
about R.

5. For a non-atomic concept construction C such that there is in T no definition
with right hand side C and C is a sub construction of a concept definition in
T , then we create a new RA expression SC with the only attribute resource
so that:
– If C = D ⊓ E then

SC = (SD ∩ SE)
– If C = ∃R.D and R ∈ NNR or VD

AE

R
= ∅ then

SC = (TR(subject, object)[TR.object = SD.resource]SD(resource))
[TR.subject]

– If C = ∃R.D and R ∈ NFR and VD
AE

R
6= ∅ then

SC = (Srec
R

(subject, object)[Srec
R

.object = SD.resource]SD(resource))
[Srec

R
.subject]

6. To transform axioms in T , we add the following integrity constraint to I:
– if C ≡ D ∈ T and C,D are non atomic concept constructions then

SC = SD ∈ I,
– if C ⊑ D ∈ T then SC ⊆ SD ∈ I.

The following interesting observations result from the previous algorithm.

1. For all R ∈ NNR and for all R ∈ NFR for which VD
AE

R
= ∅:

– TR[subject] ⊆
⋃

B∈PD
AE
R

TB ,

– TR[object] ⊆
⋃

B∈PRR

TB .

2. For all B ∈ NC for which isInVD
AE

B
6= ∅ and for all R ∈ isInVD

AE

B
:

Tmod

B [R.object] ⊆
⋃

A∈PRR

TA.

These assertions check ”integrity” of the translation of role assertions. In more
detail, the mentioned assertions take care to preserve the subject in area of role
domains and the object in area of the role ranges.

The previous algorithm is illustrated on the following example.

Example 6. According to previous examples and applying Algorithm 1 we re-
ceive the following database scheme:

Tmod

Publication
(resource, hasName.object), TArticle (resource),

Tmod
Course

(resource, hasName.object), TGCourse (resource),
Tmod

Student
(resource, hasName.object), TPerson (resource),

TtakesCourse (subject, object).

Translation of Ontology Retrieval Problem into Relational Queries 51

and
I = {TArticle[resource] ⊆ TPublication[resource],

TGCourse[resource] ⊆ TCourse[resource],
TStudent[resource] ⊆ TPerson[resource]}.

Also relation defined as follows belongs to the database scheme:
T view

Student
= TStudent[resource] ∪ TPerson∩
(

TtakesCourse[TtakesCourse.object = TCourse.resource]
)

[TtakesCourse.subject]
and the following assertions hold for given D:

– TtakesCourse[subject] ⊆ TPerson ∪ TStudent

– TtakesCourse[object] ⊆ TCourse

Note that, the attributes of the relations representing non-functional roles
called subject and object have the same domain. Also note that all instances of
a concept B ∈ NC, so that B := D, are stored in T view

B
.

2.3 Construction of a Relational Database

In previous section we have created a relational scheme. Now we present the
algorithm to insert the data in the database relations.

Algorithm 2 Suppose that T , NC and NR are translated into database D.
ABox A is transferred into D by induction as follows:

1. If B(a) ∈ A and also B ∈ NC, then 〈a〉 ∈ TB .
2. If R(a, b) ∈ A and R ∈ NNR, then 〈a, b〉 ∈ TR.
3. If R(a, b) ∈ A and R ∈ NFR, then one of the following items:

(a) if VDAE

R
= ∅ then

〈a, b〉 ∈ TR,

(b) if there exists A ∈ VDAE

R
so that A(a) ∈ A, then

〈a, b〉 ∈ Tmod

A [TA.resource,R.object],

(c) if there exists A ∈ PDR \VDAE

R
so that A(a) ∈ A, then there exists a

maximal sequence A = B1, B2, . . . , Bn ∈ NC so that Bn ∈ VDAE

R
and

Bi ⊑ Bi+1 ∈ TD for i = 1, . . . , n− 1 Then

〈a, b〉 ∈ Tmod

Bn

[B.resource,R.object].

Note that the last step of algorithm the information A(a) is not lost and moreover
information Bn(a) is a consequence of TBox axioms.

It is important to remember that the valid domains are built with respect
to the set of extensional assertions AE (Algorithm 2, Steps 3b and 3c). On the
other hand, we consider all assertions from ABox A to insert them in the proper
tables (Step 1).

Example 7. After applying Algorithm 2 we obtain:

Tmod

Publication
= {〈P1, Nameb〉}, TPerson = {〈S1〉, 〈S2〉},

Tmod
Course

= {〈C1, Namec〉, 〈C2, Named〉}, TArticle = {〈P1〉},
Tmod

Student
= {〈S1, Namea〉}, T view

Student
= {〈S2〉}.

52 Jaroslav Pokorný, Jana Pribolová, Peter Vojtáš

3 Ontology Implementation in an SQL Environment

We designed and implemented translation of a description logic knowledge base
into an SQL environment, which works in accordance with Algorithms 1, 2. In
fact, we create the database scheme which consists of CREATE TABLE and CREATE

VIEW statements of the SQL language.

3.1 Create Statements

First we create tables representing concepts as it is stated in Step 1 of Algorithm
1. A special case is the top concept. For technical reasons, we assign a numerical
identifier to every URI which represents the associated instance.

for all A ∈ NC do:

if (A = ⊤) then

CREATE TABLE T⊤

(resource INT NOT NULL PRIMARY KEY,

uri VARCHAR NOT NULL);

else

CREATE TABLE TA (resource INT NOT NULL PRIMARY KEY);

Next step is the Step 2 of Algorithm 1. Therefore we create tables for non-
functional roles in this way:

for all R ∈ NNR do:

CREATE TABLE TR (

subject INT NOT NULL,

object INT NOT NULL,

PRIMARY KEY(subject, objects));

After that we deal with functional properties – Step 3 of the Algorithm 1:

for all R ∈ NFR do:

for all A ∈ VD
AE

R
do: ALTER TABLE TA ADD COLUMN R object INT;

Let us mention that in DL we do not distinguish different kinds of roles.
However, in OWL there are two kinds of roles. Practically a role represents a
relationship type (in OWL so called object property) or an attribute type (in
OWL data type property). In case of relationship roles there is relationship
between two instances represented by URIs. On the other hand, attribute roles
represents relationship between instance represented by URI and literal value.
It may appear that the problem can became if in the column representing the
object functional role there is a literal value, or URI in the case of the data type
role. But practically the role can be either object type or data type, not both
types simultaneously. So it could not happen the mentioned collision.

For all atomic concepts that are equivalent to other concept, we also cre-
ate view in the database as it is defined in Algorithm 1 in Step 4. Note, that
in [8] we have proved that to any concept defined via other atomic and non-
atomic concepts we can construct an SQL view whose definition contains only
INTERSECTION operations, SELECTs and TABLE R expressions. Each SELECT uses

Translation of Ontology Retrieval Problem into Relational Queries 53

only join conditions. To achieve this it is necessary to normalize concept defini-

tion on the relational algebra level. We omit details of this procedure here. After

this comment Step 4 looks like:

for all A ∈ NC: C ≡ D do:

String[] elements = getExpressionsOf(A)

if (elements.length > 1) then

for i=2 to elements.length do:

elements[1] += " INTERSECT " + elements[i]

CREATE VIEW ViewA AS elements[1];

where the function getExpressionsOf is defined as follows:

String[] getExpressionsOf(Concept A){
String[] result;

for all Di : A :=
d

i≥1

Di do

if (Di ∈ NC) then

result[i] = "SELECT resource FROM TDi
;"

else if (Di = ∃R.E and E ∈ NC) then

result[i] = "SELECT TR.subject FROM returnRole(R)

JOIN TE ON TR.object = TE.resource;"

else if (Di = ∃R.E) then

result[i] = "SELECT TR.subject

FROM " + returnRole(R) + " AS TR

JOIN " + getExpressionsOf(E) + " AS TE

ON TR.object = TE.resource;"

return result;

}

and the function returnRole is:

String returnRole(Role R){
String result;

if (R ∈ NNR) then result = "TR"

else

int i = 0;

for all A ∈ VD
AE

R
do:

i++;

if (i = 1) then result = "SELECT resource,R object FROM TA"

else

result =+ "UNION SELECT resource,R object FROM TA"

return result;

}

At the end of the Algorithm 1 we have do one more thing – to add some

integrity constraints generated in Step 6.

for all t: t = A ⊑ B do:

ALTER TABLE TA ADD FOREIGN KEY (resource) REFERENCES TB;

The equality of two tables implementing ≡ leads to cyclic referential integrity

in relational database schema. Therefore, we omit it from further consideration.

54 Jaroslav Pokorný, Jana Pribolová, Peter Vojtáš

3.2 Insert the Data

Let us to suppose that the database scheme in SQL is created. Now we will deal
with data – instances as it is described in Algorithm 2. We will show how to
insert them into created tables.

for all A ∈ NC \ {⊤} do:

for all A(a) ∈ A do:

if (a ∈ T⊤) then

id = (SELECT resource FROM T⊤ WHERE uri = ’a’)

else

INSERT INTO T⊤(resource, uri) VALUES (generateId(a),’a’);

INSERT INTO TA(resource) VALUES (generateId(a));

This code fragment implements Step 1. It uses the function int generateId(

String URI) which generates a numerical identifier to use it within condition
in join operation instead of string identifier.

Step 2 of the Algorithm 2 is implemented in this way:

for all R ∈ NNR do:

for all R(a, b) ∈ A do:

INSERT INTO TR VALUES (getId(a),getId(b));

Finally, Step 3 of the Algorithm is interpreted as follows:

for all R ∈ NFR do:

for all R(a, b) ∈ A do:

if(VD
AE

R
= ∅ then

INSERTINTO TR VALUES (getId(a), getId(b))

else

if(∃A ∈ VD
AE

R
and A(a) ∈ A) then

UPDATE TA SET R object = getId(b) WHERE resource = getId(a)

else

find B ∈ VD
AE

R
: A ⊑ B

UPDATE TB SET R object = getId(b) WHERE resource = getId(a)

The function int getId(String URI) returns the numerical identifier assigned
to a given URI.

4 Conclusion

The paper describes an approach to mapping ontology into relational database.
The process of mapping is autonomous that means that there is no need of human
interaction. We present algorithms of translation ontology into relational scheme
and relational data model. In this paper we focused on implementations of the
mentioned algorithms – transformation of algorithm’s steps in SQL statements.

We work with so called EL description logic which contains top, intersect
and full existential quantification constructor. We would like to extend the logic
with additional concept constructors inspired by relational database operators.

The important area of our research relates to valid domains. We want to do
a research about valid domains and the assumption that valid domains preserve
ISA-hierarchy.

Translation of Ontology Retrieval Problem into Relational Queries 55

Acknowledgment

This paper was supported by Slovak project VEGA 1/0131/09, Slovak project
VVGS/UPJ Š/45/09-10, Czech project GAČR 201/09/0990 and Czech project
IS 1ET100300517.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The

Description Logic Handbook. Theory, implementation, and application. Cambridge
University Press, 2003 United Kingdom.

2. J. Dokulil, J. Tykal, J. Yaghob and F. Zavoral. Semantic Web Repository and
Interfaces. International Conference on Mobile Ubiquitous Computing, Systems,

Services and Technologies. In Proc. of UBICOMM 2007, IEEE Computer Society,
2007, pp. 223–228.

3. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer Set

Programming with Description Logics for the Semantic Web. Artificial Intelligence
Vol. 172, Issues 12–13, 2008, pp. 1495–1539.

4. A. Gali, C. X. Chen, K. T. Claypool, and R. Uceda-Sosa. From Ontology to Rela-

tional Databases. Springer Verlag, LNCS 3289, 2004, pp. 278–289.
5. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs:

Combining Logic Programs with Description Logic. In Proc. of WW2003, Hungary,
2003, pp. 48–57.

6. N. Kottmann and T. Studer: Improving semantic query answering. DEXA 2007,
LNSC 4653, Springer, 2007, pp. 671 – 679.

7. Z. Pan and J. Heflin: DLDB: Extending relational databases to support semantic

web queries. In Workshop on Practical and Scaleable Semantic Web Systems, ISWC
2003, 2003, pp. 109–113.

8. J. Pokorný, J. Pribolová, and P. Vojtáš. Ontology Engineering Relationally. Tech-
nical Report 2009-2, Dep. of Software Engineering, Faculty of Mathematics and
Physics, Charles University, 2009, 20 p.

9. J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton.
Relational databases for querying xml documents: Limitations and opportunities.
In Proceedings of 25 VLDB Conference, 1999, pp. 302–314.

10. HAWK. http://swat.cse.lehigh.edu/projects/index.html#hawk
11. MySQL. http://www.mysql.com/.
12. Sesame. http://www.openrdf.org/.
13. SPARQL. http://www.w3.org/TR/rdf-sparql-query/.
14. SWAT Projects - the Lehigh University Benchmark (LUBM). http://swat.cse.

lehigh.edu/projects/lubm/.

